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Abstract

We construct an operator that measures the length of a curve in four-
dimensional Lorentzian vacuum quantum gravity.

We work in a representation in which a SU(2) connection is diagonal and
it is therefore surprising that the operator obtained after regularization is
densely defined, does not suffer from factor ordering singularities and does
not require any renormalization.

We show that the length operator admits self-adjoint extensions and com-
pute part of its spectrum which like its companions, the volume and area
operators already constructed in the literature, is purely discrete and roughly
is quantized in units of the Planck length.

The length operator contains full and direct information about all the
components of the metric tensor which faciliates the construction of a new
type of weave states which approximate a given classical 3-geometry.

1 Introduction

If one was working in a representation of canonical quantum gravity for which the
intrinsic metric qab of an initial data hypersurface was the configuration variable
then the operator corresponding to the length of a curve would be fairly easy to
construct because it would act by multiplication.
However, in this so-called geometrodynamic representation [1] one of the most im-
portant operators, the Wheeler-DeWitt constraint operator, adopts an algebraic
form which is so difficult that almost half a century after its discovery it is still
unknown how to rigorously define it and much less how to solve it (compare [2] for
a detailed analysis).
Fortunately, there is an alternative, called the connection representation, in which
the Wheeler-DeWitt operator adopts a polynomial form after multiplying it by
√

det((qab)). In the Lorentzian signature the underlying connection is complex val-

ued [3] which renders the task of incorporating the correct reality conditions on the
classical phase space variables at the quantum level into a difficult one. However,
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these complications can be overcome in two different ways : the first possibility is
to start with Euclidean gravity, in which the Wheeler-DeWitt constraint is also a
polynomial [4], and to Wick rotate the Euclidean theory into the Lorentzian regime
[5]. The second possibility arises from the recent discovery [6, 7] that by employing
a certain novel technique it is indeed possible to obtain a finite, densely defined
(and symmetric) operator corresponding to the original Wheeler-DeWitt constraint

directly in the Lorentzian regime and without multiplying by a power of
√

det(q).

This technique is independent of the one described in [8] which was restricted to
the classical case and unavoidably is doomed to produce a highly singular Hamil-
tonian constraint operator (compare [22] where this singularity is discussed in the
restricted context of lattice quantum gravity). In contrast, the one proposed in
[7, 8] is perfectly finite everywhere on the Hilbert space. Also, it is independent of
the technique used in [9] which suffers from other problems which have to do with
taking the square root of a non-positive and not self-adjoint operator besides being
a quantization of the Euclidean constraint operator only.
In the real connection representation which we will use in the sequel the metric
depends on the momentum operator only, and it depends on it in a non-polynomial
fashion. It is therefore much harder to define a well-defined operator corresponding
to it. In fact, that is why only volume and area operators could be constructed so
far [10, 11]. It turns out that the same novel technique introduced in [6, 7] can be
used to derive a completely well-defined operator corresponding to the length of a
curve.
The article is organized as follows :

In section 2 we fix the notation and recall the necessary information about the
Hilbert space and techniques that come with the space of generalized connections
modulo gauge transformations A/G.

In section 3 we derive the length operator and show that it is an unbounded
symmetric operator on the full Hilbert space with dense domain and that it has
self-adjoint extensions.

In section 4 we derive several properties of its spectrum and compute it for some
simple situations.

In section 5 we comment on how one can construct “weave states” which approx-
imate a given classical geometry. We need to consider weave states which are more
general than most of the ones previously considered in the literature in the sense
that they necessarily involve intersections and overlappings of the loops involved
and should therefore be rather called “lattice states”.

2 The real connection representation

Let qab be the intrinsic metric of an initial data hypersurface Σ and let Kab be
its extrinsic curvature. Introduce a triad field ei

a which transforms like a 1-form
under diffeomorphisms of Σ and according to the adjoint representation of SU(2)
so that qab = δije

i
ae

j
b. Let ea

i be its inverse and define Ki
a := sgn(det((ej

b)))Kabe
b
i

and Ea
i := det((ej

b))e
a
i . Then one can show that (Ki

a/κ, E
a
i ) is a canonical pair for

Lorentzian four-dimensional canonical gravity, where κ is Newton’s constant.
Now consider the spin-connection Γi

a, that is, the unique connection which annihi-
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lates the triad ei
a. One can define a SU(2) connection Ai

a := Γi
a +Ki

a which has the
correct dimension of an inverse length. Then one can show that the so-called real
Ashtekar variables given by Ai

a/κ, E
a
i define a canonical pair. This observation is

due to Ashtekar [3, 4]. In retrospect, since this real connection formulation does not
simplify the Wheeler-DeWitt constraint too much while the complex formulation
suffers from the other problems mentioned in the introduction, the virtue of us-
ing a connection dynamics formulation rather than a geometrodynamical one is the
following : one can use techniques normally employed in Yang-Mills theory. In par-
ticular, one can use Wilson loop variables which serve as good coordinates on A/G,
the space of smooth connections modulo gauge transformations. The use of loops to
probe connections is radical : those Wilson loop variables can become well-defined
operators only if the excitations of geometry are string-like rather than bubble-like.
On the other hand, given that assumption, it is possible to explicitly character-
ize the quantum configuration space A/G of generalized connections modulo gauge
transformations. This is the precise analogue, in the connection representation, of
“Wheeler’s superspace” in the metric formulation which, to the best of our knowl-
edge, was never specified precisely.
One can show that the elements of A/G are in one-to-one correspondence with the
set of all homomorphisms from the group of holonomically equivalent loops in Σ
into SU(2)/Ad [12]. Moreover, there is a σ – additive, faithful and diffeomorphism
invariant probability measure µ0 on A/G which equips us with a Hilbert space struc-
ture H := L2(A/G, dµ0). This measure is defined as follows :
In the sequel we will denote by γ a closed graph, that is, a collection of analytic
edges e which intersect in vertices v such that each vertex is at least two-valent. A
function f on A/G is said to be cylindrical with respect to γ iff it is of the form
f(A) = (fγ ◦ pγ)(A) = fγ(he1

(A), .., hen
(A)) where e1, .., en are the edges of γ, he

is the holonomy along ei and fγ is a complex-valued function on SU(2)n which is
gauge invariant. So each cylindrical function is determined through a graph γ and
such an fγ and one says that fγ and f ′

γ are equivalent whenever their pullbacks

agree, that is p∗γfγ = p∗γ′fγ′ . Let us denote by Cylγ(A/G) the collection of func-
tions cylindrical with respect to γ modulo cylindrical equivalence and denote by
Cyl(A/G) := ∪γCylγ(A/G) the set of all cylindrical functions.
The measure (µ0) can now be seen as the σ – additive extension [13] of the following
self-consistent family of measures (µ0,γ)γ [14] : let f ∈ Cylγ(A/G) then

∫

A/G
dµ(A)f(A) :=

∫

A/G
dµ0,γ(A)f(A) :=

∫

SU(2)n
dµH(g1)..dµH(gn)fγ(g1, .., gn)

(2.1)
where µH is the Haar measure on SU(2) and gI = heI

(A). In other words, everything
is reduced to finite dimensional integrals over SU(2). One can show that Cyl(A/G)
is dense in H.
Thus integral calculus is introduced on A/G. One can even develop differential
calculus on A/G [15] : a differentiable cylindrical function is simply a differen-
tiable function on SU(2)n. Functional derivatives can be evaluated on differen-
tiable elements of Cyl(A/G) because on a finite graph a distributional connection
can be replaced by a smooth one [12, 14]. One sees that differential and integral
calculus is inherited from the one on SU(2)n. Finally, let us define the spaces
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Cylnγ(A/G), Cyln(A/G) = ∪γCylnγ(A/G) of differentiable cylindrical functions of

order n = 0, 1, ..,∞. Each of Cyln(A/G) is dense in H.

3 The length operator

The stage is now set to derive the length operator. Before we do that we wish to
comment why it was up to now impossible to define this operator rigorously on H
and why it was possible to define volume and area operators.
Consider for instance the volume of a region R ⊂ Σ

V (R) :=
∫

R
d3x

√

| det(q)| =
∫

R
d3x

√

| 1
3!
ǫabcǫijkE

a
i E

b
jE

c
k| (3.1)

where ǫabc carries density weight −1. We see that this functional involves the square
root of a polynomial in Ea

i . This is important because, according to the canonical
commutation relations, we are supposed to replace Ea

i by Êa
i = −iℓ2p δ

δAi
a

where

ℓp :=
√
κh̄ is the Planck length. Now one tries to regularize the polynomial and

defines its square root by its spectral resolution. This has been done successfully in
the literature [10, 11].
We know how to regularize a polynomial in the basic operators A,E but certainly
we do not know how to define a non-polynomial function. This is precisely the case
for

qab = ǫacdǫbefǫ
ijkǫimn E

c
jE

d
kE

e
mE

f
n

4 det((Eg
l ))

2
. (3.2)

Even if one could define it, it is by now well known that the operator version of
the denominator of (3.2) has a huge kernel so that it could not be defined on a
dense domain. This is the reason why a quantization of the length of a piecewise
differentiable curve c : [0, 1] → Σ ; t→ c(t) given classically by

L(c) :=
∫

[0,1]
dt

√

ċa(t)ċb(t)qab(c(t)) (3.3)

has escaped its quantization in the representation H so far. Note that no ab-
solute value signs are necessary in (3.3) under the square root since ċaċbqab =
(ċaei

a)(ċ
bej

b)δij ≥ 0.

3.1 Regularization of the length operator

The regularization of (3.3) is based on two key observations :
Observation 1)
The triad is integrable with generating functional V := V (Σ), the total volume of
Σ. More precisely we have e := sgn(det((ei

a)))

δV

δEa
i

= e
ei

a

2
=

1

κ
{Ai

a, V } (3.4)

which can be verified immediately.
Observation 2)
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The total volume can be quantized in a mathematically rigorous way. Its action on
sufficiently differentiable cylindrical functions is given by (we follow [11])

V̂ f = ℓ3pv̂f = ℓ3p
∑

v∈V (γ)

V̂vfγ

= ℓ3p
∑

v∈V (γ)

√

√

√

√| i

8 · 3!

∑

eI∪eJ∪eK=v

ǫ(eI , eJ , eK)ǫijkX i
IX

j
JX

k
K | fγ . (3.5)

Here gI = heI
(A), XI = X(gI) and Xj(g) := tr(g[−iσj/2]∂g) are the components

of the right invariant vector field on SU(2) (σj are Pauli matrices) where we have
assumed that the edges are outgoing at a vertex. V (γ) is the set of vertices of γ and
finally ǫ(eI , eJ , eK) = sgn(det(ėI(0), ėJ(0), ėK(0))). Note that v̂ is a dimensionless
operator. One can show that (3.5) has dense domain Cyl3(A/G) and is an essentially
self-adjoint operator on H with a purely discrete spectrum (compare the forthcoming
companion paper to [11]).
These two observations motivate the following regularization strategy.
Choose the basis in su(2) given by τj = −iσj/2 and write ea = ei

aτi, Aa = Ai
aτi so

that for smooth A we have he(A) = 1 + A(e) + o(A(e)2) where A(e) =
∫

eA. Then,
according to (3.4)

qab = −2tr(eaeb) = − 8

κ2
tr({Aa, V }{Ab, V }) . (3.6)

Clearly we now are going to replace the integral in (3.3) by a Riemann sum and take
the limit. So let t0 = 0 < t1 < .. < tn = 1 be a partition of [0, 1] such that points
t of non-differentiability of c are among the values ti and let ∆i := ti − ti−1. It is
understood that in the limit n → ∞ also δ := max((∆i)

n
i=1) → 0. Consider then

the following quantity

Ln(c) :=
1

κ

n
∑

i=1

√

2tr({hc(ti−1, ti), V }{hc(ti−1, ti)−1, V }) . (3.7)

Here hc(s, t) denotes the holonomy of A along c from the parameter value s →
t. It is easy to see that for a classical (that is, smooth) connection we have
{hc(ti−1, ti)

±1, V } = ±∆iċ
a(t̃i){Aa(c(t̃i), V } + o(∆2

i ) where t̃i is some value of t ∈
[ti−1, ti]. Therefore (3.7) converges classically to (3.3) in the limit n → ∞. Note
that the argument of the square root is manifestly gauge invariant. The motivation
to replace the A′s by holonomies of course comes from the fact that V̂ has finite
action on holonomies as seen from (3.5).
The final step is to replace V by V̂ and Poisson brackets by commutators times
1/ih̄. The result is

L̂n(c) := ℓp
n

∑

i=1

√

−8tr([hc(ti−1, ti), v̂][hc(ti−1, ti)−1, v̂]) (3.8)

To complete the definition of the length operator we now define for each thrice
differentiable cylindrical function f ∈ Cyl3(A/G)

L̂(c)f := lim
n→∞

[L̂n(c)f ] . (3.9)
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As it stands, (3.9) does not make sense yet because we have not shown that the
limit exists and it may matter how to choose the partition (ti)

n
i=0. Also, it is far

from obvious that the square root is well defined because we did not show that its
argument is a positive and self-adjoint operator. These issues will be settled in the
next subsections.

3.2 Finiteness and choice of the partition adapted to a graph

Let f be a function cylindrical with respect to a graph γ and let s be one of the
segments of c into which we have partitioned it. We wish to study the action of the
operator

l̂2s := −8tr([hs, v̂][h
−1
s , v̂]) (3.10)

on f . By choosing n in (3.9) large enough we may assume without loss of generality
that s and γ are either disjoint, intersect in at most one point or s is contained in γ
(here we have made use of the piecewise analyticity of γ [14]). Further we adapt the
partition to the graph in the following way : a) if s and γ intersect in a point then
this point is a boundary point of s and b) if s is contained in γ then it is contained in
an edge of γ. This is a choice that we have to make in order to achieve independence
of the partition. The resulting operator is different if one assumes that s and γ do
not intersect in an endpoint of s.
We have in general V (s ∪ γ) = V (γ) ∪ V (s) ∪ V (γ ∩ s) = V (γ) ∪ V (γ ∩ s). The
volume operator applied to a graph is a sum of the V̂v for each vertex of the graph
and V̂v only depends on those edges of the graph which are incident at v as follows
from (3.5). Therefore hsV̂v = V̂vhs if s is not incident at v. It follows that

[h−1
s , v̂]f =

∑

v∈V (γ)

h−1
s V̂vf −

∑

v∈V (γ∪s)

V̂vh
−1
s f

=
∑

v∈V (γ)∩∂s

[h−1
s , V̂v]f −

∑

v∈V (γ∩s)−V (γ)

V̂vh
−1
s f (3.11)

and both sums in the last line have at most one non-vanishing term corresponding
to an endpoint of s intersecting γ.
Case 1) γ ∩ s = ∅
Then l̂2sf = 0 as is immediate from (3.11).
Case 2) p ∈ γ ∩ s

Subcase a) p is neither a vertex of γ nor a kink of c and so only the second term
in (3.11) survives.
This implies that p is a trivalent vertex with only two independent tangent directions
of the edges of γ and the segment s incident at p. The properties of the volume
operator now imply that the contribution V̂p of v̂ vanishes and therefore l̂2pf = 0.

Subcase b) p is not a vertex of γ but a kink of c.
Since s is only one of the segments of c incident at p this case is not different from
a).

Subcase c) p is a vertex of γ but not a kink of c.
Now the result can be non-vanishing. We have for a vertex p = v of γ that l̂2sf =
−8tr([hs, V̂v][h

−1
s , V̂v])f , that is, only the first term in (3.11) survives. That the

volume operator in the second commutator also reduces to V̂v follows by a similar
argument.
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Subcase d) p is both a vertex of γ and a kink of s.
Again, this case does not differ from c) for the same reason as b) was equal to a).
So we conclude that for large enough n the operator (3.8) reduces to

L̂n(c) := ℓp
∑

v∈V (γ)

∑

v∈si

√

−8tr([hsi
, V̂v][h−1

si
, V̂v]) (3.12)

where we have denoted the segment si := c([ti−1, ti]). This demonstrates that L̂n(c)
is a finite operator for each n because there are at most |V (γ)| terms in the sum
(3.12). The next question is whether the limit n→ ∞ exists.

3.3 Existence of the limit n→ ∞
We now show that (3.12) is actually independent of the si so that the limit n→ ∞
is already taken and the limit therefore exists trivially.
In fact, si can be an arbitrarily “short” (we put this term in inverted commas because
there is no background metric available with respect to which we could measure the
length of si) segment of c starting at one and only one vertex v of γ.
Let us first recall the notion of a spin-network state [16, 17, 18], we use the notation
of [18] : Label the edges e of a graph γ with nontrivial irreducible representations
of SU(2), that is, assign to each of them a spin quantum number je > 0. If πj is an
irreducible representation of SU(2) with weight (or spin) j then the spin-network
state depends on πje

(he). Further, assign to each vertex v of γ a contractor matrix
mv which contracts the matrix elements of the tensor product (over the set of edges e
incident at v) of the πje

(he) in such a way that the resulting state is gauge invariant.
We label these spin-network states by Tγ,~j,~m. One can show that spin-network states
form an orthonormal basis of H.
Consider first the case that γ and s := si intersect in only one point. Since l̂2s is
gauge-invariant, the result of applying l̂2s to a gauge invariant cylindrical function
must be a gauge invariant cylindrical function f ′ which depends on the graph s∪ γ.
Let us decompose f ′ into a basis of spin-network states. Since f did not depend on
s, the spin assigned to s for a particular term T in the spin-network decomposition
of f ′ can only be j = ±1, 0. In the case j = 0 the state T does not depend on s
at all. In case that j = ±1 then T would be a spin-network state which contains
an univalent vertex, namely the endpoint of s distinct from v, and there is only
one edge, namely s, incident at it and coloured with j 6= 0. Such a state is not
gauge-invariant. Therefore the case j 6= 0 does not appear.
Now consider the case that s := si is contained in an edge e of γ and starts at
a vertex v of γ. By choosing n high enough we may assume that s is properly
contained in e, that is, e′ := e − s 6= ∅. Without loss of generality we may assume
that f is a spin-network state and thus e carries spin j > 0. Then in the spin-
network decomposition of f ′ a particular term depends on γ = γ ∪ s in which the
spins of all the edges of γ distinct from e are unchanged while e′ carries spin j and
s carries spin j′ ∈ {j, j ± 1}. Consider the divalent “vertex” p = s ∩ e′ of γ. In case
that j′ = j then T depends on all of e with the same spin, i.e. it does not depend
on s and e′ with different spins. The only gauge invariant way how to contract the
corresponding matrix elements at p is such that the resulting state depends on s, e′

only through their product e = s ◦ e′. In case that j′ = j ± 1 then p is a two-valent
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vertex at which two edges e′, s with distinct spins j, j′ = j ± 1 are incident. There
exists no vertex contractor that makes such a state gauge invariant, therefore this
case cannot appear.
This furnishes the proof that for a spin-network state f the function L̂n(c)f still
depends on all of the edges of γ if f did and that there is no dependence on the
segments of the partition of c which is to be expected since the classical length of a
curve is a functional of Ea

i only. Thus, the limit n→ ∞ is already taken in (3.12).

3.4 Cylindrical consistency

Since we have adapted our partition to the graph on which a cylindrical function de-
pends, although the operator (3.12) was derived, it is not obvious any more that the
family of operators (L̂γ(c)) constructed actually line up and qualify as the projec-

tions of an operator on H. So let γ ⊂ γ′. We need to show that 1) (L̂γ′(c))|γ = L̂γ(c),
that is, the restriction of a projection to a smaller graph actually coincides with the
projection to the smaller graph and 2) the domain of L̂γ(c) is contained in that of

Lγ′(c). Issue 2) follows trivially by inspection if we choose the domain of L̂γ(c) to
be Cyl3γ(A/G) which we can since the volume operator has that domain. Issue 1)

follows immediately : Given a curve c, the action of L̂γ(c) and L̂γ′(c) on a function
f cylindrical with respect to γ differ if either a) and γ′ has more vertices intersect-
ing c than γ or b) there are additional edges of γ′ incident at a common vertex
of γ and γ′ intersecting c. This follows directly by inspection from (3.12). So let
first v be a vertex of γ′ but not of γ and s a segment of c incident of v. Then
[h−1

s , V̂v]f = −fV̂vh
−1
s = 0 and so this term in the sum (3.12) does not contribute.

Now if case b) occurs then the cylindrical consistency of the volume operator assures
that the edges of γ′ − γ incident at v do not contribute.
This furnishes the proof that (3.12) is consistently defined.

3.5 Symmetry and positivity

We wish to show that 1) every projection L̂γ(c) is a symmetric operator on H with

domain Cyl3γ(A/G) and 2) the family of projections (L̂γ(c))γ) comes from a positive

semi-definite symmetric operator on H with domain Cyl3(A/G).

Lemma 3.1 Every projection L̂γ(c) defines a symmetric and positive semi-definite
operator on H with domain Dγ := Cyl3γ(A/G).

Proof :
Let us begin with l̂2s . Since V̂v is a symmetric operator on H we find for the adjoint
of [h−1

s , V̂v] using the unitarity of SU(2)

[hs, V̂v]
† = [V̂v, hs] = −[(h−1

s )T , V̂v] (3.13)

where (.)T denotes the transpose of (.). It follows that

l̂2s := +8
∑

A,B

K̂AB(s)†K̂AB(s) where K̂AB(s) = [(h−1
s )AB, V̂ ] (3.14)
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which shows that l̂2s is a symmetric and positive semidefinite operator on H and
therefore possesses a square root l̂s. The statement about the domain is a conse-
quence of the fact that L̂γ(c) is defined in terms of the spectral projections of V̂γ

which has domain Dγ.
2

Let us derive a more convenient expression for (3.12) :
By means of the basic SL(2,C) formula g−1

AB = ǫACǫBDgDC we readily derive that
l̂s = l̂s−1. This motivates the following notation :
Let be given an oriented curve c and a vertex v of γ that intersects it. If v is an
interior point of c consider any two segments s±v of c which start at v and are “short”
enough as not to intersect γ in any other of its vertices. If v is an endpoint of c we
need only one such segment s+

v = s−v starting at v. In (3.12) the segments si of c
starting at vertices of γ come with the orientation of c, however, as we just showed,
the operator l̂s is invariant under reversal of the orientation of s and the result of
applying it to a gauge invariant function is independent of the choice of s as long as
it is “short” enough. Therefore, let

N(v, c) =











0 v 6∈ c
1
2

v is an endpoint of c
1 v is an interiour point of c

(3.15)

and define L̂±
v (c) := l̂s±v (c). Then the length operator can be conveniently written

L̂γ(c) =
∑

v∈V (γ)

N(v, c)[L̂+
v (c) + L̂−

v (c)] . (3.16)

Theorem 3.1 The family (L̂γ(c),Dγ) defines a positive semi-definite symmetric
operator on D := Cyl3(A/G).

Proof :
So far we have demonstrated L̂γ(c) is a symmetric and positive semi-definite operator
for each γ with domain Dγ = Cyl3γ(A/G). But to qualify as a symmetric projection
of a symmetric operator requires more :
Let Ŝ be a symmetric operator on H with symmetric projections Ŝγ . Let f = p∗γfγ

and g = p∗γ′gγ′ be cylindrical functions. Then

< g, Ŝf >=< g, Ŝγf >=< Ŝγg, f >
!
=< Ŝg, f >=< Ŝγ′g, f > . (3.17)

Condition (3.17) is necessary and sufficient for a family of self-consistent symmetric
projections to come from a symmetric operator. Let us check that (3.17) is satisfied
for L̂(c) for each curve c.
It is sufficient to check it for the case that f, g are spin-network states. Now since
L̂γ(c) does not change the graph γ on which f depends non-trivially, it follows

that < g, L̂γ(c)f > is non-vanishing if and only if γ = γ′ because spin-network
states depending on different graphs are orthogonal [16, 17, 18]. The same holds
for < L̂γ′(c)g, f >. Symmetry now follows from the cylindrical consistency and the

statement about the domain is because V̂ has this domain.
2
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3.6 Self-adjointness

Although the expression of L̂γ(c)f does not depend on the s±v such that there must
be a way to write purely in terms of the right invariant vector fields XI very much
like as in the case of the volume operator (3.5), it is not clear to us how to do
that. We can therefore not employ the essential self-adjointness of iXI with core
Cyl1(A/G) in order to show that L̂γ(c) is essentially self-adjoint as well with core
Cyl3(A/G).
An independent proof which demonstrates that there exist self-adjoint extensions
goes as follows :

Theorem 3.2 The operator (L̂(c),D) admits self-adjoint extensions on H.

Proof :
The expression of L̂(c) is purely real and symmetric. Therefore it commutes with
the antiunitary operator of complex conjugation. The assertion now follows from
von Neumann’s theorem [19], p. 143.
2

A possible choice of extension is given by its Friedrichs extension.

4 Spectral analysis of the length operator

4.1 Discreteness

The important feature of L̂γ(c) is that it changes neither the graph γ on which a
cylindrical function depends nor the irreducible representations of the corresponding
spin-network states into which a cylindrical function f can be decomposed. Since
the number of spin-network states associated with a fixed graph and a fixed colour-
ing of its edges by irreducible representations is finite-dimensional [18] it follows
that the length operator on each such subspace of D is just a symmetric, positive
semi-definite, finite dimensional matrix. Its eigenvalues are real and are given by
certain non-negative functions λ({jI}) of the spins jI associated with the edges of
γ. Since spin-networks span Dγ and provide a countable basis for its completion Hγ

(with respect to µ0,γ) it follows that there exists a countable basis of eigenvectors
for Hγ . The corresponding eigenvalues therefore form a countable set and lie in the

point spectrum of L̂γ(c).
Recall that a point in the spectrum is said to be in the discrete spectrum if it is an
isolated point and an eigenvalue of finite multiplicity (clearly 0 has infinite multiplic-
ity, all functions cylindrical with respect to graphs not intersecting the curve c are
annihilated). In order to show that the point spectrum that L̂γ(c) attains on Dγ is
discrete it would be sufficient to show that λ({jI}) diverges whenever j := j1+..+jn,
n being the number of edges of γ, diverges. Namely, if there was a finite condensa-
tion point in the point spectrum then an infinite number of different n-tuples would
give an eigenvalue which lies in a finite neighbourhood of that condensation point
but necessarily the corresponding values of j must diverge which would be a contra-
diction. The same argument shows that there would not be an eigenvalue of infinite
multiplicity.
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Looking at the eigenvalue formulae derived below for some simple graphs, such a
behaviour of λ is plausible because L̂γ(c) is an unbounded operator, however, a strict
proof is missing at this point.
Discreteness of the spectrum of L̂γ(c) would follow immediately if we could prove it

for the volume operator. An elegant method of proof would be to show that V̂ is (a
positive root of) an elliptic operator. Since this operator acts on the compact mani-
fold SU(2)n standard results form harmonic analysis would imply that its spectrum
is discrete. Unfortunately this does not work : the volume operator is easily seen
to be the fourth root of the operator q̂†q̂, q̂ =

∑

IJK ǫIJK q̂IJK (compare [6]) and so
is a 6-th order homogenous polynomial in the derivative operators XI . Its principal
symbol can be seen to be a non-negative function with an at least two-dimensional
kernel and therefore is far from being invertible. Indeed, it is by now well-known that
the volume operator has a kernel which includes all divalent and trivalent graphs.
Summarizing, we have shown that L̂γ(c) has pure point spectrum when restricted

to Dγ. Now consider the complete spectrum of L̂γ(c) on all of Hγ Since L̂γ(c) is
a self-adjoint (not only symmetric) operator, it has spectral projections which are
orthogonal for disjoint subsets of its spectrum. It follows that if I is a subset of
the real numbers not contained in the part of the spectrum that L̂γ(c) attains on

Dγ and if P̂I is the corresponding spectral projection then H′
γ := P̂IHγ and Dγ are

orthogonal. But Dγ is dense in Hγ , therefore for each v ∈ H′
γ , ǫ > 0 we find f ∈ Dγ

such that ||v− f || < ǫ. On the other hand by orthogonality ||v− f || ≥ ||v|| which is
a contradiction unless v = 0. Therefore the complete spectrum of L̂γ(c) is already
attained on Dγ and it has no continuous part very much like its companions, the
area and volume operators [10, 11]. Thus, the spectrum on Hγ is discrete in the
sense that it does not have a continuous part.

Similarly, it follows that the spectrum of L̂(c) is attained on D and also does not
have a continuous part (this property is shared by all three operators, length, area
and volume) : Although the set of piecewise analytic graphs is uncountable, the
matrix elements of the length operator in a spin-network basis do not depend on the
graph, they only depend on the quantum numbers ~j, ~m and are therefore diffeomor-
phism invariant. Therefore, the spectrum attained on Dγ and Dϕ(γ), ϕ ∈ Diff(Σ)
an analyticity preserving diffeomorphism, is identical. Moreover, the spectrum does
not depend on whether two curves touch each other in a Cm or Cn fashion for any
1 ≤ m < n. It follows that the spectrum only depends on the C∞ properties of the
diffeomorphism class of a graph, that is, all that matters is whether two edges are
distinct or coincide. In other words all we need to know about a graph is
a) the number N of its vertices
b) the valence n(v) of each vertex v
c) the topologically different ways of connecting edges incident at different vertices
in a C∞ manner which is a finite number.
Thus, since this characterization of a graph depends on discrete labels and the union
of countable sets is a countable set it follows that the spectrum is still discrete in
the sense that it does not have a continuous part. On the other hand we see that
every eigenvalue of the length, area or volume operators is of uncountably infinite
multiplicity when we consider all of H.
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4.2 Eigenvalues

By inspection, the task of giving a closed formula for the eigenvalues of the length
operator requires to have a closed formula for the spectrum of the volume operator
at one’s disposal which we lack, however, at the present stage (see, however, [23] for
a closed formula for its matrix elements). We will therefore restrict ourselves here
to compute the spectrum for some simple types of graphs and thereby obtain the
quantum of length.
Specifically, it is comparatively simple to compute the spectrum of the length oper-
ator when restricted to at most trivalent graphs, thus including the classical spin-
networks which were introduced in [20] and whose vertices are all precisely triva-
lent. Since for trivalent graphs the vertex contractors of a spin-network are unique
and since the result of applying the length operator to a spin-network state is a
spin-network state on the same graph and with the same spin, it follows that all
spin-network states on trivalent graphs are eigenvectors of the length operator. We
will see that the corresponding eigenvalues are non-vanishing in general. This is
an astonishing feature because the volume operator is known to vanish on trivalent
graphs. Now, classically the volume of a region is known if one can measure the
length of arbitrary curves through that region and so non-vanishing length of curves
results in non-vanishing volume. This indicates that trivalent graphs are rather spe-
cial and are insufficient to construct weave states that approximate a given classical
geometry.
The computations are largely governed by the properties of the 6j−symbol of the
recoupling theory of angular momentum which we recall in the appendix. The way
how the recoupling theory of spin systems enters the stage is as follows : in our com-
putations we evaluate the volume operator at a given vertex v on functions f which
transform according to an irreducible representation j of SU(2) under gauge trans-
formations at v. This j is nothing else than the resulting total angular momentum
to which the angular momenta jI (which colour the edges eI incident at v) couple.
There are different ways of how to couple angular momenta jI to resulting spin j and
this freedom is determined by the recoupling quantum numbers jIJ , jIJK , .. (com-
pare the appendix) and results in different contractors of the so not necessarily gauge
invariant (or extended) spin networks. Here we mean by an extended spin network
just any function that depends on the edges of a graph through the matrix elements
of irreducible representations of SU(2) evaluated at the holonomy of the correspond-
ing edge and transforms at each vertex according to an irreducible representation of
SU(2) under gauge transformations. The point is now that the function f is easily
seen to be in the left regular representation of SU(2)n, n being the valence of the ver-
tex v, defined by R̂(g1, .., gn)f(h1, .., hn) = f(g1h1, .., gnhn). On the other hand, the
connection with the abstract angular momentum Hilbert space where SU(2) acts by
the abstract unitary representation Û(g) and which is spanned by the vectors of the
form |(j1, m1), .., (jn, mm); k1, .., kn >= |j1, m1; k1 > ⊗..⊗ |jn, mn; kn > where kI are
certain additional quantum numbers, is made as follows : Consider the special func-
tions (πj(h))m,m′ given by the matrix elements of the j−th irreducible representation
of SU(2), m,m′ ∈ {−j,−j+1, .., j}. Consider the Hilbert space L2(SU(2), dµH) and
let |g > be the usual Dirac generalized eigenstates of the multiplication operator ĝ.
Then (πj(h))m,m′ =< h|j,m;m′ >. The proof is by checking the representation prop-
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erty R̂(g)(πj(h))m,m′ = (πj(gh))m,m′ = (πj(g))m,m̃(πj(h))m̃,m′ =< h|Û(g)|j,m;m′ >
by definition of the states |j,m;m′ >. The reader is referred to [23] for more details.
It follows from these considerations that instead of doing tedious computations
within the left regular representation (spin-network states or traces of the holonomy
around closed loops, [22]) it is far easier to do them in the abstract representation
which allows to use the powerful Clebsh-Gordan theory of angular momentum. We
will do that in the sequel.
In particular, it follows immediately that the right invariant vector field XI is iden-
tified with 2iJI where JI is the angular momentum operator of the spin associated
with the I − th edge which is the self-adjoint generator of the unitary group Û(g).
We are now in the position to compute the spectrum of the length operator on
trivalent graphs γ. First we cast the volume operator in the more convenient form

V̂ = ℓ3pv̂f = ℓ3p
∑

v∈V (γ)

V̂v where V̂v :=

√

| i
32
q̂v|

q̂v =
∑

eI∪eJ∪eK=v,I<J<K

ǫ(eI , eJ , eK)q̂IJK where q̂IJK := [J2
IJ , J

2
JK ] . (4.1)

To arrive at this expression one only has to use elementary angular momentum
algebra. Expression (4.1) captures a neat interpretation of the volume operator : it
measures the difference between recoupling schemes of n angular momenta based on
JIJ and JJK respectively. This is why the recoupling theory is important and the
matrix elements of the volume operator can be given purely in terms of polynomials
of 6j−symbols [23].
Now let v be a vertex of γ which intersects c. From (3.16) we find (h := hs±v

, L̂v(c) :=

L̂±
v (c))

1

8
L̂v(c)

2 = −[tr(h−1V̂ h)V̂ + V̂ tr(h−1V̂ h)] + 2V̂ 2 + tr(h−1V̂ 2h) (4.2)

and the simplification that occurs on trivalent graphs is that the first three terms
vanish identically. We have two possibilities :
Case A : sv lies within an edge of γ incident at v or
Case B : sv is not contained in an edge of γ.
We will discuss both cases separately.

4.2.1 Case A

We may without loss of generality assume that sv coincides with one, say e3, of
the three edges of γ incident at v. This is because 1) if e = sv ◦ e′ then for any
irreducible representation πj of SU(2) we have πj(he) = πj(hsv

)πj(he′) so a spin
network state also depends on sv through πj and 2) for a right invariant vector field
X(hsv

) = X(hsv
he′) = X(he) by definition of right invariance. Therefore the volume

operator (4.1) contains only one term q̂123.
Consider a trivalent spin-network function f = Tγ,~j with spins j1, j2, j3 assigned to
e1, e2, e3 (we have suppressed the contractor matrices ~m since they are unique for
trivalent spin-networks). Then he3

f can be decomposed into extended spin network
functions with total angular momentum j = 1/2 and edge spins j′1 = j1, j

′
2 = j2, j

′
3 =
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j3±1/2 by usual Clebsh-Gordan representation theory. Let us determine the precise
coefficients of that decomposition.

Lemma 4.1 Let n = 2j so that πj(g)A1,..,An;B1,..,Bn
= g(A1,B1

..gAn),Bn
where the

round bracket means total symmetrization in the A indices. Then

gA0,B0
πj(g)A1,..,An;B1,..,Bn

= πj+1/2(g)A0,..,An;B0,..,Bn

− n

n+ 1
ǫA0(A1

πj−1/2(g)A2,..,An);(B2,..,Bn
ǫB1)B0

. (4.3)

Proof :
Elementary linear algebra.
2

We now multiply each of the two terms in (4.3) with g−1
B0,A0

and sum over A0, B0.
The result is

g−1
B0,A0

πj+1/2(g)A0,..,An;B0,..,Bn
=
n+ 2

n+ 1
πj(g)A1,..,An;B1,..,Bn

g−1
B0,A0

ǫA0(A1
πj−1/2(g)A2,..,An);(B2,..,Bn

ǫB1)B0
= −πj(g)A1,..,An;B1,..,Bn

. (4.4)

Formulae (4.4) illustrate the computational reason for why the edge sv does not
appear in a gauge invariant function f after evaluating L̂(c)f on it. We now can write
he3

f = f+ + n3

n3+1
f− where, according to (4.3), the vectors f+ and f− respectively

are proportional to the vectors |j12 = j3, j = 1/2; j1, j2, j3 +1/2 > and |j12 = j3, j =
1/2; j1, j2, j3 −1/2 > respectively on the abstract angular momentum Hilbert space.
That in both vectors j12 still equals j3 follows from the fact that we did not change
the way the matrices are contracted in f in multiplying it by he3

.
The space of states V+ with total angular momentum j = 1/2 and spins j1, j2, j

′
3 =

j3 + 1/2 is two dimensional : it is spanned by |j12 = j3, j = 1/2; j1, j2, j3 + 1/2 >
and |j12 = j3 + 1, j = 1/2; j1, j2, j3 + 1/2 > respectively. Likewise, the span of
the space of states V− with total angular momentum j = 1/2 and spins j1, j2, j

′
3 =

j3 − 1/2 is given by |j12 = j3, j = 1/2; j1, j2, j3 − 1/2 > and, provided that j3 ≥ 1,
|j12 = j3 − 1, j = 1/2; j1, j2, j3 − 1/2 > respectively. The volume operator leaves
these two spaces separately invariant and the operator q̂123, being antisymmetric
on H, reduces to an antisymmetric 2 × 2 matrix on V+ and to an anti-symmetric
2 × 2 matrix on V− if j3 ≥ 1 and to the zero matrix if j3 < 1. Let the matrix
elements different from zero of these matrices be denoted by ±µ+,±µ− respectively,
then, since we take the modulus of the square root of q̂123 it follows that f± are

already eigenvectors of V̂ with eigenvalues λ± :=

√
|µ±|

4
√

2
. It follows then from (4.4)

and h−1V̂ 2h = (h−1V̂ h)2 that our spin-network state is eigenfunction of the length

operator L̂v(c) with eigenvalue ℓp

2

√

1
n3+1

[(n3 + 2)λ2
+ + n3λ2

−].

It remains to compute the matrix elements µ± of q̂123 = [J2
12, J

2
23]. We have

µ+ := < j′12 = j3 + 1, j =
1

2
; j1, j2, j

′
3 = j3 +

1

2
|q̂123|j12 = j3, j =

1

2
; j1, j2, j

′
3 = j3 +

1

2
>

= [(j3 + 1)(j3 + 2) − j3(j3 + 1)] < j′12 = j3 + 1, j =
1

2
|J2

23|j12 = j3, j =
1

2
>

= 2(j3 + 1)
∑

j23=j1± 1

2

j23(j23 + 1) < j′12 = j3 + 1, j =
1

2
|j23, j =

1

2
> ×
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× < j23, j =
1

2
|j12 = j3, j =

1

2
> (4.5)

where we have suppressed j1, j2, j
′
3 = j3 + 1

2
. In the last step we have inserted a

complete 1 in form of the coupling scheme (j2, j
′
3) → j23, (j1, j23) → j and realized

that the only possible values for j23 in order to couple to spin j = 1/2 with j1 are
the ones displayed. Completely analogously we find

µ− := < j′12 = j3 − 1, j =
1

2
; j1, j2, j

′
3 = j3 −

1

2
|q̂123|j12 = j3, j =

1

2
; j1, j2, j

′
3 = j3 −

1

2
>

= [(j3 − 1)j3 − j3(j3 + 1)] < j′12 = j3 − 1, j =
1

2
|J2

23|j12 = j3, j =
1

2
>

= −2j3
∑

j23=j1± 1

2

j23(j23 + 1) < j′12 = j3 − 1, j =
1

2
|j23, j =

1

2
> ×

× < j23, j =
1

2
|j12 = j3, j =

1

2
> . (4.6)

We now use the formulae given in the appendix to compute the eight remaining
matrix elements in terms of 6j−symbols and evaluate the latter by means of the
Racah formula. The result is

µ+ =
√

(a+ b+ c)(a+ b− c)(b+ c− a)(c + a− b)

where a = j1 +
1

2
, b = j2 +

1

2
, c = j3 + 1

µ− = −
√

(a + b+ c)(a+ b− c)(b+ c− a)(c+ a− b)

where a = j1 +
1

2
, b = j2 +

1

2
, c = j3 . (4.7)

The final result is thus given by the following theorem.

Theorem 4.1 The eigenvalue λ of L̂v(c) for a trivalent spin-network state Tγ with
vertex at v such that c and γ share a segment incident at v is given by (j3 ∈ {j1 +
j2, j1 + j2 − 1, .., |j1 − j2|})

λ =
ℓp

2
√

j3 + 1/2
×

×
√

(j3 + 1)
√

(j1 + j2 + j3 + 2)(j1 + j2 − j3)(j2 + j3 − j1 + 1)(j3 + j1 − j2 + 1)

+j3
√

(j1 + j2 + j3 + 1)(j1 + j2 − j3 + 1)(j2 + j3 − j1)(j3 + j1 − j2) (4.8)

provided the edges e1, e2, e3 of γ incident at v are linearly independent, otherwise
λ = 0.

The formula for λ simplifies if we take v to be a divalent vertex not sharing a segment
with c. Then j3 = 0 and necessarily j1 = j2 = j0 and we find simply

λ(j0) = ℓp
4

√

j0(j0 + 1)

which for large spin grows as
√
j0. In other words, the warping of Σ when the

gravitational field is in the spin-network state labelled by j0 grows with the spin j0
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since one and the same curve c appears the longer the more spin j0 we have in a
neighbourhood of it.
The quantum of length is achieved for j0 = 1/2 and given by

1√
2

4
√

3ℓp.

The length can change only in packets of ∆L ≈ ±1
2

√

1
j0
ℓp which approaches zero for

large spin so that for high spin the length looks like a continuous operator.

4.2.2 Case B

As this is actually a four-valent problem the computations will be much more elab-
orate than in the previous case since we have to couple now four angular mo-
menta which will necessarily invoke the 9j−symbol. Fortunately one can reduce
the 3(n− 1)j−symbol to a polynomial in 6− jsymbols, n the valence of the vertex.
The segment e4 := sv carries spin j4 = 1/2. First we note that if again f is a
spin-network state with vertex v intersecting c then we have (ǫIJK := ǫ(eI , eJ , eK))

q̂vhe4
f = [ǫ124q̂124 + ǫ234q̂234 + ǫ314q̂314]he4

f + he4
ǫ123q̂123f

= [ǫ124 + ǫ234 + ǫ124]q̂124he4
f (4.9)

where in the second step we exploited gauge invariance of f , that is, in infinitesimal
form [X1 +X2 +X3]f = 0.
The extended spin-network function he4

f is represented on the abstract angular
momentum Hilbert space by a vector proportional to ψ := |j12 = j3, j123 = 0, j =
1/2; j1, j2, j3, j4 = 1/2 > where the notation means that the operator [(J1+J2+J3)

i]2

is diagonal as well, the coupling scheme being given by (j1, j2) → j12, (j12, j3) →
j123, (j123, j4) → j.
The space of states with given values j1, j2, j3, j4 = j = 1/2 is easily seen to be three-
dimensional and is spanned by ψ, ψ+, ψ− where ψ± = |j12 = j3 ± 1, j123 = 1, j =
1/2; j1, j2, j3, j4 = 1/2 >. This is because j = 1/2 requires j123 = 0, 1 and j123 = 0
enforces j12 = j3 while j123 = 1 enforces j12 = j3 ± 1 by the usual Clebsh-Gordan
decomposition into irreducibles (j)⊗ (j′) = (j+ j′)⊕ (j+ j′−1)⊕ ..⊕ (|j− j′|). The
task left to do is to compute the matrix elements of q124 = [J2

12, J
2
24] between ψ,ψ±.

In the following computation we are going to insert a complete 1 in form of the basis
corresponding to the coupling scheme (j2, j4) → j24, (j1, j24) → j124, (j124, j3) → j
in order to evaluate J2

24. We abbreviate |j12 = j3, j123 = 0, j = 1/2; j1, j2, j3, j4 =
1/2 >=: |j12, j123 > etc. and have for any values of the various j′s

< j′12, j
′
123|q̂124|j12, j123 >= [j′12(j

′
12 + 1) − j12(j12 + 1)] < j′12, j

′
123|J2

24|j12, j123 >
= [j′12(j

′
12 + 1) − j12(j12 + 1)] ×

×
∑

j24,j124

j24(j24 + 1) < j′12, j
′
123|j24, j124 >< j24, j124|j12, j123 > (4.10)

where the allowed values for j24, j124 are j124 = j3 ± 1/2 in order to couple with
j3 to resulting j = 1/2 and j24 = j2 ± 1/2 are the possible irreducible representa-
tions contained in (j2) ⊗ (j4). The next step is to reduce the matrix elements to
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6j−symbols. Note that the matrix elements are not of the standard textbook form
< j12, j34|j13, j24 > so that we need to invent a new reduction of the 9j−symbol as
a product of 6j−symbols. Upon inserting a complete 1 corresponding to a basis of
yet another coupling scheme we have

< j12, j123|j24, j124 >
≡ < j12(j1, j2), j123(j12, j3), j(j123, j4)|j24(j2, j4), j124(j1, j24), j(j124, j3) >
=

∑

j′
124

< j12(j1, j2), j123(j12, j3), j(j123, j4)||j12(j1, j2), j′124(j12, j4), j(j124, j3) > ×

× < j12(j1, j2), j
′
124(j12, j4), j(j124, j3)|j24(j2, j4), j124(j1, j24), j(j124, j3) >

= < j123(j12, j3), j(j123, j4)||j124(j12, j4), j(j124, j3) > ×
× < j12(j1, j2), j124(j12, j4)|j24(j2, j4), j124(j1, j24) > . (4.11)

In going from the third equality to the fourth equality, two things happened : a)
because j124 is diagonal on the vectors involved in the second scalar product factor
in the third line, the sum reduces to only one term j′124 = j124, b) we used the
Wigner-Eckart theorem to reduce the matrix elements [21], that is, we could get rid
of the first entry of the vectors involved in the first scalar product factor and of the
last entry in the second, both in the third line. Equation (4.11) is the form that
allows to express everything in terms of 6j−symbols. Namely we have

< j123(j12, j3), j(j123, j4)|j124(j12, j4), j(j124, j3) >= (−1)j1+j2+j4+j124 ×

×
√

(2j12 + 1)(2j124 + 1)

{

j1 j2 j12
j4 j124 j24

}

(4.12)

< j12(j1, j2), j124(j12, j4)|j24(j2, j4), j124(j1, j24) >= (−1)2(j3+j12)+j4+j−j123 ×

×
√

(2j123 + 1)(2j124 + 1)

{

j3 j12 j123
j4 j j124

}

. (4.13)

In order to see this we do the following : In (4.12) set j′1 := j1, j
′
2 := j2, j

′
3 := j4, j

′ :=
j124, j

′
12 := j12, j

′
23 := j24 and use the standard formula (A.1) for the 6j−symbol

given in the appendix in terms of the primed j′s. In (4.13) we first set j′1 :=
j3, j

′
2 := j12, j

′
3 := j4, j

′ := j, j′12 := j123, j
′
23 := j124 and secondly recall the identity

|j12(j2, j1), j >= (−1)j1+j2−j12 |j12(j1, j2), j > in order to apply the standard formula
in terms of the primed j′s.
As the whole expression becomes rather lengthy we refrain from writing the matrix
elements (4.10) out explicitly in terms of j1, j2, j3, rather we consider them as known
through (4.10)-(4.14) and define

a :=< ψ|q̂124|ψ+ >, b :=< ψ|q̂124|ψ− > , c :=< ψ+|q̂124|ψ− > . (4.14)

So q̂124 reduces to an antisymmetric 3 × 3 matrix with non-vanishing off-diagonal
entries ±a,±b,±c, eigenvalues 0,±iµ where µ =

√
a2 + b2 + c2 and eigenvectors

ψ0, ψ± which can chosen to be

ψ0 = cψ − bψ+ + aψ−, ψ
± = [∓ibµ− ac]ψ + [−∓ icµ+ ab]ψ+ + [b2 + c2]ψ− (4.15)

and inverted

ψ− =
1

2µ2
[ψ+ + ψ− + 2aψ0],
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−[b2 + c2]ψ+ =
b

µ2
[(b2 + c2)ψ0 − (ψ+ + ψ−)/2] +

ib

2µ
[ψ+ − ψ−],

+[b2 + c2]ψ =
c

µ2
[(b2 + c2)ψ0 − (ψ+ + ψ−)/2] − ic

2µ
[ψ+ − ψ−]. (4.16)

Let now σ :=
√

|ǫ124 + ǫ234 + ǫ124| µ
32

, σ being the eigenvalue of V̂ on both ψ± while

it vanishes on ψ0. It is then straightforward to check that

V̂ ψ = σ[ψ − c

µ2
ψ0] = σ

a2 + b2

µ2
ψ + terms ∝ ψ± . (4.17)

We now translate this result back into the representation L2(A/G, dµ0), multiply
by h−1

e4
and take the trace. The result must be a gauge invariant vector with no

dependence on e4, that is, j = j4 = 0. It follows that tr(he4
ψ±) = 0 because in

writing he4
ψ± in terms of extended spin-networks we cannot get j = 0 since the

contractor corresponding to j123 = 1 is unchanged. Therefore

Theorem 4.2 The eigenvalue of L̂v(c) on a trivalent spin-network state Tγ with
vertex v such that c and γ do not share a segment incident at v is given by

L̂v(c)Tγ = ℓp
√

|ǫ124 + ǫ234 + ǫ124|µ
a2 + b2

2µ2
Tγ , µ :=

√
a2 + b2 + c2 (4.18)

where a, b, c are given through (4.10)-(4.14).

5 Tube operator and weaves

The length operator has a strange feature unshared by the area and volume operators
:
Ultimately, in a semiclassical approximation, one wishes to construct states which
approximate a fixed classical 3-geometry (Σ, qab). Such eigenstates have been called
“weaves” in the literature (see for instance [25]). Most of these eigenstates typically
only involved linked, rather than intersecting loops, while the length and volume
operators automatically annihilate those states, we need to construct more general
weave states for which the name “lattice states” is more appropriate.
It is clear that a state that approximates such a geometry has to be defined on an
(infinite, in case Σ is not compact) graph filling all of Σ in the following sense :
consider a parameter δ of which we may think as a lattice spacing and which is to
characterize the average distance (as measured by qab) between neighbouring vertices
of the graph. In order to serve as a good approximation, the parameter needs to be
small as compared to the scales of macroscopic objects. Consider any macroscopic
volume or area in Σ. It follows that the graph necessarily intersects these objects
provided that δ is small enough and it intersects it the more often the smaller δ.
Each intersection makes a contribution no matter whether the intersection point
is a vertex or not. On the other hand, even for the most random distribution of
vertices with mean separation δ, even if δ is much smaller than the length of a given
curve, the curve genuinely almost never intersects the graph in a vertex and so the
quantum length of the curve would be always much smaller than its classical length.

18



This is obviously not what we want and so the length operator constructed cannot
be directly associated with the length of a given classical curve. Following the
old physical argument that an object always has to have a linear extension of at
least one Planck length in order not to form a black hole, the conclusion is that a
one-dimensional curve cannot correspond to a physical object. This motivates the
following definition.

Definition 5.1 A tube C with a curve c as center corresponding to a classical metric
qab is a two parameter congruence of curves C : (r, s) ∈ [0, 1]× [−π.π] → Cr,s such
that
i) C0,s = c ∀ s ∈ [−π, π],
ii) the transversal extension of the tube as measured by

∆ := sup
s,t

∫ 1

0
dr

√

Ca
,rC

b
,rqab(s, t)

is much smaller than the length L(c) of the central curve c.

So the picture is that we have a congruence of curves, all of which look like c and
which fill a cylinder with thickness ∆ << L(c). We are now ready to define a tube
operator.

Definition 5.2 The tube operator is given by

L̂(C) :=
∑

(r,s)∈[0,1]×[−π,π]

L̂(Cr,s) . (5.1)

Notice that there is an uncountable sum involved in (5.1). In order to see that this
makes sense we first of all notice that the classical volume of the region filled by the
tube is given approximately by π∆2L(c), provided that qab is slowly varying there.
The density of vertices is given by 1/δ3 so that we have approximately πL(c)∆2/δ3

vertices inside the region filled by the tube. For a genuine distribution of vertices,
each curve involved in (5.1) will intersect at most one vertex. On the other hand,
all these intersections should be assigned to the central curve only because we wish
to measure the length of the curve c only. This is the reason why we do not divide
by the number of contributing curves.
It follows that only a finite number of curves contribute in (5.1) and so the tube
operator is densely defined on D and it is trivial to see that it is positive semi-
definite, symmetric and possesses self-adjoint extensions. Notice that since we have
prescribed the tube to be a congruence, it follows that each vertex lies on at most
one curve. Since the length operators L̂(sv) commute for distinct vertices, it follows
that all contributing length operators can be simultaneously diagonalized.
As an example assume that we wish to approximate the Euclidean metric qab = δab

so that it is everywhere constant and not varying at all. For simplicity we want
to consider a weave built from a tri-valent lattice so that all length operators are
automatically diagonal. To simplify life further, let us assume that all edges have
equal spin j0 which implies that j0 is integral. Let λ(j0) be the corresponding
eigenvalue in (4.18) (almost never will the lattice have a segment in common with
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one of the contributing curves). Then it follows that we get for the eigenvalue of
the tube operator

Λ(C) = ℓp
π∆2L(c)

δ3
λ(j0)(1 + o(δ/L(c)) (5.2)

which we want to equal L(c). Since we want the tube operator to be state-independent
and since there is no other state-independent length scale in the problem, we are
forced to choose ∆ = ℓp (which is also physically motivated as above; we have chosen

a fixed factor of proportionality to equal unity). It then follows that δ = ℓp
3

√

πλ(j0).
Since λ is a monotonously growing function of j0 it follows that the lattice can be
chosen the coarser the more spin it carries in order to still approximate the same
geometry. The limit δ → 0 blows up, it is physically meaningless to consider lattices
with mean distance of vertices smaller than Planck scale which, as already stated
in the literature, hints at a discrete structure. Since we have chosen ∆ = ℓp ≤ δ(j0)
it follows as a consistency check that at most one vertex per unit length δ will con-
tribute to Λ(C) so that L̂(C) correctly measures a one-dimensional object.
The limit δ → ∞ gives a zero eigenvalue because Σ becomes more and more empty.
So we see that there are weave states Ψ(qab := δab, j0; δ(j0)) which approximate
qab = δab where we have considered j0 as a free parameter. Notice that there is a
large number of weave states corresponding to the various values of j0 such that
the same geometry is approximated (we cannot let j0 → ∞ because of δ << L(c)).
Also observe that we use here weave states which necessarily involve intersecting
and overlapping (j0 > 1/2), rather than only linked, loops [25].
On the other hand we can fix δ, vary j0 and ask which classical geometry is be-
ing approximated. Since one and the same curve appears the longer, according to
(5.2), the more spin the lattice carries, we see that that the corresponding qab must
be warped as compared to δab. This hints at the fact that the spin of the lattice
must have something to do with the curvature which in turn has to do with the
local energy distribution of the gravitational field. Indeed, the spin characterizes
the eigenvalue of the ADM Hamiltonian [7, 26].

6 Summary

• A satisfactory quantization of the length of a piecewise smooth curve was given.
The length operator leaves the piecewise analytic graph of a cylindrical function
invariant (in particular, analytic) therefore it is proper to allow the curve to be only
piecewise smooth rather than piecewise analytic. It is gauge invariant and diffeo-
morphism covariantly defined.
• The length operator is an unbounded, self-adjoint, positive semi-definite operator
with domain Cyl3(A/G).
• The spectral analysis turns out to be tedious but straightforward. In particular,
the methods displayed here reveal that the complete spectrum can be found by writ-
ing a suitable computer code. This also is true for the volume operator [23].
• The spectrum is entirely discrete, the quantum of the length being given by 4

√
3ℓp/.

In particular, all spin-network states on graphs with valence not bigger than three
are eigenvectors of the length operator with, in general, non-vanishing eigenvalue.
• In order approximate a 3-geometry a tube operator has to be constructed. One
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can build intersecting and overlapping weave states which are such that they repro-
duce the classical length of the tubes given a classical geometry.

Acknowledgements

This research project was supported in part by DOE-Grant DE-FG02-94ER25228
to Harvard University.

A The 6j−symbol

The following can be found in any textbook on the recoupling theory of angular
momenta (for instance [21]).
Consider the coupling of three angular momenta of some spin system consisting
of three independent subsystems with angular momenta jI , I = 1, 2, 3. Since the
three systems are independent of each other, the operators J i

I , J
j
J , I 6= J mutually

commute. We are interested in states which are labelled by the quantum numbers of
a maximal set of mutually commuting observables which includes the the square of
the total angular momentum J i = J i

1 + J i
2 + J i

3 of this system. It is easy to see that
the set consisting of j1, j2, j3, j,m (where m is the eigenvalue of J3) is insufficient
because ji, mi is a set consisting of six rather than five quantum numbers. The
missing quantum number is any choice of jIJ , I < J which labels the eigenvalue
of the square of JIJ := JI + JJ . It is easy to see that J, JIJ satisfy the angular
momentum algebra.
Denote an orthonormal basis of states so constructed by |jIJ , j; j1, j2, j3 > where
it is understood that one first couples jI , jJ to resulting spin jIJ and then jIJ , jK
to the resulting total spin j. Any choice of such a recoupling scheme leads to an
orthonormal basis and thus the transformation between these bases must be unitary.
The matrix elements of this transformation were explicitly computed by Racah. In
particular we have

< j12, j; j1, j2, j3|j23, j; j1, j2, j3 >

=: (−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

{

j1 j2 j12
j3 j j23

}

(A.1)

where the 2× 3 matrix on the right hand side is the so-called 6j−symbol for which
a closed formula exists [21].
There exists a choice of phases for the basis vectors such that all the 6j−symbols
are real. With this choice they enjoy a large amount of symmetries of which we just
need two :
1) it is invariant under an arbitrary permutation of its columns and
2) it is crossing-symmetric, that is

{

j1 j2 j3
j4 j5 j6

}

=

{

j1 j6 j5
j4 j3 j2

}

. (A.2)

For the purposes of this paper it is sufficient to table the value of the 6j−symbol for
the special case that one of jI , jIJ , j takes the value 1/2. Then we have the special
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values

{

a b c
1
2

c− 1
2

b+ 1
2

}

= (−1)a+b+c

√

√

√

√

(a+ c− b)(a+ b− c+ 1)

(2b+ 1)(2b+ 2)(2c)(2c+ 1)
(A.3)

{

a b c
1
2

c− 1
2

b− 1
2

}

= (−1)a+b+c

√

√

√

√

(a + b+ c+ 1)(b+ c− a)

(2b)(2b+ 1)(2c)(2c+ 1)
. (A.4)

This is all one needs to know in order to verify the eigenvalue calculations of the
present paper. It is clear how to generalize the recoupling theory for any number of
spins.
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