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Summary

 

A detailed exposition on a refined nonlinear shell theory that is suitable for nonlinear limit-
point buckling analyses of practical laminated-composite aerospace structures is presented. This  
shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, 
and Budiansky as an explicit proper subset that is obtained directly by neglecting all quantities 
associated with higher-order effects such as transverse-shearing deformation. This approach is 
used in order to leverage the exisiting experience base and to make the theory attractive to 
industry. In addition, the formalism of general tensors is avoided in order to expose the details 
needed to fully understand and use the theory in a process leading ultimately to vehicle 
certification. 

The shell theory presented is constructed around a set of strain-displacement relations that are 
based on "small" strains and "moderate" rotations. No shell-thinness approximations involving 
the ratio of the maximum thickness to the minimum radius of curvature are used and, as a result, 
the strain-displacement relations are exact within the presumptions of "small" strains and 
"moderate" rotations. To faciliate physical insight, these strain-displacement relations are 
presented in terms of the linear reference-surface strains, rotations, and changes in curvature and 
twist that appear in the classical "best" first-approximation linear shell theory attributed to 
Sanders, Koiter, and Budiansky. The effects of transverse-shearing deformations are included in 
the strain-displacement relations and kinematic equations by using analyst-defined functions to 
describe the through-the-thickness distributions of transverse-shearing strains. This approach 
yields a wide range of flexibility to the analyst when confronted with new structural 
configurations and the need to analyze both global and local response phenomena, and it enables 
a building-block approach to analysis. The theory also uses the three-dimensional elasticity form 
of the internal virtual work to obtain the symmetrical effective stress resulants that appear in 
classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky. The 
principle of virtual work, including "live" pressure effects, and the surface divergence theorem 
are used to obtain the nonlinear equilibrium equations and boundary conditions.

 A key element of the shell theory presented herein is the treatment of the constitutive 
equations, which include thermal effects. The constitutive equations for laminated-composite 
shells are derived without using any shell-thinness approximations, and simplified forms and 
special cases are discussed that include the use of layerwise zigzag kinematics. In addition, the 
effects of shell-thinness approximations on the constitutive equations are presented. It is 
noteworthy that none of the shell-thinness approximations appear outside of the constitutive 
equations, which are inherently approximate. Lastly, the effects of "small" initial geometric 
imperfections are introduced in a relatively simple manner, and a resume

  

 of the fundamental 
equations are given in an appendix. Overall, a hierarchy of shell theories that are amenable to the 
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prediction of global and local responses and to the development of generic design technology are 
obtained in a detailed and unified manner.

 

 

Major Symbols

 

The primary symbols used in the present study are given as follows.

 unit-magnitude base vector fields of the shell reference surface
shown in figure 1

A area of shell reference surface (see figure 1), in
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metric coefficients of the shell reference surface 
(see equation (1)

 shell stiffnesses defined by equation (101)
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 shell membrane stiffnesses (see equation (B31)), lb/in.
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 shell transverse-shearing stiffnesses (see equation (B32)), lb/in.
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 shell coupling stiffnesses (see equation (B31)), lb
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 tracers used to indentify various shell theories 
(see equation (53))

  transformed shear stiffnesses appearing in equation (85b), psi 
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ij

 

] constitutive matrices defined by equations (87)

ds differential arc length define by equation (1), in. 

D

 

11

 

, D

 

12

 

, D

 

16

 

, D

 

22

 

, D

 

26

 

, D

 

66

 

 shell bending and twisting stiffnesses (see equation
(B31)), in.-lb
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 matrices defined by equations (26), (27), and (55)

 matrices defined by equations (116) - (117)

  linear deformation parameters defined by equations (8)
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)  analyst-defined functions that specifiy the through-the-thickness  
distributions of the transverse-shearing strains (see 
equations (3)), in.
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 work-conjugate stress resultants defined by equations (20c)
and (20d), lb 

G(

 

ξ

 

3

 

) function defining the through-the-thickness temperature 
variation (see equation (90))

 shell thermal coefficients defined by equation (109)

h shell-wall thickness, in.

 

h

 

/

 

R

 

  maximum shell thickness divided by the minimum principal 
radius of curvature

 shell thermal coefficients defined by equation (108)

k

 

44

 

, k

 

45

 

, k

 

55

 

 transverse-shear correction factors appearing in equation (B32)
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 matrices defined by equations (28) and (29)
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 bending stress resultants defined by equations (13), in-lb/in.
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work-conjugate bending stress resultants defined by equation
(20b), in-lb/in.
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) applied loads on edge 
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 = constant (see figure 2), in-lb/in.
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) applied loads on edge 

 

ξ

 

2

 

 = constant (see figure 2), in-lb/in.

 unit-magnitude base vector field perpendicular to the shell
reference surface, as depicted in figure 1

 unit-magnitude vector field perpendicular to the shell reference-
surface boundary curve and , as depicted in figure 1
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 membrane stress resultants defined by equations (13), lb/in.
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work-conjugate membrane stress resultants defined by equation
(20a), lb/in.
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) applied load on edge 
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 = constant (see figure 2), lb/in.
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 = constant (see figure 2), lb/in.
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P

 

1

 

, 

 

P

 

2

 

, 

 

P3 effective tractions defined by equations (59), psi 

 effective tractions defined by equations (122), psi 

q1, q2, q3, {q} applied surface tractions (see equations (32)), psi

   dead-load part of applied surface tractions (see equations 
(32)), psi

 live-load part of applied surface tractions (see equations 
(32)), psi

 tractions associated with interactions between live pressure and
initial geometric imprefections, defined by equation (122d), psi

Q1(ξ2) applied load on edge ξ1 = constant (see figure 2), lb/in.

Q2(ξ1) applied load on edge ξ2 = constant (see figure 2), lb/in.

Q13, Q23 transverse-shear stress resultants defined by equations (13), 
lb/in.

Q13, Q23, {QQQQ} work-conjugate transverse-shear stress resultants defined by
equation (20e), lb/in.

 stress resultants defined by equations (59), lb/in.

  transformed, reduced (plane stress) stiffnesses of classical 
laminated-shell and laminated-plate theories
(see equation (85a)), psi

 shell stiffnesses defined by equation (103)

R1, R2 principal radii of curvature of the shell reference surface along
the ξ1 and  ξ2 coordinate directions, respectively, in.

 shell stiffnesses defined by equation (102)

S1(ξ2)  applied load on edge ξ1 = constant (see figure 2), lb/in.

S2(ξ1) applied load on edge ξ2 = constant (see figure 2), lb/in.

[S0], [S1], [S2], [S3], [S4], [S5] matrices defined by equations (17)
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u1, u2, u3 displacements of material points comprizing the shell reference
surface (see equations (3)), in.

U1, U2, U3 displacements of shell material points (see equations
(3)), in.

wi(ξ1, ξ2)  known, measured or assumed, distribution of reference-surface 
initial geometric imperfections measured along a vector normal
to the reference surface at a given point, in.

 shell stiffnesses defined by equation (104)

 shell stiffnesses defined by equation (105)

z1, z2   quantities defined as  and , respectively, and 

used in equations (89) and (99)

Z  quantity defined as  and used in 
equations (89) and (99)

 shell stiffnesses defined by equation (106)

 transformed coefficients of thermal expansion appeaing in
equation (85a), oF-1 

  transverse-shearing strains evaluated at the shell reference
surface (see equation (16c))

Γ12  transverse shear function defined by equation (5g)

  variations of the linear deformation parameters defined 
by equations (23)

δε11, δε22, δγ12, δγ13, δγ23, δε33 virtual strains appearing in equation (14b)

virtual membrane strains defined by equation (22a) and (53)

 virtual transverse-shearing strains appearing in equation (22c)

δϕ1, δϕ2, δϕ  virtual rotations of the shell reference surface about the  ξ1-, ξ2-,
 and ξ3-axes, respectively, defined by equations (23), radians
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vector of virtual bending strains defined by equation (22b), in-1 

 external virtual work per unit area of shell reference surface
defined by equation (32a), lb/in.

 external virtual work per unit length of the applied tractions 

acting on the boundary curve ∂A that encloses the region A 
(see figure 1 and equation (33a)), lb

 external virtual work per unit length of shell reference surface

boundary defined by equations (33), lb

 internal virtual work per unit area of shell reference surface
defined by equations (19), lb/in.

  internal virtual work per unit volume of shell defined by
equations (14), psi

 internal virtual work per unit length of shell reference surface
boundary defined by equation (47), lb

 internal virtual work per unit length of shell reference surface
boundary defined by equations (48), lb

δu1, δu2, δu3, {δδδδu} virtual displacements of the shell reference surface about the
ξ1-, ξ2-, and ξ3-axes, respectively, in. (see equation (27a))

ε11, ε22, γ12, γ13, γ23, ε33 shell strains defined by equations (5)

reference-surface normal and shearing strains defined by
equations (6) and (51)

changes in reference surface curvature and torsion defined by
equations (7), in-1  

ρ11, ρ22 radii of geodesic curvature of the shell reference surface 
coordinate curves ξ1 and  ξ2, respectively, in.
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σ11, σ22, σ12, σ13, σ23, σ33 shell stresses, psi

τ parameter used to identify second-order terms in equations (100)

ξ1, ξ2, ξ3 curvilinear coordinates of the shell, as depicted in figure 1

ϕ1, ϕ2, ϕ  linear rotation parameters for the shell reference surface defined
by equations (4), radians

 linear deformation parameters defined by equations (8)
and (16b), in.-1 

Θ,  function describeing the pointwise change in temperature from
a uniform reference state (see equations (90)), oF 

 thermal quantities defined by equations (88) and (92), 
respectively

∂A curve bounding area of shell reference surface (see figure 1), in. 

Introduction

Classical plate and shell theories have played an important role in the design of high-
performance aerospace structures for many years. As a result, familiarity with these theories is 
generally widespread throughout the aerospace industry, and a great amount of resources has gone 
into validating their use in design. Perhaps the best-known classical shell theory is the one 
attributed to A. E. H. Love1, 2 that was re-derived by Reissner3 in 1941. This shell theory has 
become known worldwide as the Love-Kirchhoff classical thin-shell theory. This particular shell 
theory, as presented by Reissner, has some deficiencies that were later addressed by Sanders, 
Budiansky, and Koiter4-6 to obtain what is generally deemed as the "best" first-approximation 
classical thin-shell theory. This shell theory was later extended to include the effects of geometric 
nonlinearities by Leonard,7 Sanders,8 Koiter,9,10 and Budiansky.11  For the most part, these theories 
are focused on shells made of isotropic materials. 

As the need for improved structural performance has increased, new materials and design 
concepts have emerged that require refined plate and shell theories in order to predict adequately 
the structural behavior. For example, a sandwich plate with fiber-reinforced face plates and a 
relatively flexible core, either of which may have embedded electromechanical actuation layers, 
is a structure that typically requires a refined theory. Similarly, efforts made over the last 20 to 30 
years to reduce structural weight or to enable active shape control have resulted in thin-walled, 
relatively flexible designs that require nonlinear theories to predict accurately responses such as 

χ11

o
, χ22

o
, 2χ12

o
, χχ

o

Θ

ΘΘk , ΘΘk
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buckling and flutter.

Many refined plate and shell theories have been developed over the past 50 or so years that 
are classified as equivalent single-layer, layer-wise, zigzag, and variational asymptotic theories. 
Detailed historical accounts of these theories are beyond the scope of the present study and can 
be found in references 12-80. Each of these theories has its own merits and range of validity 
associated with a given class of problems, and the choice of which theory to use depends generally 
on the nature of the response characteristics of interest. For the most part, these theories have not 
yet found wide acceptance in standard industry design practices because of the extensive 
experience base with classical theories, the relatively limited amount of validation studies, and the 
increased complexity that designers usually try to avoid. In general, validation studies associated 
with stuctures made from exotic state-of-the-art materials are very expensive if experiments are 
involved. Moreover, there are usually many more structural parameters that must be examined in 
order to understand the design space, compared to the number of parameters that characterize the 
behaviors of the more commonplace metallic structures.

The present study is concerned with the development of refined shell theories that include the 
classical shell theories as well-defined, explicit proper subsets. Herein, the term "explicit proper 
subset" means that the equations of a particular classical shell theory appear directly when all 
quantities associated with higher-order effects, such as transverse shearing deformations, are 
neglected. In contrast, the terms "implicit subset" and "contained implicitly" are used to indicate 
cases where the equations of a particular classical shell theory can be recovered by using a 
transformation of the fundamental unknown response functions. This interest in refined shell 
theories that include the classical shell theories as well-defined, explicit subsets is motivated by 
the need for design-technology and certification technology development that takes full 
advantage of the existing experience base. For example, legacy codes used by industry that have 
undergone extensive, expensive experimental validation over many years can be enhanced to 
address issues associated with new materials and design concepts with a high degree of 
confidence. Moreover, this approach appears to avoid undesirable computational ill-conditioning 
effects.61  Likewise, experience and insight gained in the development and use of nondimensional 
parameters81-165 to characterize the very broad response spectrum of laminated-composite plates 
and shells can be retained and extended with the high degree of confidence needed to design and 
certify aerospace vehicles. Furthermore, the development and use of nondimensional parameters 
have a high potential to impact the development of scaling technologies that can be used to design 
sub-scale experiments for validation of new analysis methods and for flight certification of 
aerospace vehicles (e. g., see reference 147). 

Of the many refined theories for plates and shells discussed in references 12-80, several are 
particularly relevant to the present study.166-212 In an early 1958 paper by Ambartsumian,166 a 
general equivalent single-layer, linear theory of anisotropic shells was derived that presumes  
parabolic through-the-thickness distributions for the transverse-shearing stresses. Subsequent 
integration of the corresponding strain-displacement relations is shown to yield expressions for 
the displacement fields that include those of the classical theory of shells explicitly as a proper 
subset. Six equilibrium equations are also used that involve the asymmetrical shearing and 
twisting stress resultants that are obtained by integrating the shearing stresses across the shell 
thickness. A similar derivation was presented later by Ambartsumian167 for shallow shells in 1960. 
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Likewise, Tomashevski168 used a similar approach to derive the corresponding equations for 
buckling of orthotropic cylinders in 1966.

In 1969, Cappelli et.al.169 presented equations for orthotropic shells of revolution that are 
based on Sanders’8 linear shell theory and that include the effects of transverse-shear 
deformations. In those equations, the two rotations of a material line element that is perpendicular 
to the shell reference surface are used as fundamental unknowns and, as a result, the 
corresponding equations of classical shell theory do not appear explicitly as a proper subset. In 
contrast, Bhimaraddi170 presented linear equations for vibration analysis of isotropic circular 
cylindrical shells in 1984 that include parabolic through-the-thickness distributions for the 
transverse-shearing stresses and contain Flügge’s equations171 as an explicit proper subset. It is 
noteworthy to recall that Flügge’s equations retains terms of second order in the ratio of the 
maximum thickness to the minimum radius of curvature that is used in the shell-thinness 
approximations.

 Also in 1984, Reddy172 presented a linear first-order transverse-shear-deformation theory for 
doubly curved, laminated-composite shells that extends Sanders’ original work4 by including the 
two rotations of a material line element that is perpendicular to the shell reference surface that are 
used as fundamental unknowns and by introducing constitutive equations that relate the 
transverse-shear stress resultant to the transverse shearing strains. Similarly, in 1985, Reddy and 
Liu173 extended Reddy’s previous shear-deformation theory for doubly curved, laminated-
composite shells by including parabolic through-the-thickness distributions for the transverse-
shearing stresses. Like Cappelli et.al.,169 the equations in references 172 and 173 do not contain 
the equations of Sanders’ shell theory as an explicit proper subset.

Soldatos174-178 presented a refined shear-deformation theory for isotropic and laminated-
composite non-circular cylindrical shells during 1986-1992. This particular theory includes 
parabolic through-the-thickness distributions for the transverse-shearing stresses and contains the 
equations of Love-Kirchoff classical shell theory as an explicit proper subset. Additionally, only 
five independent unknown functions are present in the kinematic equations, like first-order 
transverse-shear deformation theories. In 1989, Bhimaraddi et al.179 presented a derivation for a 
shear-deformable shell finite element that is based on kinematics that include parabolic through-
the-thickness distributions for the transverse-shearing strains in addition to the kinematics based 
on the hypothesis originally used by Love.1, 2 Likewise, in 1992, Touratier180 presented a 
generalization of the theories discussed herein so far that combines parabolic through-the-
thickness distributions for the transverse-shearing strains and the classical Love-Kirchhoff linear 
shell theory. Specifically, following his earlier work on plates (see reference 181), Touratier 
appended the Love-Kirchhoff kinematics for shells undergoing axisymmetric deformations with 
a transverse-shear deformation term that uses a somewhat arbitrary function of the through-the-
thickness coordinate to define the distributions of the transverse-shearing stresses. The 
arbitrariness of this function is limited by the requirement that the corresponding transverse 
shearing stresses satisfy the traction boundary conditions on the bounding surfaces of the shell. 
This process yields general functional representations for the transverse shearing stresses, much 
like that of Ambartsumian,166, 167, 182 that are specified by the analyst a priori. Moreover, by 
specifying the appropriate shear-deformation functions, the first-order and refined theories that 
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have uniform and parabolic shear-stress distributions, respectively, discussed herein previously 
are obtained as special cases. Touratier181, 183 also presented results based on using sinusoidal 
through-the-thickness distributions for the transverse-shearing strains that are similar to those 
used earlier by Stein and Jegley.184, 185 A similar formulation for shallow shells was given by 
Sklepus186 in 1996, which includes thermal effects.  Additionally, in 1992, Soldatos187 presented a 
refined shear-deformation theory for circular cylindrical shells that is similar to general 
formulation of Touratier180 but utilizes only four unknown functions in the kinematic equations 
and also accounts for transverse normal strains. Later, in 1999, Lam et.al.188 determined the 
vibration modes of thick laminated-composite cylindrical shells by using a refined theory that 
includes parabolic through-the-thickness distributions for the transverse-shearing strains in 
addition to the kinematics of classical Love-Kirchhoff shell theory. In 2001, Fares & Youssif189 
derived an improved first-order shear-deformation nonlinear shell theory, with the Sanders-type 
kinematics used by Reddy,172 that uses a mixed variational principle to obtain stresses that are 
continuous across the shell thickness. A similar theory was also derived by Zenkour and Fares190 
in 2001 for laminated cylindrical shells.

Recently, Mantari et.al.191 presented a linear theory for doubly curved shallow shells, made of 
laminated-composite materials, that is similar in form to the derivation given by Reddy and Liu,173 
but uses the form of the kinematics used by Touratier180 in 1992 and discussed previously herein. 
In contrast to Touratier’s work, the theory given by Mantari et.al. contains the linear equations of 
the Donnell-Mushtari-Vlasov192 shell theory as an explicit proper subset. In addition, Mantari et 
al. use a special form of the functions used to specify the through-the-thickness distributions of 
the transverse-shearing strains that contains a "tuning" parameter. This parameter is selected to 
maximize the transverse flexibility of a given laminate construction. A similar derivation, but 
with an emphasis on a different form of the functions used to specify the through-the-thickness 
distributions of the transverse-shearing strains was presented by Mantari et al.193, 194 in 2012. Very 
recently, Viola et.al.195 presented a general high-order, linear, equivalent single-layer shear-
deformation theory for shells that contains many of the theories described herein previously as 
special cases. 

Several shell theories have been derived over the past 25 to 30 years that utilize layerwise 
kinematics to enhance an equivalent single-layer theory without introducing additional unknown 
independent functions that lead to boundary-value problems of higher order. In 1991, Librescu & 
Schmidt196 presented a general theory of shells that appends the kinematics of first-order shear-
deformation shell theory with layerwise functions that are selected to yield displacement and 
stress continuity at layer interfaces. However, the traction boundary conditions at the top and 
bottom shell surfaces are not satisfied. In addition, the theory includes the effects of relatively 
small-magnitude geometric nonlinearities. In contrast, to a standard first-order shear-deformation 
shell theory, this theory of Librescu & Schmidt has a twelveth-order system of equations 
governing the response.

Later, in 1993 and 1995, Soldatos and Timarci197, 198 presented, and applied, a general 
formulation for cylindrical laminated-composite shells, similar to that of Touratier,180 that includes 
five independent unknown functions in the kinematic equations and a discussion about 
incorporating layerwise zigzag kinematics into the functions used to specify the through-the-
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thickness distribution of transverse shearing stresses. Similarly, in 1993 and 1995, Jing and 
Tzeng199, 200  presented, and applied, a refined theory for laminated-composite shells that is based 
on the kinematics of first-order transverse-shear-deformation shell theory appended with zigzag 
layer-displacement functions, and on assumed independent transverse-shearing stress fields that 
satisfy traction continuity at the layer interfaces. A mixed variational approach is used to obtain 
the compatibility equations for transverse-shearing deformations in addition to the equilibrium 
equations and boundary conditions. Although, the theory captures the layerwise deformations and 
stresses, it has only seven unknown functions in the kinematic equations, regardless of the number 
of layers.  In addition, the theory includes the exact form of the shell curvature terms appearing 
in the strain-displacement relations of elasticity theory and in the usual, general definitions of the 
stress resultants for shells. Likewise, in 1993, a general theory for doubly curved laminated-
composite shallow shells was presented by Beakou and Touratier201 that incorporates zigzag layer-
displacement functions and that has only five unknown functions in the kinematic equations, 
regardless of the number of layers. Similar work was presented by Ossadzow, Muller, Touratier, 
and Faye202, 203 in 1995. Moreover, Shaw and Gosling204 extended the theory of Beakou and 
Touratier201 in 2011 to include non-shallow, deep shells.

In 1994, He205 presented a general linear theory of laminated-composite shells that has the 
three unknown reference-surface displacement fields of classical Love-Kirchhoff shell theory and 
two additional ones that are selected to satisfy continuity of displacements and stresses at layer 
interfaces and the traction boundary conditions at the two bounding surfaces of a shell. Similarly, 
Shu206 presented a linear theory for laminated-composite shallow shells in 1996 that also satisfies 
continuity of displacements and stresses at layer interfaces and the traction boundary conditions 
at the two bounding surfaces of a shell. Shu’s theory, however, contains the equations of the 
Donnell-Mushtari-Vlasov192 shell theory as an explicit proper subset. In 1997, Shu207 extended this 
theory to include nonshallow shells, with the classical Love-Kirchhoff shell theory as an explicit 
proper subset.

Cho, Kim, and Kim208 presented a refined theory for laminated-composite shells in 1996 that 
is based on the kinematics of first-order transverse-shear-deformation shell theory appended with 
zigzag layer-displacement functions. In contrast to the theory of Jing and Tzeng,199 this theory uses 
a displacement formulation to enforce traction continuity at the layer interfaces. In 1999, Soldatos 
& Shu209 presented a stress analysis method for doubly curved laminated shells that is based on 
their earlier work (e.g., see references 197, 198, 206, and 208), which includes five unknown 
independent functions in the kinematic equations and two general functions that are used to 
specify the through-the-thickness distribution of transverse shearing stresses. The two functions 
that are used to specify the through-the-thickness distribution of transverse shearing stresses are 
determined by applying the two equilibrium equations of elasticity theory that relate the 
transverse-shearing stresses to the stresses acting in the tangent plane to obtain a system of 
ordinary differential equations for the two unknown functions. This approach yields solutions for 
the two functions in each shell layer. The constants of integration are determined by enforcing 
continuity of displacements and stresses at layer interfaces and the traction boundary conditions 
at the two bounding surfaces of a shell.  

The present study is also concerned primarily with the development of refined nonlinear shell 
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theories. Several previous works relevant to the present study are given by references 210-220 and 
72. Specifically, in 1987, Librescu210 presented a general theory for geometrically perfect, elastic, 
anisotropic, multilayer shells of general shape, using the formalism of general tensors, that utilizes 
a mixed variational approach to obtain the equations governing the shell response. These 
equations include continuity conditions for stresses and displacements at the layer interfaces. In 
his theory, the displacement fields are expanded in power series with respect to the through-the-
thickness shell coordinate, and then substituted into the three-dimensional, nonlinear Green-
Lagrange strains of elasticity theory. This step yields nonlinear strain-displacement relations with 
no restrictions placed on the size of the displacement gradients, and it contains the classical "small 
finite deflection" theory of Koiter9 and the classical "small strain-moderate rotation" theory of 
Sanders8 as special cases. A wide range of refined geometrically nonlinear shell theories can be 
obtained from Librescu’s general formulation, each of which is based on the number of terms 
retained in the power series expansions. In 1988, Librescu and Schmidt211 presented a similar 
derivation for a general theory of shells, again using the formalism of general tensors, that uses 
Hamilton’s variational principle to derive the equations of motion and boundary conditions. This 
particular derivation did not yield continuity conditions for stresses and displacements at the layer 
interfaces, and focused on geometric nonlinearities associated with "small" strains and 
"moderate" rotations. Likewise, Schmidt and Reddy212 presented a general first-order shear-
deformation theory for elastic, geometrically perfect anisotropic shells in 1988, following an 
approach similar to Librescu and Schmidt, for "small" strains and "moderate" rotations that 
includes uniform through-the-thickness normal strain. Their derivation also uses the formalism of 
general tensors. Another similar presentation and an assessment of the theory was given by 
Palmerio, Reddy, and Schmidt  in 1990.213, 214 In contrast to the theory of Librescu and Schmidt, 
the theory of Schmidt and Reddy utilizes a simpler set of strain-displacement relations which 
neglects nonlinear rotations about the vector field normal to the reference surface. Moreover, the 
dynamic version of the principle of virtual displacements is used to obtain the corresponding 
equations of motion and boundary conditions. Furthermore, the classical "small" strain and 
"moderate" rotation theories given by Leonard,7 Sanders,8 and Koiter9,10 are contained in the 
Schmidt-Reddy theory implicitly; that is, they can be obtain by using a change of independent 
variables in the equations governing the response.

In 1991, Carrera215 presented a first-order shear-deformation theory for buckling and 
vibration of doubly curved laminated-composite shells that includes the Flügge-Lur´e-Byrne 
equations216 as an explicit proper subset. This particular set of classical equations for doubly 
curved shells also retains terms of second order in the ratio of the maximum thickness to the 
minimum radius of curvature that is used in the shell-thinness approximations. The geometric 
nonlinearities used by Carrera are identical to those of the Donnell-Mushtari-Vlasov shell theory, 
as presented by Sanders.8 In 1992 and 1993, Simitses and Anastasiadis217, 218 presented a refined 
nonlinear theory for moderately thick, laminated-composite, circular cylindrical shells that 
includes geometric nonlinearity associated with  "small" strains and "moderate" rotations, like 
that given by Sanders,8 and initial geometric imperfections. The theory is based on cubic through-
the-thickness axial and circumferential displacements and constant through-the-thickness normal 
displacements, and neglects rotations about the vector field normal to the reference surface. 
Moreover, the classical theory of Sanders8 is contained as an implicit subset. Also in 1992, 
Soldatos219 presented a refined nonlinear theory for geometrically perfect laminated-composite 
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cylindrical shells with a general non-circular cross-sectional profile. Soldatos’ theory presumes 
parabolic through-the-thickness distributions for the transverse-shearing stresses and contains the 
equations of Love-Kirchoff classical shell theory as an explicit proper subset. Additionally, only 
five unknown independent functions are present in the kinematic equations, like first-order 
transverse-shear deformation theories. The geometric nonlinearity correspond to the "small" 
strains and "moderate" rotations of Sanders,8 with rotations about the normal vector field 
neglected. The equations of motion and boundary conditions are obtained by using Hamilton’s 
variational principle.

Several years later, in 2008, Takano220 presented a nonlinear theory for geometrically perfect, 
anisotropic, circular cylindrical shells. His theory uses the full geometric nonlinearity possessed 
by the three-dimensional Green-Lagrange strains of elasticity theory, and the equilibrium 
equations and boundary conditions are obtained by applying the principle of virtual work. 
Moreover, the theory is formulated as a first-order shear deformation theory and, when linearized, 
includes Flügge’s equations171 as an explicit proper subset. Takano’s work is similar to that 
presented in 1991 by Carrera215 for doubly curved shells, but includes a higher degree of 
nonlinearity in the strain-displacement relations. In 2009, Pirrera and Weaver72 presented a 
nonlinear, first-order shear-deformation theory for geometrically perfect anisotropic shells that 
uses the rotations of material line elements normal to the reference surface as fundamental 
unknowns. In their theory, the full geometric nonlinearity possessed by the three-dimensional 
Green-Lagrange strains of elasticity theory is used and expressed in terms of linear strains and 
rotations, and their products. Additionally, the equations of motion used in their theory are based 
on momentum balance of a differential shell element, as opposed to being determined from a 
variational principle. Moreover, the equations of motion are linear, which appears to be 
inconsistent with a geometrically nonlinear theory.

The literature review given previously herein reveals a need for a detailed exposition on a 
refined nonlinear shell theory that is suitable for nonlinear limit-point buckling analyses of 
practical aerospace structures made of laminated-composites that utilize advanced structural 
design concepts. A major goal of the present study is to supply this exposition. Another goal is to 
focus on a shell theory that includes the classical nonlinear shell theories as explicit proper subsets 
in order to leverage the exisiting experience base and to make the theory attractive to industry. To 
accomplish these goals, the formalism of general tensors is avoided in order to expose the details 
needed to fully understand and use the theory in a process leading ultimately to vehicle 
certification. In addition, the analysis is simplified greatly by focusing on the many practical cases 
that can be addressed by using principal-curvature coordinates. The key to accomplishing these 
goals is the form of the strain-displacement relations.

The strain-displacement relations used in the present study are a subset of those derived in 
reference 221, that are useful for nonlinear limit-point buckling analyses. These strain-
displacement relations are based on "small" strains and "moderate" rotations, and are presented 
first, along with a description of the shell geometry and kinematics. Moreover, the strain-
displacement relations are presented in terms of the linear reference-surface strains, rotations, and 
changes in curvature and twist that appear in the classical "best" first-approximation linear shell 
theory attributed to Sanders4, Koiter5, and Budiansky.6  The effects of transverse-shearing 
deformations are included in the strain-displacement relations and kinematic equations by using 
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the approach of Touratier180 in which the through-the-thickness distributions of transverse-
shearing strains are represented by analyst-defined functions. Additionally, no shell-thinness 
approximations involving the ratio of the maximum thickness to the minimum radius of curvature 
are used and, as a result, the strain-displacement relations are exact within the presumptions of 
"small" strains and "moderate" rotations. This approach yields a wide range of flexibility to the 
analyst when confronted with new structural configurations and the need to analyze both global 
and local response phenomena.  Next, the usual  asymmetrical shell stress resultants that are 
obtained by integrating the stresses across the shell thickness are defined, and the three-
dimensional elasticity form of the internal virtual work is given and used to obtain the 
corresponding symmetrical effective stress resulants that appear in classical nonlinear shell theory 
attributed to Leonard,7 Sanders,8 Koiter,9,10 and Budiansky.11 Afterward, the principle of virtual 
work, including "live" pressure effects, and the surface divergence theorem are used to obtain the 
nonlinear equilibrium equations and boundary conditions. Then, the thermoelastic constitutive 
equations for laminated-composite shells are derived without using any shell-thinness 
approximations. Simplified forms and special cases of the constitutive equations are also 
discussed that include the use of layerwise zigzag kinematics. In addition, the effects of shell-
thinness approximations on the constitutive equations are presented. It is noteworthy to mention 
that none of the shell-thinness approximations discussed in the present study appear outside of the 
constitutive equations, which are inherently approximate due to the fact that their specification 
requires experimentally determined quantities that are often not known precisely. Lastly, the 
effects of "small" initial geometric imperfections are introduced in a relatively simple manner, 
and a resume  of the fundamental equations are given in an appendix. Overall, a hierarchy of shell 
theories are obtained in a detailed and unified manner that are amenable to the prediction of global 
and local responses and to the development of generic design technology. 

Geometry and Coordinate Systems

The equations governing the nonlinear deformations of doubly curved shells are presented 
subsequently in terms of the orthogonal, principal-curvature, curvilinear coordinates ( 1, 2, 3) that 
are depicted in figure 1 for a generic shell reference surface A. Associated with each point  p  of 
the reference surface, with coordinates ( 1, 2,0), are three perpendicular, unit-magnitude vector 

fields  â1,  â2,  and  . The vectors  â1  and  â2  are tangent to the 1- and  2-coordinate curves, 

respectively, and reside in the tangent plane at the point  p. The vector  is tangent to the 3-
coordinate curve at point  p  and perpendicular to the tangent plane. The metric coefficients of the 
reference surface, also known as coefficients of the first fundamental form, are denoted by the 
functions  A1( 1, 2)  and A2( 1, 2)  that appear in the equation 

                                              (1)

where  ds  is the differential arc length between two infinitesimally neighboring points of the 
surface, p and q. This class of parametric coordinates permits substantial simplification of the 
shell equations and has many practical applications. 

n̂

n̂

  ds
2

= A 1d 1

2
+ A 2d 2

2
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Principal-curvature coordinates form an orthogonal coordinate mesh and are identified by 
examining how the vectors â1,  â2,  and    change as the coordinate curves are traversed by an 
infinitesimal amount. In particular, at every point q that is infinitesimally close to point p there is 
another set of vectors  â1,  â2,  and    with similar attributes; that is, the vectors  â1 and  â2 are 
orthogonal and tangent to the 1- and 2-coordinate curves at q, respectively, and reside in the 

tangent plane at the point q. Likewise, vector  is tangent to the 3-coordinate curve at point q  
and perpendicular to the tangent plane at point q. Next, consider the finite portion of the tangent 
plane at point p shown in figure 1. Because of the identical properties of the vectors  â1,  â2,  and  

  at every point of the surface, an identical, corresponding planar region exists at point q. 

Therefore, the vectors  â1,  â2,  and    at point q can be obtained by moving the vectors  â1,  â2,  

and    at point p to point q. In addition, the plane region at point p moves into coincidence with 
the corresponding plane region at point q as the surface is traversed from point p to point q. 
During this process, the plane region at point p undergoes roll, pitch, and yaw (rotation about the 
normal line to the surface) motions. The roll and pitch motions are caused by surface twist 
(torsion) and curvature, respectively. The yaw motion is associated with the geodesic curvature 
of the surface curve traversed in going from point p to q. When a principal-curvature coordinate 
curve is traversed in going from point p to q, the planar region at point p undergoes only pitch 
and yaw motions as it moves into coincidence with the corresponding region at point q. Rolling 
motion associated with local surface torsion does not occur. This attribute simplifies greatly the 
mathematics involved in deriving a shell theory.

 In the shell-theory equations presented herein, the functions  R1( 1, 2)  and  R2( 1, 2) denote 
the principal radii of curvature of the shell reference surface along the 1 and  2 coordinate 
directions, respectively. Similarly, the functions  11( 1, 2)  and  22( 1, 2) denote the radii of 
geodesic curvature of the shell reference surface coordinate curves 1 and  2, respectively. 
Discussions of these quantities are found in the books by Weatherburn222, Eisenhart,223 Struik,224 
and Kreyszig.225 These functions are related to the metric coefficients by the equations

                                                        (2a)

                                                           (2b)

Kinematics and Strain-Displacement Relations

The kinematics and strain-displacement relations presented in this section are special cases 
of those given in reference 221. These equations were derived on the presumption of  "small" 
strains and "moderate" rotations. Moreover, no shell-thinness approximations were used in their 
derivation. In the subsequent presentations, the term "tangential" refers to quantities associated 
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with the tangent plane at a given point of the shell reference surface. In contrast, the term "normal" 
refers to quantities perpendicular to the tangent plane at that given point.

The tangential and normal displacement fields of a material point  of a shell are 

expressed in orthogonal principal-curvature coordinates as

                                    (3a)

                                    (3b)

                                            (3c)

where  U1, U2,  and  U3  are the displacement-field components in the 1-, 2-, and 3-coordinate 

directions, respectively.  The functions   and    are the corresponding 

tangential displacements of the reference-surface material point   and    is 

the normal displacement of the material point    In addition, the functions    

  and    are linear rotation parameters that are given in terms of the reference-

surface displacements by

                                                     (4a)

                                                     (4b)

                                     (4c)

The functions   and  define the transverse-shearing strains. In 

particular,  and   are analyst-defined functions that specifiy the through-the-

thickness distributions of the transverse-shearing strains, and are selected to satisfy the traction-
free boundary conditions on the transverse-shear stresses at the bounding surfaces of the shell 

given by the coordinates  In addition,  and    are selected to satisfy the 

conditions    and Thus, from equations (3) it 
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follows that  

The nonlinear strain-displacement relations obtained from reference 221 are given as 
follows. The normal strains are

       (5a)

      (5b)

                                                         (5c)

and the shearing strains are

     (5d)

                           (5e)

                          (5f)

where
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From equations (5e) and (5f), it follows that    and  

Thus, it is convenient to scale  and    to give 

 For this scaling,  and  are the transverse-shearing strains at the shell 

reference surface.

In equations (5),  are the reference-surface normal and shearing strains, 

which are given in terms of the linear strain and rotation parameters  by

                                   (6a)

                                   (6b)

                             (6c)

Likewise, the changes in reference surface curvature and torsion  caused by 

deformation are given by

                                                     (7a)

                                                     (7c)

                                           (7c)

where  are linear strain parameters associated with bending and twisting of the 

shell reference surface. The linear strain parameters are given in terms of the reference-surface 
displacements and linear rotations by
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                                              (8b)

                                    (8c)

                                                   (8d)

                                                   (8e)

                         (8f)

In these equations,  are recognized as the linear reference-surface strains given 

by Sanders in reference 4. Likewise,  are the linear bending-strain measures 

given by Sanders.

To arrive at the particular form of the nonlinear strain-displacement relations used in the 
present study, equations (5a), (5b), and (5d) are first re-arranged to get
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  (9c)

where the identity

                          (10)

has been used to obtain this particular form of these equations. As pointed out by Koiter,6, 9-10 terms 
involving a reference-surface strain divided by a principal radius of curvature are extremely small 
and can be added or neglected without significantly altering the fidelity of the strain-displacement 
relations. Thus, it follows that

                                 (11)

and equations (9) reduce to

                   (12a)

                 (12b)
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   (12c)

Equations (12) and equations (5e) and (5f) constitute the nonzero nonlinear strain displacement 
relations of the present study. The membrane reference-surface strains defined by equations (6) 
are identical to those used by Budiansky11 and Koiter,9, 10 and contain those used by Sanders8 as a 
special case. Likewise, as mentioned before, the linear bending strain measures defined by 
equations (8d)-(8f) are identical to those used in the "best" first-approximation linear shell theory 
of Sanders, Budiansky, and Koiter. In contrast to the linear bending strain measures used in 
classical Love-Kirchhoff shell theory, those given by equations (8d)-(8f) vanish for rigid-body 
displacements (see reference 4).

Stress Resultants and Virtual Work

In the classical theories of shells, two-dimensional stress-resultant functions are used to 
represent the actual force per unit length produced by the internal stresses acting on the normal 
sections, or faces, of a shell given by constant values of the reference-surface coordinates 1 and 

2. On an edge given by  1 = constant, the stress resultants are defined as

                                     (13a)

In these definitions, the middle surface of the shell is used as the reference surface, for 
convenience. Likewise, on an edge given by  2 = constant, the stress resultants are defined as

                                      (13b)
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where 11, 22, 12, 13, and 23 are stresses and where, in general,  h = h( 1, 2)  is the shell thickness 
at the point  ( 1, 2)  of the shell reference surface. Equations (13) show that the stress resultants 
are not symmetric; that is, N12  N21 and M12  M21, even though the stresses 12 = 21. As a result 
of this asymmetry, constitutive equations that are based on equations (13) are typically more 
complicated that the corresponding equations for flat plates.

To obtain symmetric stress resultant definitions that yield a simple form for the constitutive 
equations, the internal virtual work is used. The internal virtual work of a three-dimensional solid 
is given, in matrix form, in terms of the curvilinear coordinates used herein by 

                         (14a)

with

                                   (14b)

where the superscript  T  in equation (14b) denotes matrix transposition and where A denotes the 
reference-surface area of the shell. The functions  11, 22, 12, 13, 23, and  33 in equation 
(14b) are the virtual strains that are obtained by taking the first variation of the corresponding shell 
strains.  To obtain the form needed for the present shell theory, it is convenient to express the shell 
strains given by equations (12), (4e), and (4f) in matrix form as
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                                          (15b)
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                   (16a)

          (16b)

                                                          (16c)
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                                            (17c)

                                            (17d)

                               (17e)

     (17f)

Taking the first variation of equations (15) gives

         (18a)

                                         (18b)

Next, substituting equations (18) into equations (14) and performing the through-the-thickness 
integration yields the internal virtual work as
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                                              (19a)

with

  (19b)

where 
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                  (20e)
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defined by equations (13) are

                         (21)

which are identical to the effective stress results first defined by Sanders.4 The virtual reference-
surface strains are given by

      (22a)

  (22b)

                                                          (22c)

where the variations of the linear deformation parameters are given by
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                                        (23b)

                                 (23c)

                                              (23d)

                                              (23e)

                            (23f)

From these expressions, it follows that
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   (25a)

   (25b)

  (25c)

Equation (22a) is now expressed in matrix form as

                       (26)
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                                                            (27a)
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                                       (27c)
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                                       (27d)

Likewise, equation (22b) is now expressed in matrix form as

               (28)
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                       (29c)

                                                 (29d)

                                                 (29e)

                                                  (29f)

Equilibrium Equations and Boundary Conditions

Equilibrium equations and boundary conditions that are work conjugate to the strains 
appearing in equations (15) are obtained by applying the principle of virtual work. The statement 
of this principle for the shells considered herein is given by

               (30)

where W I  is the virtual work of the internal stresses and  W E  is the virtual work of the external 
surface tractions acting at each point of the shell reference surface A depicted in figure 1. The 

symbol  represents the virtual work of the external tractions acting on the boundary curve 

A  that encloses the region A, as shown in figure 1. The specific form of the internal virtual work 
needed to obtain the equilibrium equations is obtained by substituting equations (26) and (28) into 
equation (19b). The result of this substitution yields
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    (31)

The pointwise external virtual work of the tangential surface tractions  q1  and q2  and the normal 
surface traction q3 is

                                 (32a)

where

               (32b)

The surface tractions q1, q2, and q3 are defined to be positive-valued in the positive 1-, 2-, and  3- 
coordinate directions, respectively, as shown in figure 2, and include the effects of a live normal-
pressure field (see Appendix A), denoted by the superscript "L" and dead surface tractions, 
denoted by the superscript "D." The boundary integral in equation (30) represents the virtual work 
of forces per unit length that are applied to the boundary  A  of the region A, and it is implied 
that the integrand is evaluated on the boundary.  The symbol  ds  denotes the boundary  differential 
arc-length coordinate, which is traversed in accordance with the surface divergence theorem of 

Calculus.  For many practical cases, the domain of the surface  A  is given by    and 
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                      (33a)

where

                           (33b)

                           (33c)

In equations (33); N1, S1, Q1 , N2, S2, and Q2  are the 1 and 2 components of the external forces 
per unit length that are applied normal, tangential, and transverse to the given edge, respectively, 
as shown in figure 2. Likewise, M1 and M2 are the components of the moment per unit length with 
an axis of rotation that is parallel to the given edge, at the given point of the boundary. In addition, 
M12 and M21 are applied twisting moment per unit length with an axis of rotation that is 
perpendicular to the given edge, at the given point of the boundary. 

The equilibrium equations and boundary conditions are obtained by applying "integration-
by-parts" formulas, obtained by specialization of the surface divergence theorem, to the first 

integral in equation (30). For two arbitrary differentiable functions  and  the 

integration-by-parts formulas are given in general form by

            (34a)

            (34b)

where    is the outward unit-magnitude vector field that is perpendicular to points of A, and 

that lies in the corresponding reference-surface tangent plane. In addition, â1 and  â2 are unit-
magnitude vector fields that are tangent to the  1  and  2 coordinate curves, respectively, at every 
point of A and A, as shown in figure 1. 
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    (35a)

    (35b)

Applying these equations to the left-hand side of equation (30), and using equation (31) for W I, 
gives the following results:
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                 (40)

                  (41)
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       (42)

       (43)

From these equations, it follows that
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     (46a)

        (46b)

The boundary integral appearing in equation (44) is given by

                          (47)

where

       (48a)

       (48b)

Next, equations (32a) and (44) are substituted into equation (30) to get
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  (49)

as the statement of the principle of virtual work. Because  and  are independent 

virtual displacements, that are generally nonzero, the localization lemma for the Calculus of 
Variations yields the equilibrium equations

                                                 (50a)

                                                           (50b)

In order to identify the strain-displacement relations of several different theories that appear 
often in the literature, equation (16a) is expressed as

                (51)

and equations (4) as

                                                   (52a)

                                                     (52b)

                                   (52c)

With this notation, equations (16a) and (8) are recovered by specifying c1 = c2 = c3 = 1.  Specifying 
c1 = 0 and  c2 = c3 = 1 gives Sanders’ strain-displacement relations, and specifying c1 = 0,  c2 = 0, 
and  c3 = 1 gives Sanders’ strain-displacement relations with nonlinear rotations about the 
reference-surface normal neglected. In addition, specifying c1 = c2 = c3 = 0 gives the strain-
displacement relations of the Donnell-Mushtari-Vlasov theory. Accordingly,
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   (53)

where

                                          (54a)

                                            (54b)

                          (54c)

Substituting equations (23a)-(23c) and (54) into (53), the matrices in equations (26) are expressed 
as
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                  (55b)

                (55c)

Moreover,

                                                                                             (56)

In addition, substituting equations (54) in to equation (22b) yields the revised matrices
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                       (57b)

                        (57c)

that appear in equation (28). Equations (29d)-(29f) remain unaltered. By applying these revised 
matrices to equations (46) and (50), the equilibrium equations are found to be

      (58a)

 (58b)

                     (58c)

                                      (58d)

                                      (58e)

where

                             (59a)
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                             (59b)

  (59c)

 (59d)

       (59e)

Before the boundary conditions can be obtained, the boundary integral given by equation (43) 
must be reduced further. In particular, by noting that 

                                                     (60a)

                                                     (60b)

it is seen that the integrals

                                       (61a)

                                       (61b)
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can be integrated by parts further, by using the product rule of differentiation, to get

     (62)

Using this result, equation (47) is expressed as 
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       (64c)

On an edge given by  1 = constant; d 1 = 0, , and For this case, 

       (65a)

where

                  (65b)

Likewise, equation (33a) has the form

                                  (66a)

with

             (66b)
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equations (66) are expressed as

             (68a)

with

          (68b)

 The matrix form of equation (68b) is given by
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In addition,

                        (71)
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     (72a)

                                 (72b)

where and   are arbitrary virtual displacements. The component form of 

these equations yield the following boundary conditions for the edge given by  1 = constant:
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F12 appearing in these boundary conditions correspond to forces per unit length associated with   
through-the-thickness distributions of 11 and 12, respectively, that supress transverse-shearing 
deformations of the plate edge face.

On an edge given by  2 = constant; d 2 = 0, , and For this case, 

       (74a)
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                  (74b)

Likewise, equation (33a) has the form

                                  (75a)
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with                       (77b)

 The matrix form of equation (77b) is given by

                                  (78)

with

                                                   (79a)

                                                         (79b)

In addition,

                          (80)

Thus, enforcing the boundary integral term in equation (49) for an edge given by  2 = constant 
by using equations (64c), (74), and (76) and applying the localization lemma of the Calculus of 
Variations yields
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                                 (81b)

where and   are arbitrary virtual displacements. The component form of 

these equations yield the following boundary conditions for the edge given by  2 = constant:

  or        (82a)

  or         (82b)

          or          (82c)

  or                                              (82d)

  or                                                        (82e)

  or                                                        (82f)

and

  or                                                  (82g)

at the corners given by  1 = a1  and  1 = b1. Examination of equations (20d) reveals that F12 and 
F22 appearing in these boundary conditions correspond to forces per unit length associated with   
through-the-thickness distributions of 12 and 22, respectively, that supress transverse-shearing 
deformations of the plate edge face.

Alternate Form of the Boundary Conditions

In the present derivation of the boundary conditions, and those given by Koiter,6, 9-10 the 
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derivatives  and  have been taken as the basic displacement parameters 

along the edges  1 = constant and  2 = constant, respectively. In contrast, Sanders and Budiansky5, 

8, 11 use the virtual rotations 1 and 2 as the corresponding basic displacement parameters. For 
these basic displacement parameters, equation (73a) and (73d) are replaced with

  or                              (83a)

  or  1 = 0                                            (83b)

for the edge  1 = constant. Similarly, equation (82b) and (82d) are replaced with

  or                              (84a)

  or  2 = 0                                            (84b)

As pointed out by Koiter9 (see part 3, p.49), these alternate boundary conditions are completely 
equivalent to those presented herein previously, and are completely acceptable.

Thermoelastic Constitutive Equations for Elastic Shells

Up to this point in the present study, the analysis has a very high fidelity within the 
presumptions of "small" strains and "moderate" rotations.  The constitutive equations are 
approximate in nature and, as a result, are the best place to introduce approximations in a shell 
theory. The constitutive equations used in the present study are those for a shell made of one or 
more layers of linear elastic, specially orthotropic materials that are in a state of plane stress. 
These equations, referred to the shell ( 1, 2, 3) coordinate system are given by

                      (85a)

                                               (85b)

The  terms are the transformed, reduced (plane stress) stiffnesses of classical laminated-shell 

1
A 1

u3

1

= 0 1
A 2

u3

2

= 0

N11 1 + c1e11

o
+ N12c1 e12

o
= N1 2 u1 = 0

M 11 = M1 2

N22 1 + c1e22

o
+ N12c1 e12

o
+ = N2 1 u2 = 0

M 22 = M2 1

11

22

12

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

11

22

12

–
11

22

12

1, 2, 3

13

23

=
C55 C45

C45 C44

13

23

 Qij



51

and laminated-plate theories, and the  terms are the stiffnesses of a generally orthotropic solid.  

Both the  and the  terms are generally functions of the through-the-thickness coordinate, 3, 

for a laminated shell. The  terms are the corresponding transformed coefficients of thermal 
expansion, and ( 1, 2, 3) is a function that describes the pointwise change in temperature from a 
uniform reference state. An in-depth description of these quantities is found in references 226 and 
227. 

The work-conjugate stress resultants defined by equations (20) are the only stress resultants 
that appear in the virtual work, equilibrium equations, and boundary conditions. Thus, the shell 
constitutive equations are obtained by substituting equations (15) into (85), and then substituting 
the result into equations (20). This process gives the two-dimensional shell constitutive equations 
by the general form

     (86)

where

  for   i, j  {0, 1, 2, 3, 4}  (87a)

                         (87b)
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                          (88)

Substituting equations (17) into equation (87) and using the shorthand notation ,  

, and   yields the following exact expressions 
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                          (89d)

            (89e)

            (89f)

                    (89g)
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                    (89h)

     (89i)

                         (89j)

                           (89k)

              (89l)
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                         (89m)

                    (89n)

  (89o)

        (89p)

and   for  i, j  {0, 1, 2, 3, 4}. Next, the thermal stress resultants  are obtained 

by first expressing the temperature-change field by 

                                                  (90)

such that

                                                      (91)
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      k  {0, 1, 2, 3, 4}   (92)

Specific expressions for   are obtained by substituting equations (17) into equation (92).

The constitutive equations given by equations (86), (89), and (92) include the effects of 
transverse-shearing deformations in a very general manner. Specifically, the constitutive 
equations of a given transverse-shear-deformation theory depend on the choices for the functions  
F1( 3) and  F2( 3), which are required to satisfy F1(0) =  F2(0) = 0  and  F1 (0) = F2 (0) = 1. With these 
functions specified, expressions for the transverse shearing stresses are then obtained by 
substituting equations (4e) and (4f) into equation (85b) to obtain

            (93a)

            (93b)

In refined transverse-shear-deformation theories, it is desireable, but not always necessary, to 
specify F1( 3) and  F2( 3) such that 13 = 23 = 0  at  3 = ± h/2. For example, two similar choices for 
the pair  F1( 3) and  F2( 3) will yield different stress predictions yet their stiffnesses, obtained from 
equations (89), will yield nearly identical predictions of overall buckling and vibration responses. 
In contrast, for accurate stress analyses, one might expect F1( 3) and  F2( 3) to account for the 
inhomogeneity found in a general laminated-composite wall construction. Examples of various 
choices for  F1( 3) and  F2( 3) that have been used in the analysis of plates and shells are found in 
references 193-195. Some examples are discussed subsequently.

Constitutive equations that correspond to a first-order transverse-shear-deformation theory 
are obtained by specifying

                                                        (94a)
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                                                 (94b)

                                                 (94c)

Thus, the functions specified by equation (94a) lead to expressions for the transverse-shearing 
stresses that do not satisfy the traction-free boundary conditions  13 = 23 = 0  at  3 = ± h/2. 
Moreover, these choices for the distibution of the transverse-shearing stresses and strains, given 
by equation (94a), do not reflect the inhomogenous through-the-thickness nature of laminated-
composite and sandwich shells.

A more robust transverse-shear-deformation theory is obtained by specifying

                                                 (95a)

Upon substituting these functions into equations (3) and neglecting the nonlinearities, it is seen 
that the displacements U1 and U2  are cubic functions of 3  and that  U3  has no dependence on  3 
at all. As a result of this character, a transverse-shear-deformation theory based on equation (95a) 
is referred to herein as a {3, 0} shear-deformation theory. For this case

                (95b)

                (95c)

The functions specified by equation (95a) also lead to expressions for the transverse-shearing 
stresses that do not satisfy the traction-free boundary conditions  13 = 23 = 0  at  3 = ± h/2 unless  
h/R1 and h/R2 are negligible. If  h/R  denotes that maximum shell thickness divided by the 
minimum principal radius of curvature, then

                                     (96)
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For moderately thick shells with  h/R = 0.1, the coefficient in equation (96) involving h/R  is equal 
to  0.035. This result suggests that the error in the traction-free boundary conditions may be within 
the error of  the constitutive equations for the practical range of values  h/R   0.1. However, these 
choices for the distibution of the transverse-shearing stresses and strains, given by equation (95a), 
also do not reflect the inhomogenous nature of laminated-composite and sandwich shells.

Expressions for F1( 3) and  F2( 3) that satisfy  13 = 23 = 0  at  3 = ± h/2  are obtained by 
assuming cubic polynomials for F1( 3) and  F2( 3), with a total of eight unknown constants, and 
then enforcing  F1(0) =  F2(0) = 0  and  F1 (0) = F2 (0) = 1 in addition to the four traction boundary 
conditions. This approach yields

                                   (97a)

                                   (97b)

However, R1 and R2 are generally functions of  ( 1, 2), which violates the requirement that  F1  = 

F1( 3) and  F2 = F2( 3). If the terms involving h/R1 and h/R2 are neglected, then equation (95a) is 
obtained. A simple choice for  F1( 3) and  F2( 3)  that satisfies  13 = 23 = 0  at  3 = ± h/2  and avoids 
the presence of R1 and R2 is given by

                                          (98)

These functions and their first derivatives vanish at  3 = ± h/2. 

A highly refined transverse-shear-deformation theory for laminated-composite and sandwich 
shells is obtained by specifying  F1( 3) and  F2( 3)  based on "zigzag" kinematics. This approach 
has been presented in reference 228 for laminated-composite and sandwich plates. This approach 
satisfies the traction-free boundary conditions  13 = 23 = 0  at  3 = ± h/2, and yields functional 
forms for F1( 3) and  F2( 3) that account through-the-thickness inhomogeneities. Moreover, for a 
general inhomogeneous shell wall, F1( 3) and  F2( 3) are found to be different functions.

Simplified Constitutive Equations for Elastic Shells
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(92) exactly, once the through-the-thickness distribution of the elements of the constitutive matrix 
in equation (85) are known. Generally, this process leads to very complicated functional 
expressions for the stiffnesses defined by equations (89). However, for laminated-composite 
materials, the elements of the constitutive matrix in equation (85) are modeled as piecewise-
constant functions and the integration of equations (87) and (88) poses no problems.

 In the present study, the approximate nature of the constitutive equations is exploited to 

simplify the shell constitutive equations by expanding the functions of   and  appearing in 

equations (89) in power series and then neglecting terms that are third-order and higher in  and 
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                                              (99i)

Following this process yields the following constitutive equations for a laminated-composite 
shell:
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   (100b)

       (100c)

      (100d)
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   (100e)

 (100f)
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       (100p)

where
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                                (105)

                                  (106)

In these equations,   = 1  gives the constitutive equations that are second order in  and  

that are generalizations of those put forth by Flügge171 for isotropic shells. Setting   = 0  gives 
constitutive equations that are first order. It is also important to note that the matrices obtained 
from equation (101) for  k = 0, 1, and 2 correspond to the [A], [B], and [D] matrices, respectively, 
of classical laminated-plate theory (see reference 226). Similarly, the thermal parts of the 
constitutive equations are given by

                         (107a)

                                         (107b)

                                                 (107c)

                                                 (107d)
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                              (107e)

where

                               (108)

                             (109)

By examining equations (94a) and (95a),  it is seen that the maximum magnitudes of  and 

 are typically greater than zero and less than unity. Using this information, the constitutive 

equations given by equations (93) are simplified, using binomial expansions of the denomenators, 
to obtain

       (110a)
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Special Cases of the Constitutive Equations
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equations (85) to determine the constitutive equations. A similar set of constitutive equations are 
obtained from equations (106) by neglecting all terms involving principal radii of curvature R1 
and R2. In addition, terms involving the radii of geodesic curvature 11 and 22 are neglected. These 
terms originally entered the constitutive equations through the matrix [S4] in equations (87). To 
see the rationale for neglecting these terms, this matrix is expressed as

                      (111)

Next, the fact that the maximum magnitudes of  and  are typically greater than zero 

and less than unity is used again. In addition, the radii of geodesic curvature measure the bending 
of the coordinate curves within the tangent plane at a given point of the reference surface. 

Typically, 11 and 22 are substantially larger than the shell thickness  h and, as a result, and 

 have very small relative magnitudes. Therefore, it follows that constitutive matrices based on  

[S4]  can be neglected based on the inherent error in the constitutive equations. Based on the same 
reasoning, equations (110) are approximated as

                                             (112a)

                                             (112b)

A detailed derivation of these equations is presented in Appendix B. Additionally, constitutive 
equations are presented in Appendix B for transverse-shear deformation theories that include a 
first-order theory, a {3, 0} theory, and a zigzag theory.
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involving  wi( 1, 2)  appearing in a given membrane strain, that correspond to an unloaded state, 
are subtracted from that given strain. Applying this process to equation (51) yields

       (113a)

       (113b)

            (113c)

By using equations (23), it follows that
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         (114c)

Equation (26) is then expressed as

            (115)

11

o

1, 2 = e11

o
+ 1

2 1

2
+ c2

2
+ 1

2c1 e11

o 2

+ e12

o
e12

o
+ 2 + c1e11

o w
i

R1

1

1
A 1

w
i

1

22

o

1, 2 = e22

o
+ 1

2 2

2
+ c2

2
+ 1

2c1 e22

o 2

+ e12

o
e12

o
2 + c1e22

o w
i

R2

2

1
A 2

w
i

2

12

o

1, 2 = 2e12

o
+ 1 2 + c1 e11

o
e12

o
+ e22

o
e12

o
+

+
c1w

i

R1

e12

o
+

c1w
i

R2

e12

o
+ 1

1
A 2

w
i

2
2

1
A 1

w
i

1

c1e11

o w
i

R1

1

1
A 1

w
i

1

= c1
w

i

R1

1
A 1

u1

1

u2

11

+
u3

R1

1
A 1

w
i

1

c3 u1

R1

1
A 1

u3

1

c1e22

o w
i

R2

2

1
A 2

w
i

2

= c1
w

i

R2

1
A 2

u2

2

+
u1

22

+
u3

R2

1
A 2

w
i

2

c3 u2

R2

1
A 2

u3

2

c1w
i

R1

e12

o
+

c1w
i

R2

e12

o
+ 1

1
A 2

w
i

2
2

1
A 1

w
i

1

=
c1w

i

2R1

1 + c3

1

A 2

u1

2

u2

22

+ 1 c3 A 1

u2

1

+
u1

11

+
c1w

i

2R2

1 + c3

1

A 1

u2

1

+
u1

11

+ 1 c3

1

A 2

u1

2

u2

22

1
A 2

w
i

2

c3 u1

R1

1
A 1

u3

1

1
A 1

w
i

1

c3 u2

R2

1
A 2

u3

2

o
= d0 + d0

i
u + d1 + d1

i 1
A 1 1

u + d2 + d2

i 1
A 2 2

u



70

where [d0], [d1], and [d2] are given by equations (55) and where
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As a result of the "small" initial geometric imperfections, three additional terms appear in the 
counterpart of equation (46a); these terms are

           (120)

Including these additional terms in equations (46) and (50) yields the equilibrium equations

                  (121a)

               (121b)

                (121c)
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 (122c)

and where

                                     (122d)

The terms in equation (122d) arise from the live pressure load.

Additional terms associated with the initial geometric imperfections also appear in the 

boundary conditions given by equations (72) and (81). In particular,  in equation (72a) 
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  or      (124a)

  or      (124b)

  or    (124c)

In addition, the alternate boundary conditions given by equation (83a) becomes

  or               (125)

and that given by equation (84a) becomes

  or               (126)

Expressions for the displacements U1, U2,  and  U3  are obtained by replacing  u3( 1, 2)  with         
u3( 1, 2) + wi( 1, 2) in equations (52) and (3), and then eliminating terms involving  wi( 1, 2)  in 
equation (3) that are left over when u1, u2, and u3 are set equal to zero. This process gives
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A complete resumé of these fundamental equations is given in Appendix C.
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Concluding Remarks

A detailed exposition on a refined nonlinear shell theory that is suitable for nonlinear limit-
point buckling analyses of practical laminated-composite aerospace structures has been 
presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, 
Sanders, Koiter, and Budiansky as an explicit proper subset that is obtained directly by neglecting 
all quantities associated with higher-order effects such as transverse-shearing deformation. This 
approach has been used in order to leverage the exisiting experience base and to make the theory 
attractive to industry. The formalism of general tensors has been avoided in order to expose the 
details needed to fully understand and use the theory in a process leading ultimately to vehicle 
certification. 

The shell theory presented is constructed around a set of strain-displacement relations that are 
based on "small" strains and "moderate" rotations. No shell-thinness approximations involving 
the ratio of the maximum thickness to the minimum radius of curvature were used and, as a result, 
the strain-displacement relations are exact within the presumptions of "small" strains and 
"moderate" rotations. To faciliate physical insight, these strain-displacement relations have been 
presented in terms of the linear reference-surface strains, rotations, and changes in curvature and 
twist that appear in the classical "best" first-approximation linear shell theory attributed to 
Sanders, Koiter, and Budiansky. The effects of transverse-shearing deformations are included in 
the strain-displacement relations and kinematic equations, in a very general manner, by using 
analyst-defined functions to describe the through-the-thickness distributions of transverse-
shearing strains. This approach yields a wide range of flexibility to the analyst when confronted 
with new structural configurations and the need to analyze both global and local response 
phenomena, and it enables a consistent building-block approach to analysis. The three-
dimensional elasticity form of the internal virtual work has been used to obtain the symmetrical 
effective stress resulants that appear in classical nonlinear shell theory attributed to Leonard, 
Sanders, Koiter, and Budiansky. The principle of virtual work, including "live" pressure effects, 
and the surface divergence theorem were used to obtain the nonlinear equilibrium equations and 
boundary conditions.

 A general set of thermoelastic constitutive equations for laminated-composite shells have 
been derived without using any shell-thinness approximations. Acknowledging the approximate 
nature of constitutive equations, simplified forms and special cases that may be useful in practice 
have also been discussed. These special cases span a hierarchy of accuracy that ranges from that 
of first-order transverse-shear deformation theory, to that of a shear-deformation theory with 
parabolic through-the-thickness distributions for the transverse-shearing stresses, and to that 
which includes the use of layerwise zigzag kinematics without introducing additional unknown 
response functions into the formulation of the boundary-value problem. In addition, the effects of 
shell-thinness approximations on the constitutive equations have been presented. It is noteworthy 
that none of the shell-thinness approximations appear outside of the constitutive equations. 
Furthermore, the effects of "small" initial geometric imperfections have been introduced in a 
relatively simple manner to obtain a nonlinear shell theory suitable for studying the nonlinear 
limit-point response. The equations of this theory include tracers that are useful in assessing many 
approximations that appear in the literature. For convenience, a resumé of the fundamental 
equations of the theory are given in an appendix. Overall, a hierarchy of nonlinear shell theories 
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have been presented in a detailed and unified manner that is amenable to the prediction of global 
and local responses and to the development of generic design technology. 
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Appendix A - Live Normal Pressure Loads

For a live normal pressure load , the pressure  depends on the deformation of the shell 

reference surface. Thus,

                                               (A1)

Expanding  in Taylor Series and retaining terms up to first order gives

  (A2)

The differential force due to the live pressure acting on a deformed-shell reference surface is given 
by

                                                                  (A3)

where is the unit-magnitude vector field normal to the deformed reference surface and  

 is the deformed image of the reference-surface differential area dS. The surface area dS is 

given in principal-curvature coordinates as

                                                            (A4)

For "small" strains and "moderate" rotations, the analysis of reference 221 indicates that
 

                                      (A5)

where   and are the unit-magnitude base-vector fields associated 

with points of the undeformed reference surface, 1 and 2 are the rotations defined by equations 

(8), and  and  are the linear deformation parameters defined by equations (7). Substituting 
equations (A2) and (A5) into equation (A3) gives

          (A6)

where terms involving products of displacements, strains, or rotations are presumed negligible.

p p
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o
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o
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dF q3 1a1 + q3 2a2 + q3 1 + e11

o
+ e22

o
+

q3
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3
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Appendix B - Special Cases of the Constitutive Equations

Several special cases of the constitutive equations are presented subsequently in which all 
terms involving the principal radii of curvature are neglected. Likewise, terms involving the radii 
of geodesic curvature are also neglected. This approach leads to equations that are consistent with 
the classical shell theory and the shell theories of Leonard,7 Sanders,8 Koiter,9,10 and Budiansky.11  
Thus, equations (85) reduce to

                                                          (B1)

                                                          (B2)

                                                               (B3)

                                                               (B4)

                                                                     (B5)

                                                         (B6)

                                                                 (B7)

C00

A 11

0
A 12

0
A 16

0

A 12

0
A 22

0
A 26

0

A 16

0
A 26

0
A 66

0

C01

A 11

1
A 12

1
A 16

1

A 12

1
A 22

1
A 26

1

A 16

1
A 26

1
A 66

1

C02

R11

10
R16

20

R12

10
R26

20

R16

10
R66

20

C03 =

R16

10
R12

20

R26

10
R22

20

R66

10
R26

20

C04

0 0
0 0
0 0

C11

A 11

2
A 12

2
A 16

2

A 12

2
A 22

2
A 26

2

A 16

2
A 26

2
A 66

2

C12

R11

11
R16

21

R12

11
R26

21

R16

11
R66

21



96

                                                                 (B8)

                                                                      (B9)

                                                             (B10)

                                                             (B11)

                                                                    (B12)

                                                             (B13)

                                                                    (B14)

                                                                    (B15)

                                                             (B16)

In addition, equations (92) become
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                                                                 (B18)

                                                                 (B19)

                                                                 (B20)

                                                                   (B21)

With these simplifications, equation (86) reduces to

   (B22a)

 (B22b)

                                                  (B22c)
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1 =
h 11

1

h 22

1

h 12

1

2 = g11

10

g12

20

3 = g12

10

g22

20

4 =
0
0

N11

N22

N12

M 11

M 22

M 12

=

A 11

0
A 12

0
A 16

0
A 11

1
A 12

1
A 16

1

A 12

0
A 22

0
A 26

0
A 12

1
A 22

1
A 26

1

A 16

0
A 26

0
A 66

0
A 16

1
A 26

1
A 66

1

A 11

1
A 12

1
A 16

1
A 11

2
A 12

2
A 16

2

A 12

1
A 22

1
A 26

1
A 12

2
A 22

2
A 26

2

A 16

1
A 26

1
A 66

1
A 16

2
A 26

2
A 66

2

11

o

22

o

12

o

11

o

22

o

2 12

o

+

R11

10
R16

20
R16

10
R12

20

R12

10
R26

20
R26

10
R22

20

R16

10
R66

20
R66

10
R26

20

R11

11
R16

21
R16

11
R12

21

R12

11
R26

21
R26

11
R22

21

R16

11
R66

21
R66

11
R26

21

1
A 1

13

o

1

1
A 1

23

o

1

1
A 2

13

o

2

1
A 2

23

o

2

h 11

0

h 22

0

h 12

0

h 11

1

h 22

1

h 12

1

F11

F12

F21

F22

=

R11

10
R12

10
R16

10
R11

11
R12

11
R16

11

R16

20
R26

20
R66

20
R16

21
R26

21
R66

21

R16

10
R26

10
R66

10
R16

11
R26

11
R66

11

R12

20
R22

20
R26

20
R12

21
R22

21
R26

21

11

o

22

o

12

o

11

o

22

o

2 12

o

+

Q11

110
Q16

120
Q16

110
Q12

120

Q16

120
Q66

220
Q66

120
Q26

220

Q16

110
Q66

120
Q66

110
Q26

120

Q12

120
Q26

220
Q26

120
Q22

220

1
A 1

13

o

1

1
A 1

23

o

1

1
A 2

13

o

2

1
A 2

23

o

2

g11

10

g12

20

g12

10

g22

20

Q13

Q23

=
Z55

110
Z45

120

Z45

120
Z44

220

13

o

23

o



98

                                        (B22d)

It is important to note that for  F1( 3) = F2( 3),  equations (B22) reduce to

(B23a)

 (B23b)

                                                  (B23c)

where  F12 = F21. 

First-Order Shear-Deformation Theory

The constitutive equations of a first-order shear-deformation theory are obtained by setting 

 in equations (87)-(94). In particular, equations (87) and (88) become
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                                        (B24b)
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where the right-hand-sides are given by equation (86). Likewise, equation (91) becomes

                                                (B25a)

where

                                        (B25b)

Moreover, equation (94) becomes
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that  F11 = M11,  F22 = M22, and F12 = M12. Thus, the constitutive equations are expressed in terms of 
the nomenclature of classical shell theory as 

 (B31)

                                               (B32)

where  k44, k45, and k55 are transverse-shear correction factors that are used to compensate for the 
fact that the transverse-shearing stresses are uniformly distributed across the shell thickness and, 
hence, do not vanish on the bounding shell surfaces. Additionally, the two equilibrium equations 
given by (58d) and (58e) become

                                   (B33)
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Applying these matrices to equation (20e) and using equations (13) gives

                                            (B37)

For the special case in which the stiffnesses and the thermal coefficients appearing in 
equations (85) are symmetric through the thickness, the following additional simplifications to the 
constitutive equations are obtained
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{3, 0} Shear-Deformation Theory

The constitutive equations of a {3, 0} shear-deformation theory are obtained by setting

                                               (B40)

in equations (87)-(91) and (94). These functions yield parabolic distributions of transverse-
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  (B42)

where the right-hand-sides are given by equation (95). Likewise, equation (100) becomes
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and equation (103) becomes 
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constitutive equations are obtained

                                      (B49a)

    (B49b)

  (B49c)

Shear-Deformation Theory Based on Zigzag Kinematics

When the transverse-shearing stresses are approximated by equation (B22d), the analysis 
presented in reference 228 for laminated-composite plates is directly applicable to the present 
study. In particular, the functions  F1( 3) and  F2( 3) are expressed as

                                                    (B50a)

                                                    (B50b)

where the ply number n  {1, 2, ..., N}  and  N  is the total number of plies in the laminated wall. 
The functions f1( 3) and  f2( 3) are continuous functions with continuous derivatives that are 
required to satisfy

f1(0) = f2(0) = 0                                                            (B51a)

                                                         (B51b)
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                                                          (B51c)

                                                     (B51d)

for all values of  -h/2 

  

 

  

3

 

 

  

 h/2. The functions   and    are referred to in reference 

228 as "zigzag enrichment functions" that account for shell wall inhomogeneity and asymmetry. 
These functions are given by
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surface, 3 = 0. The derivatives of  F1( 3)  and  F2( 3)  are 

                                                (B56a)

                                                (B56b)

where

                         (B57a)

                         (B57b)

For a homogeneous shell wall, the zig-zag enrichment terms in equations (B50) and (B56) vanish. 
Thus, the derivatives of the functions  f1( 3) and  f2( 3) represent distribution of transverse-shearing 
stresses in a homogeneous shell wall. For the parabolic distribution of transverse shearing stresses 
commonly found in the technical literature for homogeneous plates,

                                          (B58a)

                                              (B58b)

The shell-wall stiffnesses and thermal coefficients appearing in equations (B22) are obtained 
by substituting equations (B50), (B56), and (B58) into equations (101)-(109) and performing the 
through-the-thickness integrations. The resulting expressions are lengthy and are not presented 
herein.
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Appendix C - Resumé of the Fundamental Equations

The fundamental equations needed to characterize the nonlinear behavior of shells with 
"small" initial geometric imperfections are presented in this appendix. The parameters  c1, c2, and 
c3 appear in these equations and are used herein to identify other well-known shell theories that 
are contained within the equations of the present study as special cases. In particular, specifying 
F1( 3) = F2( 3) = 0, neglecting the initial geometric imperfections, and setting c1 = c2 = c3 = 1 gives 
the nonlinear shell theories of Budiansky11 and Koiter.9,10 Similarly, specifying c1 = 0 and  c2 = c3 
= 1 gives Sanders’ nonlinear shell theory, and specifying c1 = 0,  c2 = 0, and  c3 = 1 gives Sanders’ 
nonlinear shell theory with nonlinear rotations about the reference-surface normal neglected. 
Furthermore, specifying c1 = c2 = c3 = 0 gives the Donnell-Mushtari-Vlasov192 nonlinear shell 
theory.

Displacements and Strain-Displacement Relations

The fundamental unknown fields in the present study are the reference-surface tangential 
displacements  u1( 1, 2)  and  u2( 1, 2), the normal displacement u3( 1, 2), and the transverse-

shearing strains  and The corresponding displacements of a material point 

( 1, 2, 3) are given by

                       (C1)

                       (C2)

               (C3)

where  is a known field that describes the initial geometric imperfections in the 

unloaded state. The functions  F1( 3)  and  F2( 3)  are user-defined and specifiy the through-the-
thickness distributions of the transverse-shear strains. These two functions are required to satisfy 
F1(0) =  F2(0) = 0  and  F1 (0) = F2 (0) = 1. The nonzero strains at any point of the shell are given by

          (C4)
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          (C5)

(C6)

                           (C7)

                          (C8)

where the reference-surface membrane strains are given by

       (C9)

     (C10)

               (C11)

with the linear deformation parameters
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                                              (C12)

                                              (C13)

                                    (C14)

                                                   (C15)

                                                   (C16)

                         (C17)

and the linear rotation parameters

                                                    (C18)

                                                     (C19)

                                   (C20)

Equilibrium Equations and Boundary Conditions

The equilibrium equations are given by
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           (C22)

                (C23)

                                      (C24)

                                      (C25)

where

                             (C26)

                             (C27)

                                       (C28)

  (C29)
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 (C30)

       (C31)

            (C32)

               (C33)

 (C34)

The boundary conditions for an edge given by  1 = constant are given by

  or                (C35)
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  or       (C36)

              or

 

       (C37)

  or                                              (C38)

  or                                               (C39)

  or                                                (C40)

and

  or                                               (C41)

at the corners given by  2 = a2  and  2 = b2. The boundary conditions for an edge given by                 

2 = constant are given by
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  or   = 0                                         (C45)

  or                                                  (C46)

  or                                                  (C47)

and

  or                                                 (C48)

at the corners given by  1 = a1  and  1 = b1.

Stresses and Constitutive Equations

The stresses at any point of the shell are given by

                      (C49)

                                               (C50)

where

                                               (C51)

is the known temperature field for material points of the shell. The general constitutive equations 
for a shell are given by
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 (C54)

 (C55)

 (C56)

where the matrices  appearing in these equations are given by equations (89) and the vectors 

 are given by equation (92). Moreover,   Specialized forms of  and 

 are given in Appendix B.
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