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Abstract—In pedagogy, teachers usually separate mixed-level
students into different levels, treat them differently and teach
them in accordance with their cognitive and learning abilities.
Inspired from this idea, we consider particles in the swarm as
mixed-level students and propose a level-based learning swarm
optimizer (LLSO) to settle large-scale optimization, which is still
considerably challenging in evolutionary computation. At first, a
level-based learning strategy is introduced, which separates par-
ticles into a number of levels according to their fitness values
and treats particles in different levels differently. Then, a new
exemplar selection strategy is designed to randomly select two
predominant particles from two different higher levels in the cur-
rent swarm to guide the learning of particles. The cooperation
between these two strategies could afford great diversity enhance-
ment for the optimizer. Further, the exploration and exploitation
abilities of the optimizer are analyzed both theoretically and
empirically in comparison with two popular particle swarm
optimizers. Extensive comparisons with several state-of-the-art
algorithms on two widely used sets of large-scale benchmark
functions confirm the competitive performance of the proposed
optimizer in both solution quality and computational efficiency.
Finally, comparison experiments on problems with dimension-
ality increasing from 200 to 2000 further substantiate the good
scalability of the developed optimizer.

Index Terms—Exemplar selection, high-dimensional prob-
lems, large-scale optimization, level-based learning swarm opti-
mizer (LLSO), particle swarm optimization (PSO).
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I. INTRODUCTION

P
ARTICLE swarm optimization (PSO) has been exten-

sively researched and also has been widely applied to

solve real-world problems [1]–[4], since it was first proposed

by Eberhart and Kennedy [5] and Kennedy and Eberhart [6].

Imitating the swarm behaviors of social animals, such as

bird flocking, particles in the swarm traverse the whole solu-

tion space to find the global optimum of the problem to be

optimized.

Specifically, each particle in the swarm represents a candi-

date solution and is denoted by two attributes: position and

velocity, which are updated as

vd
i ← wvd

i + c1r1

(
pbestdi − xd

i

)
+ c2r2

(
nbestdi − xd

i

)
(1)

xd
i ← xd

i + vd
i (2)

where Xi = [x1
i , . . . , xd

i , . . . , xD
i ] and Vi =

[v1
i , . . . , vd

i , . . . , vD
i ] are the position vector and

the velocity vector of the ith particle, respectively.

pbesti = [pbest1i , . . . , pbestdi , . . . , pbestDi ] is its personal

best position and nbesti = [nbest1i , . . . , nbestdi , . . . , nbestDi ]

is the best position of its neighbors, which are determined

by the adopted topology [7], [8]. As for the parameters, D

is the dimension size, w is termed as the inertia weight [9],

c1 and c2 are two acceleration coefficients [5], and r1

as well as r2 is uniformly randomized within [0, 1].

Kennedy and Eberhart [6] considered the second part and the

third part in the right of (1) as the cognitive component and

the social component, respectively.

By means of (1), one particle in the swarm learns from

its own experienced knowledge and the social knowledge to

traverse the search space to seek the global optimum of the

optimized problem. However, researchers found that the above

learning strategy is not an efficient way to tackle compli-

cated multimodal problems, because this strategy easily leads

to stagnation or premature convergence [10].

To further improve the efficacy of PSO in handling com-

plicated problems, many researchers sought inspirations from

nature and human society and have proposed an ocean of novel

learning or updating strategies for PSO [11]–[17]. To name

a few, enlightened from the social learning in animal society,

an incremental social learning strategy was put forward in [12]

by adopting a population size increasing approach; inspired by

the phenomenon that the interactive learning behavior takes

place among different groups in human society, Qin et al. [16]

developed an interswarm interactive learning strategy, where
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two swarms dynamically learn from each other when stag-

nation is detected; inspired from the orthogonal experimental

design, an orthogonal learning PSO [13] was designed by con-

ducting orthogonal experimental design on pbest and gbest

(or nbest) to obtain more efficient exemplars for particles.

In addition, Liang et al. [11] developed a comprehensive

learning PSO (CLPSO) and further Lynn and Suganthan [18]

devised heterogeneous CLPSO to enhance the exploration and

exploitation of CLPSO.

Although these PSO variants show better performance

than the classical PSO, they remain effective only in

low-dimensional space. When encountering high-dimensional

problems, their performance deteriorate drastically [19]–[22].

This phenomenon is usually a result of “the curse of dimen-

sionality” [20]. On the one hand, as the dimension size grows,

the search space increases exponentially. Such huge and wide

space greatly challenges the search efficiency of the current

PSO variants [21], [23]. On the other hand, increasing dimen-

sionality may also bring in the explosively increased number

of local optima surrounded by capacious local areas, which

is especially common for large-scale multimodal problems.

Such phenomenon may give rise to great chance of premature

convergence. Therefore, to solve high-dimensional problems

effectively, high diversity preservation is highly required for

EAs to escape from local traps.

Taking inspirations from nature and human society as well,

some researchers have proposed novel learning strategies for

PSO [21], [23], [24] to deal with large-scale optimization.

Generally, these PSO variants can preserve higher diversity

than the former PSO variants [11]–[16]. For consistency, they

will be elucidated in detail in the following section. Although

these PSO variants are promising for large-scale optimization,

premature convergence is still the main challenge.

To solve large-scale optimization problems more efficiently,

this paper proposes a level-based learning (LL) swarm opti-

mizer (LLSO) based on two motivations.

First, in education, it is common that different students

have different cognitive or learning abilities, and thus teach-

ers should treat their students differently in accordance with

their aptitude [25], [26]. In particular, in the mixed-level learn-

ing methodology which has been widely used in education

practice [25], [26], it is suggested that students should be

grouped into different levels with tiered teaching and learn-

ing methods. Similarly, in one swarm, particles are usually in

different evolution states, and particles in different states gen-

erally have different potential in exploring and exploiting the

search space. Thus, they should be treated differently as well.

Inspired from this, a LL strategy is introduced into LLSO,

which groups particles into different levels based on their

fitness values and treats those in different levels differently.

Second, instead of using the historically best positions (such

as pbest, gbest, or nbest) to update particles, two popular and

recent PSO variants, competitive swarm optimizer (CSO) [23]

and SL-PSO [21], directly adopt predominant particles in the

current swarm to guide the learning of particles. Since parti-

cles in the swarm are generally updated in each generation,

the diversity of these two optimizers is greatly promoted and

thus they show good performance in dealing with large-scale

optimization. However, these two optimizers utilize only one

predominant particle to replace one exemplar in (1) to guide

the learning of particles, while the other exemplar is the mean

position of the swarm, which is shared by all particles and

thus is not beneficial for further diversity enhancement. In the

developed LL strategy, since particles in different levels have

diverse potential in exploration and exploitation, they possess

diverse evolutionary information to evolve the swarm and thus

could be utilized as candidates to, respectively, replace the two

exemplars in (1) to direct the learning of particles. To this

end, a new exemplar selection method is incorporated into the

learning strategy, which first randomly selects two different

higher levels and then selects one exemplar from each level,

so that two diverse predominant particles in the swarm could

be selected to guide the learning of particles. In this way, the

search diversity is likely promoted.

Together, the proposed LLSO directly utilizes two predom-

inant particles in the current swarm to guide the learning of

particles. In this manner, this learning strategy can enhance the

diversity of the swarm. In particular, it can compromise explo-

ration and exploitation to search the space in two levels: 1) the

particle level and 2) the swarm level. In the particle level,

one particle can enhance its potential in exploiting the space

by learning from the superior one between the two selected

exemplars and consolidate its potential in exploring the space

via learning from the relatively inferior one. In the swarm

level, particles in different levels have different numbers of

exemplars in higher levels to learn from, resulting in that

particles in lower levels focus on exploring the space, while

those in higher levels concentrate on exploiting the space. The

exploration and exploitation abilities of LLSO are both ana-

lyzed theoretically and verified empirically in comparison with

GPSO [6] and CSO [23].

To verify the efficiency and effectiveness of LLSO, exten-

sive experiments are conducted by comparing LLSO with sev-

eral state-of-the-art large-scale algorithms on CEC’2010 [27]

and CEC’2013 [28] large-scale benchmark sets. Furthermore,

experiments on the CEC’2010 [27] benchmark problems with

dimensionality increasing from 200 to 2000 are performed to

testify the scalability of LLSO.

The rest of this paper is organized as follows. Various

related EAs dealing with large-scale optimization are reviewed

in Section II. Section III elucidates the whole frame-

work of LLSO in detail, following which is the theoretical

analysis about its exploration and exploitation abilities in

Section IV. Then, extensive experiments are conducted in

Section V to verify the effectiveness, efficiency, and good scal-

ability of LLSO. Finally, the conclusion and discussion are

given in Section VI.

II. RELATED WORK ON LARGE-SCALE

OPTIMIZATION

Without loss of generality, in this paper, we consider the

minimization problems defined as follows:

min f (X), X =
[
x1, x2, . . . , xD

]
(3)
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where D is the number of variables to be optimized. In addi-

tion, the function value is taken as the fitness value of each

particle.

With D increasing, the above defined problem becomes

more and more difficult to optimize, because on the one

hand, the search space is exponentially increased; on the other

hand, the number of local optima surrounded by wide local

areas may be also explosively increased [20], [21], [23], espe-

cially for multimodal problems [29], [30]. So far, to locate

the global optima of high-dimensional problems efficiently,

researchers attempted to seek solutions from two perspectives:

1) proposing cooperative coevolutionay algorithms (CCEAs),

which divide the whole decision vector into several groups and

evolve each variable group separately and 2) proposing novel

updating strategies for traditional EAs, which evolve all vari-

ables as a whole and preserve high diversity to escape from

local areas.

A. Cooperative Coevolutionary Algorithms

Since Potter [31] proposed the cooperative coevolution (CC)

framework, which adopts the divide-and-conquer technique

to decompose problems into smaller subproblems, vari-

ous CCEAs have come into being by combining CC

with different EAs, such as cooperative coevolutionary

PSO (CCPSO) [32], [33], and cooperative coevolutionary

DE (DECC) [34].

Van den Bergh and Engelbrecht [32] first combined CC

with PSO and proposed CCPSO-SK , which randomly divides

the whole decision vector into D/K subcomponents with each

containing K variables and then utilizes the canonical PSO to

separately optimize each subcomponent. Following CCPSO-

SK , they further developed CCPSO-HK , where the classical

PSO and CCPSO-SK update the swarm in an alternative man-

ner. However, for different problems, the optimal number of

subcomponents is usually different. To ameliorate this issue,

Li and Yao [33] proposed CCPSO2 by designing a group size

pool, which contains different group sizes.

Since in CCEAs, each variable group is individually opti-

mized, the interdependent variables should be placed into the

same group and optimized simultaneously [20]. This indicates

that the decomposition strategy is the most crucial component

for CCEAs to achieve good performance. As a consequence,

the research on CCEAs mainly concentrates on devising

a good decomposition strategy and thus, many decomposi-

tion strategies have shown up [20], [35]–[38]. Among these

strategies, differential grouping (DG) [20] and its variants,

XDG [37] and GDG [38] are the most popular ones because

they can detect variable dependency and thus can separate

variables into groups more accurately.

Though CCEAs are promising for large-scale optimization,

they encounter two limitations, which restrict their wide appli-

cation. For one thing, the performance of CCEAs seriously

relies on the decomposition strategy, and to detect the interde-

pendency among variables, a good decomposer usually con-

sumes a large number of function evaluations [20], [37], [38].

For another, a good CCEA usually costs plenty of function

evaluations, particularly when the number of variable groups

is large. This is because not only the adopted decomposition

strategy consumes a large number of function evaluations, but

also the optimization process consumes a lot of function eval-

uations to evolve variables so that satisfactory performance

can be obtained.

B. Novel Learning or Updating Strategies for EAs

From the other perspective, some researchers are devoted

to developing new learning or updating strategies, which can

preserve high diversity, to aid traditional EAs to cope with

large-scale optimization problems.

Liang and Suganthan [39] proposed a dynamic multiswarm

PSO, where the swarm is randomly divided into multiple small

subswarms and then the local version PSO [40] is utilized

to evolve each subswarm. Enlightened from the competition

in human society, Cheng and Jin [23] and Cheng et al. [41]

developed a novel competitive learning strategy. First, they

applied this strategy into a multiswarm PSO [41], where pair-

wise competition is performed between two particles randomly

selected from two swarms. After the competition, the loser

is updated by a convergence strategy, while the winner is

updated through a mutation strategy. Subsequently, they intro-

duced a CSO [23], where the pairwise competition is executed

among particles in a single swarm, and only the loser in

one competition is updated, while the winner enters the next

generation directly. Specifically, the loser is updated as

vd
l ← r1vd

l + r2

(
xd

w − xd
l

)
+ φr3

(
x̄d − xd

l

)
(4)

xd
l ← xd

l + vd
l (5)

where Xl = [x1
l , . . . , xd

l , . . . xD
l ] and Vl = [v1

l , . . . , vd
l , . . . vD

l ]

are the position and speed of the loser, respectively; Xw =

[x1
w, . . . , xd

w, . . . xD
w] is the position of the winner; x =

[x1, . . . , xd, . . . xD] is the mean position of the swarm, r1, r2,

and r3 are three random variables within [0, 1], and φ is one

parameter controlling the influence of x.

Inspired from the social learning behavior among social ani-

mals, a social learning PSO (SL-PSO) [21] was developed. In

this algorithm, all particles are sorted according to their fitness

values and then for each particle, the first exemplar in (1) is

randomly selected from all better particles, while the second

exemplar is also the mean position of the whole swarm as CSO

displayed in (4). Taking further observation on SL-PSO and

CSO, we find that these two optimizers neither utilize pbest

nor gbest (or nbest) to guide the learning of particles. Instead,

they directly adopt predominant particles in the current swarm

and the mean position of the swarm to lead particles to find

the global optima.

In addition, taking advantage of the invasive weed opti-

mization algorithm [42] and the quantum-behaved PSO

algorithm [43], Lian et al. [44] developed a quantum-behaved

invasive weed optimization algorithm, which correspondingly

adjusts and improves the quantum models of these two

algorithms.

Except for PSO variants in handling large-scale optimiza-

tion, many other EA variants were also developed. Since too

many works exist, we cannot review them all. Here, to save
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space, we only list some typical and recent works on large-

scale optimization. For a comprehensive review of large-scale

optimizers, readers can refer to [22] and [45].

Hansen and Ostermeier [46] proposed an algorithm named

CMA-ES, which makes use of adaptive mutation parameters

through computing a covariance matrix and correlated step

sizes in all dimensions to preserve high diversity. Although it

is promising for high-dimensional problems, it is very time-

consuming owing to the computation of the covariance matrix

with time complexity O(D2), where D is the dimension size. To

relieve the high-computational burden, its variant called sep-

CMA-ES [47] came up, which only computes the diagonal

elements of the covariance matrix, leading to the reduction of

complexity from O(D2) to O(D).

Subsequently, Molina et al. [48] proposed a memetic algo-

rithm named MA-SW-Chains, which combines a steady-state

GA with a local search method. LaTorre et al. [49], [50]

developed a multiple offspring generation framework, named

MOS, via hybridizing different algorithms to deal with differ-

ent large-scale optimization problems. Brest and Mauèec [51]

developed a self-adaptive DE named jDElscop to solve large-

scale problems, which employs three mutation strategies and

a population size reduction mechanism to evolve the popula-

tion. Zhao et al. [52] proposed another self-adaptive DE called

SaDE-modified multitrajectory search (MMTS) by hybridizing

the mutation strategy in JADE [53] with an MMTS algorithm.

Then, Ali et al. [54] introduced a multipopulation DE called

mDE-bES to tackle large-scale optimization. In this algo-

rithm, the population is divided into independent subgroups,

and different subgroups are evolved with different mutation

strategies.

Even though numerious works exist in dealing with large-

scale optimization, falling into local optima and permature

convergence are still the main challenges in large-scale opti-

mizaiton. In this paper, we propose an LLSO to try to alleviate

the above issue.

III. LEVEL-BASED LEARNING SWARM OPTIMIZER

A. Motivation

When the dimension size D becomes larger and larger (more

than 500 [23]), optimization problems become more and more

difficult to optimize. On the one hand, with D increasing, the

computational complexity of the problem becomes higher and

higher and the search space of the problem also increases

exponentially, which takes an optimizer a larger number of fit-

ness evaluations to locate the optima [21], [23]. On the other

hand, for high-dimensional multimodal problems, the number

of local optima is generally explosively increased and it is

likely that these local optima are surrounded by wide local

areas, which may easily cause local traps or premature con-

vergence for optimizers [22], [45]. Thus, to tackle this kind of

problems efficiently, an optimizer is especially required to pre-

serve high diversity, so that local traps can be avoided. At the

same time, fast convergence is also a necessity for the opti-

mizer, so that with limited resources, such as the restricted

number of fitness evaluations, the global optimum can be fast

located. However, these two requirements conflict with each

other [23], [55]. As a consequence, a good optimizer should

make a good compromise between these two aspects to fast

traverse the search space.

In order to figure out an effective learning strategy, we seek

inspirations from nature and human society. In particular, in

pedagogy, different students generally have different cogni-

tive or learning abilities, and thus teachers should treat these

students differently in accordance of their aptitude [25], [26].

In particular, in the mixed-level learning methodology which

has been widely used in education practice [25], [26], students

should be grouped into different levels with tiered teaching and

learning methods. Similarly, during the evolution, particles are

usually in different evolution states and have different poten-

tial in exploring and exploiting the search space. Thus, they

should be treated differently as well.

Moreover, taking close observation on SL-

PSO [21] and CSO [23], we find that these two optimizers

neither utilize pbest nor gbest (or nbest) to guide the learning

of particles. Instead, they directly adopt predominant particles

in the current swarm to update particles and show good

potential in dealing with high-dimensional problems due to

the enhanced diversity. However, these two optimizers utilize

only one predominant particle to replace one exemplar in (1)

to guide the learning of particles, while the other exemplar

is the mean position of the swarm, which is shared by

all particles and thus is not beneficial for further diversity

enhancement. Since particles in different evolution states pos-

sess diverse potential in exploring and exploiting the search

space, they could own diverse evolutionary information to

guide the swarm to seek the optima and thus could be utilized

as candidates to replace the two exemplars in (1) to update

the swarm, so that the diversity could be further enhanced.

Motivated by the above phenomenon and observation, we

propose a LL strategy for PSO, leading to LLSO, which sep-

arates particles into different levels, treats them differently

and utilizes two predominant particles in the current swarm

to guide the learning of particles to find the global optima.

Accompanying with this learning strategy, a new exemplar

selection method is also developed to aid LLSO. The concrete

elucidation of each component is presented as follows.

B. Level-Based Learning

During the evolution, particles are usually in different evo-

lution states, and have different potential in exploring and

exploiting the search space. To tell them apart, we first par-

tition particles into different levels according to their fitness

values.

Assume that NP particles are divided into NL levels with

each level denoted by Li(1 ≤ i ≤ NL). Before the partition,

particles in the swarm are first sorted in ascending order of

fitness as in SL-PSO [21]. Then, better particles belong to

higher levels and the higher the level is, the smaller level index

it has. So, L1 is the highest level, and LNL is the lowest level.

To make it simple, we assume that all levels have the same

number of particles. This number is called “level size” and

denoted by LS. Clearly, LS = NP/NL.1

1Note that the whole swarm may not be equally partitioned by NP/NL. In
this situation, we just add the NP%NL particles into the lowest level.
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Fig. 1. Framework of the LL strategy. First, particles in the swarm are sorted
in ascending order of fitness and then they are equally partitioned into four
levels (L1–L4). Then, particles in L4 learn from those in L1–L3, particles in
L3 learn from those in L1 and L2, and particles in L2 learn from those in L1.
It should be noticed that in order to protect the most promising particles from
being wrongly updated, particles in L1 are not updated and directly enter the
next generation.

Subsequently, we take deep insight into particles in dif-

ferent levels. On the one hand, more promising positions

usually can be found around better particles in the current

swarm [21], [23], [56]. In other words, particles in higher lev-

els usually hold more beneficial information to guide the

swarm toward the global optimum area. Consequently, par-

ticles in higher levels should guide those in lower levels to

search the whole solution space, so that fast convergence can

be achieved and promising positions can be located. This is

the first idea behind the LL strategy.

On the other hand, observing particles in different higher

levels, we find that the higher the level that a particle belongs

to, the more likely the particle may be close to the global opti-

mum area. That is, particles in different levels have different

strength in exploitation. Likewise, particles in different levels

have different strength in exploration. In general, exploration

and exploitation are in the opposite direction [21]. In other

words, particles having more potential in exploitation usually

have less potential in exploration, and vice versa. So a parti-

cle from a lower level should learn from those from different

higher levels to make a compromise between exploration and

exploitation. This is the second idea behind the LL strategy.

Combining the above two together, the framework of LL is

displayed in Fig. 1. From this figure, we can see that particles

in lower levels can potentially learn from all those in higher

levels, and the number of candidate exemplars for particles in

different levels is different. Specifically, as the level that a par-

ticle belongs to goes higher, this particle has fewer particles

in the higher levels in total to learn from, which matches the

expectation that better particles should do more exploitation

rather than exploration.

Overall, this level-based mechanism may encourage more

exploration among particles in lower levels and more exploita-

tion among those in higher levels. The effectiveness of the LL

strategy will be further reinforced by the random selection

mechanism for exemplars to be presented next.

C. Exemplar Selection

Besides the learning strategy, another key component for

PSO is the exemplar selection strategy. As aforementioned,

particles in different levels perform different roles in the

evolution process. Generally, superior particles show more

potential in exploitation, so they should be used to guide the

search direction. While for inferior particles, even though they

perform relatively badly in exploiting, they usually show more

potential in exploring more directions and larger space, which

is potentially profitable for dragging particles away from local

areas. Enlightened by these, we propose a new exemplar selec-

tion method to select two different exemplars to replace pbest

and nbest in (1) to update particles.

To utilize the property that particles in different levels have

different strength in exploration and exploitation, we allow

each particle in level Li to learn from two particles Xrl1,k1

and Xrl2,k2
randomly selected from two different higher levels

Lrl1 and Lrl2 , respectively, where rl1 and rl2 are randomly

selected from [1, i − 1] and k1 and k2 are randomly selected

from [1, LS]. Then, to take advantage of the property that

superior particles have more potential in guiding the search

direction while inferior ones have more potential in helping

particles escape from local traps, with the assumption that rl1
is higher than rl2, we use the superior one between Xrl1,k1

and Xrl2,k2
, namely Xrl1,k1

to replace pbest in (1) and use the

inferior one, namely Xrl2,k2
to substitute nbest in (1).

Note that, in order to further promote the potential in

enhancing the diversity, we use randomness on both selec-

tion of two different higher levels (rl1 and rl2) and selection

of exemplars from the selected levels (k1 and k2).

On the one hand, this exemplar selection strategy provides

two exemplars from different higher levels for each parti-

cle in lower levels, offering a potential compromise between

exploration and exploitation. On the other hand, the ran-

domness embedded in the level selection and the exemplar

selection may contribute to enhancing diversity, which plays

a significant role in large-scale optimization [23].

D. LLSO

Combining the above two strategies together, LLSO is

developed with the update of particles defined as follows:

vd
i,j ← r1vd

i,j + r2

(
xd

rl1,k1
− xd

i,j

)
+ φr3

(
xd

rl2,k2
− xd

i,j

)
(6)

xd
i,j ← xd

i,j + vd
i,j (7)

where Xi,j = [x1
i,j, . . . , xd

i,j, . . . , xD
i,j] is the posi-

tion of the jth particle from the ith level Li

and Vi,j = [v1
i,j, . . . , vd

i,j, . . . , vD
i,j] is its speed.

Xrl1,k1
= [x1

rl1,k1
, . . . , xd

rl1,k1
, . . . , xD

rl1,k1
] randomly selected

from level Lrl1 and Xrl2,k2
= [x1

rl2,k2
, . . . , xd

rl2,k2
, . . . , xD

rl2,k2
]

randomly selected from level Lrl2 are the two selected

exemplars with rl1 and rl2 denoting two different higher level

indexes selected within [1, i − 1], and k1 and k2 representing

two particle indexes randomly selected within [1, LS]. r1,

r2, and r3 are three random variables ranging within [0, 1]

and φ is the control parameter within [0, 1] in charge of

the influence of the second exemplar. Note that rl1< rl2< i,

which indicates that Lrl1 is higher than Lrl2 , and both are

higher than Li, and also suggests that Xrl1,k1
is better than

Xrl2,k2
and both are better than Xi,j.
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Algorithm 1 Framework of LLSO

Input: swarm size NP, number of levels NL, level size LS, maximum
number of fitness evaluations MAX_FES, control parameter φ.

Output: The final solution x and its fitness f (x)

1: fes = 0;
2: Initialize the swarm randomly and calculate the fitness values of

particles;
3: fes + = NP;
4: x is the best particle of the swarm and f (x) is its fitness;
5: While fes < MAX_FES do
6: Sort particles in ascending order of fitness and divide them

into NL levels;
//Update particles in LNL, . . . , L3;

7: For i = {NL, . . . , 3} do
8: For j = {1, . . . , LS} do
9: Select two levels from the top (i-1) levels: rl1, rl2;

10: If (rl2 < rl1) then
11: Swap (rl1, rl2);
12: End If
13: Randomly select two particles from rl1, rl2:

Xrl1,k1
, Xrl2,k2

;
14: Update particle Xi,j according to Eq. (6) and Eq. (7);
15: Calculate the fitness value f (Xi,j) of this particle;
16: If (f (Xi,j) < f (x)) then
17: x = Xi,j;
18: End If
19: End for
20: fes + = LS;
21: End for

//Update the second level
22: For j = {1, . . . , LS} do
23: Select two particles from the first level: X1,k1

, X1,k2
;

24: If (f (X1,k2
) < f (X1,k1

)) then
25: Swap (X1,k1

, X1,k2
);

26: End If
27: Update particle X2,j according to Eq. (6) and Eq. (7);
28: Calculate the fitness value f (X2,j) of this particle;
29: If (f (X2,j) < f (x)) then
30: x = X2,j;
31: End If
32: End for
33: fes + = LS;
34: End While

Generally, superior particles have more potential in exploit-

ing the search space, while inferior particles have more

potential in exploring the search space. Thus, the learning

strategy displayed in (6) gives rise to a potential compromise

between exploration and exploitation for each particle. This is

because the second part in the right hand of (6) allows one par-

ticle to promote its potential in exploitation by learning from

a superior exemplar, while the third part enables the particle

to enhance its potential in exploration through learning from

a relatively inferior exemplar, and the degree of such learning

is controlled by the parameter φ.

Additionally, both second and third parts in the right hand

of (6) can be seen as the cognitive parts like in PSO (1).

Though there is no obvious social learning part in LLSO, actu-

ally, the social part is embedded in these two items because,

on the one hand, the two levels where the selected exem-

plars come are randomly chosen from all higher levels; on

the other hand, the two exemplars are randomly selected from

the corresponding levels. Such two random selections possibly

offer a special kind of social learning.

Obviously, (6) is not directly suitable for the update of par-

ticles in the first and second levels. To deal with this situation,

we adopt different extra techniques for the two levels.

First, since the particles in the first level are the best of the

whole swarm in the current generation and better solutions

are usually found near these ones, we just leave these particles

unchanged to preserve the most useful information and protect

them from being weakened. Thus, the particles in the first level

directly enter the next generation.

Second, as for the particles in the second level, a similar

adaption follows. Instead of randomly choosing two exemplars

from two randomly selected higher levels, the two exemplars

for these particles are both randomly selected from the first

level. Then, the superior one acts as the first exemplar and the

inferior one acts as the second exemplar in (6).

The pseudo code of LLSO is outlined in Algorithm 1, which

is simple to implement due to the maintenance of the classi-

cal PSO framework. In this algorithm, lines 7–21 are for the

update of particles in levels LNL to L3, while lines 22–32 are

for the update of particles in the second level.

E. Differences Between LLSO and Other PSO Variants

The main unique property of LLSO is the LL mechanism

along with the exemplar selection method. It treats particles

differently and directly utilizes two predominant particles from

two different higher levels in the swarm to guide the learn-

ing of particles in lower levels by taking advantage of their

different strength in exploration or exploitation. Specifically,

the following characteristics make it distinguishable from the

current PSO variants.

1) Particles are grouped into different levels and those in

different levels are treated differently via learning from

different numbers (in total) of particles in higher levels.

Specifically, the lower the level one particle belongs to,

the more the candidate exemplars [both exemplars in (6)]

this particle could learn from, and vice versa. Through

this, particles in lower levels could focus on explor-

ing the search space, while those in higher levels could

concentrate on exploiting the search space. However, in

most PSO variants [11]–[14], [41], [57]–[59], particles

have the same number of candidate exemplars to learn

from and thus are treated equally.

2) Two current superior particles act as the exemplars

to guide the learning of inferior particles, which is

beneficial for exploration enhancement. Instead of learn-

ing from pbest, nbest, or gbest in most PSO vari-

ants, such as hierarchical PSO [59], multiswarm PSO

variants [41], [57], [58], and new learning strategy-

based PSOs [11]–[14], particles in LLSO learn from the

superior ones in the current swarm. pbest, nbest, or gbest

may easily lead to premature convergence [23], because

they may remain unchanged for many generations, espe-

cially when the evolution goes into late stages on

multimodal problems. However, particles in the swarm

are usually updated at each generation. Thus LLSO
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may preserve higher diversity and thus has relatively

less probability to fall into local areas. In addition,

different from CSO [23] and SL-PSO [21] which only

adopt one superior particle and the mean position of

the swarm (shared by all particles) to guide the learn-

ing of particles, LLSO directly utilizes two superior

particles randomly selected from two different higher

levels to guide the learning of particles, leading to higher

diversity preservation than these two optimizers.

3) Two kinds of compromises between exploration and

exploitation exist in LLSO. Observing (6) and (7),

we can find LLSO could compromise exploration and

exploitation to search the space in two aspects.

a) Particle-Level Compromise: Each particle in lower

levels can enhance its potential in exploitation

by learning from the better one between the two

superior exemplars, and at the same time consol-

idate its potential in exploration by learning from

the relatively worse one. Thus, a compromise in

exploring and exploiting the search space exists in

the learning process of each particle.

b) Swarm-Level Compromise: Particles in different

levels have different numbers of candidate exem-

plars to learn from. More specifically, particles in

the lowest level have the most candidate exem-

plars to learn from, while particles in the second

level have the fewest candidate exemplars to learn

from and particles in the highest level (namely the

first level) are not updated and directly enter the

next generation for preserving the best information.

Thus, we can see that particles in the lower levels

mainly concentrate on exploring the search space,

while particles in the higher levels mainly focus on

exploiting the search space. Thus, a compromise in

exploring and exploiting the search space exists in

the whole swarm, which many other PSO variants

do not have.

4) Last but not at least, two hierarchical randomness exists

in the exemplar selection. First, two higher levels are

randomly selected. Then, based on the selected levels,

one random particle is selected from each level and thus

two different particles in total are randomly selected.

Together, the randomness of the level selection and that

of the particle selection cooperate with each other, and

can potentially provide particles with diverse exemplars,

which benefits the diversity promotion.

F. Complexity Analysis

Given a fixed number of fitness evaluations, the time com-

plexity of an EA [14], [21], [23] is generally calculated by

analyzing the extra time in each generation without consid-

ering the time of function evaluations, which is problem-

dependent.

Thanks to the maintenance of the algorithmic simplicity

of PSO in LLSO, it is straightforward to compute the time

complexity of LLSO. From Algorithm 1, we can see that it

takes O(NPlog(NP) + NP) to rank the swarm and divide the

swarm into NL levels at each generation in line 6. During

the update of particles in all levels, except for those in the

first level that directly enter the next generation, it takes

O(NP × D) (lines 7–32). Overall, we can see that LLSO only

takes extra O(NPlog(NP) + NP) in each generation compared

with PSO, which takes O(NP × D) in each generation.

As for the space complexity, LLSO needs much smaller

space than PSO, because it does not store the personal best

position of each particle, which takes O(NP × D) space.

In conclusion, LLSO remains computationally efficacious

in time and is relatively more efficient in space in comparison

with the classical PSO.

G. Dynamic Version of LLSO

Comparing LLSO (6) with PSO (1), we find that LLSO only

introduces two parameters that need fine-tuning, namely the

number of levels NL and the control parameter φ.

Given the population size is NP, a small NL gives rise to

a large number of particles in each level. This may bring two

consequences: 1) promoting diversity in the exemplar selec-

tion conducted on the two selected levels, owing to the large

number of particles in each level and 2) reducing diversity in

the level selection owing to the small number of levels. On

the contrary, a large NL brings two opposite consequences:

1) enhancing diversity in the level selection, on account of

the large number of levels and 2) reducing diversity in the

exemplar selection, due to the small number of particles in

each level.

Comparing these two kinds of diversity, we consider that

they play different roles in the evolution process. Compared

with the diversity in the exemplar selection, the diversity in

the level selection is more important when the swarm explores

the search space or when the swarm falls into local areas

and thus needs to jump out. This is because compared with

the diversity in the exemplar selection, the diversity in the

level selection can provide particles to be updated with more

diverse exemplars that preserve diverse potential in exploration

and exploitation. On the contrary, when exploiting the search

space, the diversity in the exemplar selection becomes more

important, which is beneficial for the swarm to exploit the

search space more intensively without serious loss of diversity.

Therefore, we can see that for a single problem, the proper

NL may vary during the evolution process. Let alone that the

proper NL for different problems with different features is

different. This motivates us to design a dynamic setting for NL.

In this paper, for simplicity, we design a pool containing

different integers to realize the dynamism of NL, which is

denoted as S = {l1, . . . , ls} with s different candidate numbers

of levels. Then, at each generation, LLSO will select a number

from the pool based on their probabilities, and at the end of the

generation, the performance of LLSO with this level number

is recorded to update the probability of this number. With this

mechanism, LLSO can select a proper NL despite of different

features of different problems or different evolution stages for

a single problem.

In order to compute the probabilities of different level num-

bers in S, we define a record list Rs = {r1, . . . , rs}, where each
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ri ∈ Rs is associated with each li ∈ S, to record the relative

performance improvement under the selected li. At the initial-

ization stage, each ri ∈ Rs is set to 1, and then, each ri is

updated at each generation as follows [36]:

ri =
|F − F̃|

|F|
(8)

where F is the global best fitness of the last generation, while

F̃ is the global best fitness of the current generation. Then the

probability Ps = {p1, . . . ,ps} is computed as in [36]

pi =
e7∗ri

∑s
j=1 e7∗rj

. (9)

Based on Ps, we conduct the roulette wheel selection to

select a number from S as the level number in each generation.

Observing (8) and (9), we can notice that: 1) the value of

each ri is within [0, 1] since (8) calculates the relative per-

formance improvement using the global best fitness values

between two consecutive generations and 2) if the global best

fitness value differs a lot between two consecutive generations,

ri is close to 1. This indicates that the selected level number

in this generation is very appropriate and thus should have

a high probability to be selected in the next generation, which

is implied by the probability computed in (9). On the contrary,

when the global best fitness value differs little between two

consecutive generations, ri is close to 0. This indicates that the

selection of the level number in this generation is not so advis-

able and thus the probability of this selection should be small,

which can be implied by the probability computed in (9) as

well. In this way, LLSO can potentially make an appropriate

choice of NL for different problems or for a single problem

at different stages.

As for our algorithm, when NL is fixed, it is denoted as

LLSO; and when it uses a dynamic NL, we denote it as

DLLSO. As shown later in Section V-C, the performance

comparison between these two versions favors DLLSO.

IV. THEORETICAL ANALYSIS

In this section, we take investigation about LLSO by ana-

lyzing its exploration and exploitation abilities via making

comparisons with the global PSO (GPSO) [6] and one recent

and popular PSO variant named CSO [23].

A. Exploration Ability

Exploration plays an important role when the swarm

explores the search space. Enhancing the exploration ability

of an EA is to promote the diversity of the swarm, so that it

can escape from local areas and find the global or promising

areas easily. In particular, the exploration ability is consider-

ably important when EAs tackle multimodal problems or when

the swarm needs to jump out of local areas, so that stagna-

tion or premature convergence can be avoided. The exploration

ability of EAs can be implied by the diversity of the exem-

plars used to guide the learning or updating of particles or

individuals [23].

To investigate the exploration ability of LLSO, we rewrite

(6) as follows:

vd
i,j ← r1vd

i,j + θ1

(
p1 − xd

i,j

)
(10)

θ1 = r2 + φr3 (11)

p1 =
r2

r2 + φr3
xd

rl1,k1
+

φr3

r2 + φr3
xd

rl2,k2
. (12)

Similarly, we can also rewrite the update formula of GPSO

[utilizing gbest to replace nbest in (1)] into (13) and that of

CSO (4) into (16)

vd
i ← wvd

i + θ2

(
p2 − xd

i

)
(13)

θ2 = c1r1 + c2r2 (14)

p2 =
c1r1

c1r1 + c2r2
pbestdi +

c2r2

c1r1 + c2r2
gbestd (15)

vd
l ← r1vd

1 + θ3(p3 − xd
l ) (16)

θ3 = r2 + φr3 (17)

p3 =
r2

r2 + φr3
xd

w +
φr3

r2 + φr3
x̄d. (18)

From (10), (13), and (16), we can see that the difference

between pi(i = 1, 2, 3) and the particle to be updated pro-

vides the main source of diversity. First, comparing (10) with

(13) and (16), we can see that LLSO has potential to preserve

higher diversity. On the one hand, as for the first part in p1, p2,

and p3, the randomly selected exemplar Xrl1,k1
offers chances

for each particle in lower levels to learn from various better

particles in LLSO. However, in GPSO, pbest of each particle

is updated only when the particle finds a better position, which

indicates that it is possible that pbest of the particle may be

unchanged for many generations. In CSO, the loser can only

learn from its corresponding winner. Therefore, in terms of

the first part, LLSO and CSO preserve competitive or compa-

rable diversity and both potentially own higher diversity than

GPSO.

On the other hand, as for the second part of pi(i = 1, 2, 3),

gbest in GPSO is updated only when the swarm finds a bet-

ter position. It is more likely that gbest remains unchanged

than pbest. In addition, gbest is shared by all particles. These

two limitations do great harm to the diversity maintenance

for GPSO [23]. For CSO, though the mean position of the

swarm x is updated at each generation, it is also shared by

all particles. However, in LLSO, the second exemplar Xrl2,k2

is randomly selected for each particle. Thus, in terms of the

second part, LLSO probably possesses higher diversity.

In addition, compared with other PSO variants that use nbest

to guide the learning of particles [7], [8] or that divide the

swarm into subswarms and then use gbest or the center of

the subswarm to guide the updating of particles [58], LLSO

still potentially preserves better exploration ability, because

nbest or gbest of a subswarm may remain unchanged for many

generations as well.

In short, we can see that the diversity of the exemplars used

to guide the learning of particles in LLSO is potentially higher,

which may benefit for strengthening the exploration ability.

Thus, LLSO can potentially find the promising areas faster

and have greater chance to jump out of local optimum areas.
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B. Exploitation Ability

With limited computational resources, such as function eval-

uations, exploitation is necessary when the swarm exploits

the searching areas. Enhancing the exploitation ability of

an EA is to fully exploit the found promising areas fast,

so that better solutions can be located as fast as possible.

The exploitation ability is very important when an EA deals

with simple unimodal functions or when the swarm finds the

global optimum areas. Generally, the exploitation ability can

be indicated by the difference between the exemplar and the

updated particle [23]. The smaller the difference is, the more

the particle focuses on exploiting the area.

To analyze the exploitation ability of LLSO, we assume

that for the jth particle Xi,j from the ith level Li, two random

exemplars Xrl1,k1
and Xrl2,k2

are selected from two randomly

selected higher levels Lrl1 and Lrl2 (rl1< rl2< i). Then, we

have

f
(
Xrl1,k1

)
≤ f

(
Xrl2,k2

)
≤ f

(
Xi,j

)
. (19)

Comparing Xrl1,k1
and Xrl2,k2

with pbest and gbest defined

in PSO, we have the following formula:
⎧
⎨
⎩

f (gbest) ≤ f
(
pbesti,j

)
≤ f

(
Xi,j

)

f (gbest) ≤ f
(
pbestrl1,k1

)
≤ f

(
Xrl1,k1

)

f (gbest) ≤ f
(
pbestrl2,k2

)
≤ f

(
Xrl2,k2

) (20)

where pbesti,j, pbestrl1,k1
and pbestrl2,k2

are the personal best

positions of Xi,j, Xrl1,k1
, and Xrl2,k2

, respectively.

When it reaches the late stages where all particles may

converge together, the following relationship holds:

pbestrl1,k1
≈ pbestrl2,k2

≈ pbesti,j ≈ gbest. (21)

Therefore, for GPSO, we have

�FGPSO =
∣∣ f

(
Xi,j

)
− f (gbest)

∣∣

=

∣∣∣∣ f
(
Xi,j

)
− f

(
gbest + gbest

2

)∣∣∣∣

≈

∣∣∣∣ f
(
Xi,j

)
− f

(
gbest + pbesti,j

2

)∣∣∣∣
=

∣∣ f
(
Xi,j

)
− f

(
p′

2

)∣∣ (22)

where p′
2 is the expected value of p2 in (15).

Similarly, for CSO and LLSO, we can derive the following:

�FCSO =
∣∣ f

(
Xi,j

)
− f

(
Xwi,j

)∣∣
=

∣∣ f
(
Xi,j

)
− f

(
p′

3

)∣∣ (23)

�FLLSO =
∣∣ f

(
Xi,j

)
− f

(
Xrl1,k1

)∣∣
=

∣∣ f
(
Xi,j

)
− f

(
p′

1

)∣∣ (24)

where Xwi,j is the corresponding winner of Xi,j in CSO, p′
3 is

the expected value of p3 with φ = 0 for CSO in (18), and

p′
1 is the expected value of p1 with φ = 0 for LLSO in (12).

Since Xrl1,k1
is selected from level Lrl1 , which is higher than

Li, where Xi,j comes, the expected value of Xrl1,k1
is better

than that of Xwi,j , which is only better than Xi,j. Therefore, we

have f (Xrl1,k1
) ≤ f (Xwi,j).

Combining the above formula together, we can derive

�FLLSO ≤ �FCSO ≤ �FGPSO. (25)

Such formula indicates that compared with GPSO and CSO,

LLSO potentially has a better exploitation ability to refine

solutions within a smaller gap between two positions whose

fitness values are very similar.

The above analysis has separately demonstrated that LLSO

can preserve good exploration and exploitation abilities.

However, during the evolution process, these two abilities

usually conflict with each other. Thus, during evolution, an

EA generally needs to make a compromise between these

two abilities to search the space [16], [60], [61]. It should

be mentioned that such a compromise should not be fixed,

but be dynamically adjusted according to different features of

the problems to be optimized or different requirements in the

evolution process. In Section V-A, the good exploration and

exploitation abilities of LLSO will be verified empirically in

comparison with GPSO [6] and CSO [23].

V. EXPERIMENTS

To verify the feasibility and efficiency of the proposed

LLSO, a series of experiments are conducted on two

widely used sets of large-scale optimization problems: the

CEC’2010 [27] and the CEC’2013 [28] benchmark sets. The

latter is the extension of the former through introducing new

features, such as overlapping functions. Consequently, func-

tions in the latter set are much more complicated and harder

to optimize. The main properties of these two function sets

are summarized in Tables SI and SII in the supplementary

material, respectively. For details of these functions, readers

are referred to [27] and [28].

In this section, we first empirically substantiate the good

exploration and exploitation abilities of LLSO in Section V-A.

Then, we investigate the key parameter settings for DLLSO

in Section V-B and the influence of the dynamism of NL

on LLSO in Section V-C, respectively. After all the prelim-

inary investigation, we make comparisons between DLLSO

and other state-of-the-art algorithms dealing with large-scale

optimization in Section V-D. In Section V-E, the scalability

comparison between DLLSO and the compared algorithms

is conducted on the CEC’2010 benchmark functions with

dimensionality increasing from 200 to 2000. At last, the com-

putational time comparison is made between DLLSO and

some compared algorithms on the CEC’2010 problems with

the dimensionality increasing from 200 to 2000 as well.

In addition, unless otherwise stated, the maximum number

of fitness evaluations is set to 3000×D (where D is the dimen-

sion size). What is more, for fair comparisons, median, mean,

and standard deviation (Std) values over 30 independent runs

are used to evaluate the performance of different algorithms. In

the comparisons between two different algorithms, Wilcoxon

rank sum test is performed at a significance level of α= 0.05.

Additionally, it is worth mentioning that all algorithms are

conducted on a PC with four Intel Core i5-3470 3.20-GHz

CPUs, 4-GB memory and Ubuntu 12.04 LTS 64-bit system.

A. Exploration and Exploitation Investigation in LLSO

Before experiments, it should be noted that exploration

and exploitation generally conflict with each other. Thus, an
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EA generally needs to make a compromise between these two

aspects to search the space. In general, such a compromise

should be dynamically adjusted according to different fea-

tures of problems or different requirements in the evolution

process [16], [60]. Besides, this compromise does not mean

that exploration and exploitation should be the same or similar

during all evolution stages or on all problems either.

When coping with unimodal problems, exploitation should

be put properly more emphasis to seek fast convergence.

However, when tackling multimodal problems, exploration

should be properly biased to avoid falling into local areas. For

a single problem, when most particles locate in local areas,

exploration should be appropriately biased to let the swarm

jump out of local areas. Nevertheless, when the swarm finds

promising areas, exploitation should be appropriately biased

to refine the obtained solutions [16], [60].

Then, to verify that LLSO can preserve good exploration

and exploitation abilities and could compromise these two

abilities properly, we conduct comparison experiments among

LLSO, CSO, and GPSO on four CEC’2010 benchmark func-

tions (fully separable and unimodal F1, partially separable

and multimodal F5, partially separable and unimodal F7, and

partially separable and multimodal F10) with 200 dimenisons

in regard to swarm diversity along with the global best fit-

ness value. These functions are selected because we want to

make a comprehensive comparsion on various kinds of func-

tions, like fully separable, partially separable, unimodal, or

multimodal.

In this paper, the diversity is measured as follows [23], [62]:

D(X) =
1

NP

NP∑

i=1

√√√√
D∑

d=1

(
xd

i − x̄d
)2

(26)

x̄d =
1

NP

NP∑

i=1

xd
i (27)

where D(X) represents the diversity of the swarm X, and x is

the mean position of the swarm.

Fig. 2 shows the comparison results of the three algorithms

on the four functions with the maximum number of fitness

evaluations set as 3000 × D = 6 × 105. For fairness, the pop-

ulation size is set 300 for all algorithms. From this figure, we

can obtain the following findings.

First, for unimodal functions, exploitation should be put

a little more emphasis, so that fast convergence can be

achieved. From Fig. 2(a) and (c), we can see that on the uni-

modal functions F1 and F7, the exploitation is properly biased,

so that LLSO converges much faster than GPSO and CSO

with better solutions simultaneously. Specifically, on F1 [see

Fig. 2(a)], the exploitation is biased much more obviously in

LLSO. GPSO maintains the highest diversity but obtains the

worst performance because of the stagnation of the swarm.

CSO perserves higher diversity but slower convergence than

LLSO, because the exploitaiton is less empahsized. On F7 [see

Fig. 2(c)], exploitation is appropriately biased without serious

loss of exploration in LLSO, resulting in its good performance.

However, the exploitation is overemphasized in GPSO and

thus the exploration is seriously ignored, leading to its infe-

rior performance. For CSO, the exploitation is less biased and

thus slower convergence is obtained than LLSO.

Second, when it arrives at multimodal functions, explo-

ration should be dynamically and properly biased without

serious loss of exploitation, so that premature convergence

and stagnation can be avoided. From Fig. 2(b) and (d), we

can find that on multimodal functions F5 and F10, LLSO still

achieves better peformance than GPSO and CSO with respect

to both convergence speed and solution quality. This is because

LLSO can compromise exploration and exploitation better

than GPSO and CSO. Specifically in GPSO, the exploita-

tion is overbiased and thus the exploration is seriously lost

on both functions, leading to its poor performance. For CSO,

the exploration is overemphasized and thus its exploitation is

very poor, resulting in its poor performance in refining the

solutions.

Overall, we can see that LLSO can preserve good explo-

ration and exploitation abilities and can particulaly compro-

mise these two well to search the space during the evolution.

Such a good ability benefits from the proposed LL strategy,

which can offer two kinds of compromises between explo-

ration and exploitation: 1) the particle-level compromise and

2) the swarm-level compromise as stated in Section III-E.

B. Parameter Settings

In LLSO, only two extra parameters are introduced: 1) the

number of levels NL and 2) the control parameter φ. Since

we have proposed a dynamic selection strategy for NL in

Section III-G, the fine-tuning of the sensitive NL can be

saved by setting the pool S with a wide range. In the

preliminary experiments, we find DLLSO is not so sensitive

to S, if we keep S in a wide range. In this paper, we set

S = {4, 6, 8, 10, 20, 50}.

Then, we turn to the setting of the control parameter

φ and the swarm size NP, the common parameter in all

EAs [6], [21], [23], [56], which is hard to set, owing to its

dependency on the complexity of problems. Thus, to see the

effect of φ and NP on DLLSO, we conduct experiments on

DLLSO with NP varying from 200 to 600 and φ varying from

0.1 to 0.6.

Table SIII in the supplementary material displays the exper-

imental results of DLLSO with different combinations of

φ and NP on six 1000-D benchmark functions from the

CEC’2010 set: fully separable and unimodal function F1,

fully separable and multimodal function F3, partially separable

and unimodal function F7, partially separable and multimodal

function F8, partially separable and unimodal function F12,

and partially separable and unimodal function F17. These func-

tions are selected, because we want to investigate the influence

of parameters on almost all kinds of problems: fully separable,

partially separable, unimodal, and multimodal.

From this table, we can see the following.

1) The smaller the swarm size is, the larger value φ has.

This is because a small swarm size cannot offer high

diversity for the swarm, thus a large φ is needed to

promote the diversity by enhancing the influence of
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(a) (b)

(c) (d)

Fig. 2. Swarm diversity and the global best fitness value comparison among LLSO, CSO, and GPSO on four functions F1, F5, F7, and F10 with

200 dimensions. Please note that for F1, the fitness value of LLSO is not plotted after the number of fitness evaluations reaches about 5×105. This is because
the global best fitness value becomes 0, arriving at the global optimum of F1. (a) f1: fully separable and unimodal. (b) f5: partially separable and multimodal.
(c) f7: partially separable and unimodal. (d) f10: partially separable and multimodal.

the second exemplar, which owns more potential in

exploration than the first one in (6).

2) For large swarm sizes, the proper φ seems to consistently

stay at 0.4 as indicated by the results of DLLSO with

NP within [400, 600].

3) When NP is within [400, 600], it seems that φ makes

no significant difference on DLLSO when it is within

[0.1, 0.5]. However, when φ is within [0.1, 0.5], it seems

that NP has great influence on DLLSO, especially for F3

and F7.

In conclusion, NP = 500 and φ = 0.4 is adopted for

DLLSO on 1000-D problems, which also makes it fair to

compare DLLSO with CSO that adopts the same setting of

NP [23].

C. Effect of Dynamic Level Numbers

To investigate the effect of the dynamic selection of NL on

DLLSO, we conduct comparison experiments on two versions

of the proposed optimizer: LLSO with a fixed NL and LLSO

with a dynamic NL, namely DLLSO. The former version of

LLSO is represented as “LLSO-NL,” such as LLSO with four

levels can be denoted as “LLSO-4.”

Fig. S1 in the supplementary material shows the compari-

son results between the two versions of LLSO on eight 1000-D

benchmark functions from the CEC’2010 set including the six

functions used in the last section (adding two extra functions

F10 and F15). In this experiment, NP = 500 and φ = 0.4

is adopted and the maximum number of function evaluations

varies from 5 × 105 to 5 × 106. For LLSO-NL, the fixed

numbers of levels are set to be the members in S.

From this figure, first, we can find that on some functions,

such as F10, F12, and F17, LLSO is not sensitive to NL,

while on some functions, such as F3, F7, F8, and F15, LLSO

is very sensitive to NL. Second, the optimal NL is different for

different problems, such as the optimal NL is 8 for F7, while

that number is 50 for F15. Third, comparing these two ver-

sions, we find that DLLSO can make a good compromise to

obtain competitive solutions on almost all the eight problems

and even on some functions, such as F10 and F15, DLLSO can

obtain better solutions than the LLSO with the optimal NL.

All in all, we can find that the dynamic selection strategy

for NL is promising for the proposed optimizer.

D. Comparisons With State-of-the-Art Methods

Subsequently, to comprehensively verify the efficiency and

effectiveness of DLLSO, we compare it with various state-

of-the-art algorithms dealing with large-scale optimization.

Specifically, four popular algorithms, namely three PSO vari-

ants (CSO [23], SL-PSO2 [21], and DMS-L-PSO3 [39]), and

a memetic algorithm named MA-SW-Chains4 [48], concentrat-

ing on the second aspect in handling large-scale optimization

(Section II-B), and four CCEAs, namely CCPSO2 [33],

DECC-DG5 [20], DECC-G [35], and MLCC6 [36], focusing

on the first aspect in large-scale optimization (Section II-A),

are selected to make comparisons. For fairness, the key param-

eters in each algorithm are set as recommended in the corre-

sponding papers. We conduct the comparison experiments on

both CEC’2010 benchmark set [27] and CEC’2013 benchmark

set [28].

2The codes of CSO and SL-PSO can be downloaded from http://
www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/.

3The code of DMS-L-PSO can be downloaded from http://
www.ntu.edu.sg/home/epnsugan/.

4The code of MA-SW-Chains can be downloaded from
http://sci2s.ugr.es/EAMHCO#Complementary.

5The codes of CCPSO2 and DECC-DG can be downloaded from
https://titan.csit.rmit.edu.au/∼e46507/publications.php.

6The codes of DECC-G and MLCC can be downloaded from
http://staff.ustc.edu.cn/∼ketang/codes/.

http://www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/
http://www.surrey.ac.uk/cs/research/nice/people/yaochu_jin/
http://www.ntu.edu.sg/home/epnsugan/
http://www.ntu.edu.sg/home/epnsugan/
http://sci2s.ugr.es/EAMHCO#Complementary
https://titan.csit.rmit.edu.au/~e46507/publications.php
http://staff.ustc.edu.cn/~ketang/codes/
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TABLE I
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC’2010 FUNCTIONS WITH 3 × 106 FITNESS EVALUATIONS

Tables I and II, respectively, show the comparison

results among different algorithms on the two bench-

mark sets with 1000-D. The highlighted p values mean

that DLLSO is significantly better than the correspond-

ing algorithms. Additionally, the symbols, “+,” “−,” and

“=,” above the p values represent that DLLSO is signifi-

cantly better than, significantly worse than, and equivalent

to the compared algorithms on the associated functions.

Furthermore, w/l/t in the last row represents that DLLSO

wins on w functions, loses on l functions and ties on t
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TABLE II
COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC’2013 FUNCTIONS WITH 3 × 106 FITNESS EVALUATIONS

functions in total in the competitions with the counterpart

methods.

As for the CEC’2010 set, from Table I, we can see that

DLLSO outperforms the compared algorithms on most of

the 20 functions. In details, compared with CSO, SL-PSO,

MA-SW-Chains, and DMS-L-PSO, DLLSO shows its great

superiority on 13, 12, 11, and 13 functions, respectively.

Compared with these algorithms, DLLSO only loses the

competition on 6, 4, 6, and 6 functions, respectively. In com-

parison with the four CCEAs (CCPSO2, DECC-G, MLCC,

and DECC-DG), DLLSO defeats them on 16, 19, 19, and

16 functions, respectively. Besides, DLLSO only loses on

2, 1, 1, and 3 functions, respectively, competing with these

algorithms.

When it arrives at the CEC’2013 set where the func-

tions are more difficult to optimize than those in the former

set, DLLSO consistently shows its dominance according to

Table II. Compared with DMS-L-PSO and the four CCEAs,

DLLSO shows its significant superiority on at least ten func-

tions. In comparison with CSO and SL-PSO, DLLSO defeats

them down on eight and seven functions, respectively, and only

loses the competitions on three and four functions, respec-

tively. Unfortunately, on this set, DLLSO is slightly worse

than MA-SW-Chains. However, compared with this algorithm,

DLLSO is easier to understand and simpler to implement, due

to its maintenance of the framework of the classical PSO,

which leads to its superior performance to MA-SW-Chains in

computational efficiency that will be verified in the following

sections.

Further, we also conduct convergence behavior com-

parison between DLLSO and the compared algorithms

on the two benchmark sets to testify the superiority of

DLLSO with respect to convergece speed. Figs. S2 and S3

in the supplementary material present the comparison

results on the CEC’2010 and CEC’2013 benchmark sets,

respectively.
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TABLE III
PARAMETER SETTINGS OF DLLSO IN DEALING WITH

PROBLEMS WITH DIFFERENT DIMENSION SIZES

On the CEC’2010 benchmark set, from Fig. S2, in the

supplementary material, we can observe the following.

1) DLLSO converges faster with better solutions than all

eight compared methods on four (F3, F6, F10, and F15)

functions.

2) DLLSO achieves faster convergence with higher qual-

ity solutions than seven compared methods (except for

only one compared algorithm out of the eight com-

pared methods) on six functions (F1, F5, F7, F11, F12,

and F14).

3) Concretely, DLLSO can apparently defeat CSO,

SL-PSO, MA-SW-Chains, DMS-L-PSO, CCPSO2,

DECC-G, MLCC, and DECC-DG with both faster con-

vergence and better solutions on 14, 12, 10, 20, 15, 17,

16, and 14 functions, respectively.

Similarly, on the CEC’2013 benchmark set, from Fig. S3,

in the supplementary material, we can obtain the following.

1) DLLSO achieves great superiority to all eight compared

algorithms in both convergence and solution quality on

six functions (F4, F7, F8, and F13 − F15).

2) Besides, on F1 and F5, DLLSO achieves both better

solutions and faster convergence than seven compared

algorithms.

3) DLLSO converges faster with higher solution qual-

ity than CSO, SL-PSO, MA-SW-Chains, DMS-L-PSO,

CCPSO2, DECC-G, MLCC, and DECC-DG on 9, 9, 8,

11, 9, 9, 8, and 12 functions, respectively.

In conclusion, we can see that compared with these state-of-

the-art large-scale algorithms, DLLSO can achieve competitive

or even better performance in both solution quality and con-

vergence speed. The superiority of DLLSO can be attributed to

the proposed LL strategy and the proposed exemplar selection

strategy. LL groups particles into different levels and treats

particles in different levels differently. The exemplar selection

strategy allows particles in different levels to learn from var-

ious superior particles from different higher levels. From the

two selected superior exemplars, one particle could improve

its potential in exploitation by learning from the better one,

and at the same time consolidate its potential in exploration

by learning from the inferior one. In this way, each updated

particle may compromise exploration and exploitation in the

evolution.

Besides, the cooperation between these two strategies makes

particles in different levels learn from different numbers of

exemplars. That is, particles in lower levels have more supe-

rior particles and a wider range to learn, which is beneficial for

exploration, while particles in higher levels have fewer supe-

rior particles and a narrower range to learn, which is profitable

for exploitation. In this manner, the whole swarm can make

a compromise in exploring and exploiting the search space

via letting particles in higher levels concentrate on exploiting

while letting particles in lower levels focus on exploring.

In short, these two kinds of compromises in exploration and

exploitation make DLLSO achieve good performance.

E. Scalability Comparisons With State-of-the-Art

Methods

The above comparison experiments have exhibited the supe-

riority of DLLSO to several state-of-the-art methods in dealing

with 1000-D problems. To further substantiate the scalability

of DLLSO to solve higher dimensional problems, we perform

experiments on the CEC’2010 problems with dimensionality

increasing from 200 to 2000.

In this series of experiments, the parameters of DLLSO are

set as shown in Table III. As for the compared algorithms,

the parameters are set as recommended in the corresponding

papers. For fairness, the maximum number of fitness evalu-

ations is set as 3000 × D when conducting experiments on

problems with different dimension sizes. In addition, due to

the page limit, we attach all the comparison results to the

supplementary material.

1) Comparsion Results on 200-D Problems: Table SIV in

the supplementary material presents the comparison results on

the CEC’2010 problems with 200 dimensions. From this table,

we can see that DLLSO displays its great potential and abil-

ity in dealing with 200-D problems. Specifically, DLLSO can

achieve the global optimum of F1 in each run and is much

superior to CSO, SL-PSO, and the four CCEAs (CCPSO2,

DECC-G, MLCC, and DECC-DG) on at least 16 functions.

Besides, DLLSO also wins the competition with MA-SW-

Chains on 12 functions. Compared with DMS-L-PSO, DLLSO

is competitive and comparable to this algorithm by defeating

it on nine functions.

2) Comparison Results on 500-D Problems: Table SV

in the supplementary material shows the comparison results

among different algorithms on 500-D problems. Observing

this table, we can find that DLLSO, respectively, domi-

nates the eight compared algorithms on at least 11 functions.

Compared with CSO, DLLSO outperforms it on 13 functions

and only loses the competition on three functions. In compar-

ison to MA-SW-Chains and DMS-L-PSO, DLLSO performs

better than them both on 11 functions. In particular, DLLSO

obtains the global optimum of F1 in each run as well and

is much better than SL-PSO and the four CCEAs on at least

15 functions.

3) Comparison Results on 800-D Problems: Table SVI in

the supplementary material displays the comparison results on

800-D problems. From this table, we can observe that DLLSO

is, respectively, superior to the eight compared algorithms on at

least 12 functions. Particularly, DLLSO dominates CSO, SL-

PSO, and DMS-L-PSO on 13 functions, respectively, and is

especially better than the four CCEAs on at least 17 functions.

4) Comparison Results on 2000-D Problems: Table SVII

in the supplementary material presents the comparison results

among all the compared algorithms on 2000-D problems,

which are particularly harder to optimize than the aforemen-

tioned problems. From this table, we can see that DLLSO
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is still much better than the compared algorithms in deal-

ing with such complicated problems. Specifically, DLLSO,

respectively, wins the competition with the eight compared

methods on at least 13 functions. In particular, DLLSO is sig-

nificantly superior to SL-PSO, and the four CCEAs on at least

15 functions.

5) Overall Comparisons: From the above comparison

results, we can see that DLLSO has a good scalability in tack-

ling problems with different dimension sizes. Particularly, as

the dimensionality increases, the number of functions on which

DLLSO can, respectively, dominate the eight compared algo-

rithms increases as well (for 200-D, 500-D, 800-D, 1000-D,

and 2000-D problems, this number is 9, 11, 12, 11, and 13,

respectively).

To have a better view of the comparison results, we plot

the changes of the averaged fitness value of each algorithm on

each function with the dimensionality increasing from 200 to

2000. The result is shown in Fig. S4 in the supplementary

material.

From this figure, we can find that as expected, on most

functions, the performance of all algorithms degrades with

the dimensionality increasing, which results from the exponen-

tially increased search space. However, we find that on F1, F3,

and F10, DLLSO always achieves the best performance as the

dimensionality increases in comparison with other algorithms

as shown in Fig. S3(a), (c), and (j) in the supplementary mate-

rial. Besides, on F5 − F7, with the dimensionality increasing,

the ability of DLLSO does not degrade but instead is improved

via the proper parameter settings, which can be clearly seen

from Fig. S3(e)–(g) in the supplementary material.

Overall, we can conclude that DLLSO preserves good scal-

ability to solve higher dimensional problems. Such superior

scalability of DLLSO could be ascribed to the following

aspects: 1) first, in LLSO, particles are divided into different

levels and are treated differently; and 2) second, the proposed

exemplar selection strategy affords two different superior

exemplars for each particle to learn, so that the potential in

exploitation of one particle may be promoted via learning

from the better one and the potential in exploration may be

enhanced by learning from the inferior one. In addition, par-

ticles in different levels have different numbers of superior

particles to learn from, resulting in that particles in lower levels

have a wider range to learn, which is beneficial for explo-

ration, and particles in higher levels have a narrower range

to learn, which is beneficial for exploitation. Thus, LLSO can

compromise exploration and exploitation to search the space

from both particle level and swarm level, which benefits for

achieving competitive performance with the state-of-the-art

methods.

F. Time Comparisons With State-of-the-Art Methods

The above experiments have demonstrated the superiority of

DLLSO to other algorithms with respect to solution quality. To

further validate the competitive efficiency of DLLSO in tack-

ling large-scale optimization, we conduct computational cost

comparison between DLLSO and three compared algorithms,

namely CSO, SL-PSO, and MA-SW-Chains. These algorithms

are selected because on the one hand, they were all imple-

mented with C codes; on the other hand, they all contribute

to the second aspect in handling large-scale optimization as

stated in Section II-B. By this means, fair comparison can be

obtained.

In the experiments, we record the computing time of

each compared algorithm on the CEC’2010 benchmark func-

tions with the dimensionality increasing from 200 to 2000.

Table SVIII and Fig. S5 in the supplementary material present

the time comparison results among the four algorithms on each

function with different dimension sizes.

From Table SVIII and Fig. S5, in the supplementary mate-

rial, we can see that both DLLSO and CSO are much more

efficient than the other two algorithms (SL-PSO and MA-SW-

Chains). In details, the computational cost of MA-SW-Chains

is the highest. This is because MA-SW-Chains employs many

complicated local search methods. Compared with DLLSO

and CSO, SL-PSO needs much more time, because it needs

to compute the mean position of the swarm, to sort the swarm

and to compute the learning probability for each particle, the

combination of which leads to its higher computational cost

than CSO and DLLSO.

Compared with CSO, we find that DLLSO takes nearly

the same time as CSO. However, it is interesting to find

that when dealing with low-dimensional problems, CSO is

slightly more efficient than DLLSO. Nevertheless, with the

dimensionality increasing, the difference between the compu-

tational cost of DLLSO and CSO becomes less and less, and

even when it comes to 2000-D, DLLSO is a bit more effi-

cient than CSO. This is because CSO needs to compute the

mean position of the whole swarm, which takes O(NP × D)

at each generation. Thus, as the dimensionality increases,

except for the computation time of fitness functions, the

extra computational cost of CSO increases faster than that of

DLLSO.

Together, we can see that with respect to the computational

cost, DLLSO is also very competitive or even superior to state-

of-the-art algorithms, due to its maintenance of the classical

PSO framework, which is very easy to understand and simple

to implement.

To summarize, we can conclude that the proposed DLLSO

is competitive, effective and efficient in dealing with large-

scale optimization in both solution quality and computational

cost.

VI. CONCLUSION

In this paper, we have proposed a LL strategy and an

exemplar selection strategy, the combination of which leads

to a new optimizer named LLSO. Besides, to deal with

the challenge that the optimal number of levels is problem-

dependent, we further added a dynamic selection strategy for

the number of levels, leading to DLLSO, a dynamic ver-

sion of LLSO. Various experiments have been conducted

to demonstrate the efficiency and effectiveness of DLLSO

in tackling large-scale optimization with respect to solu-

tion quality, convergence speed, scalability, and computational

cost.
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Though DLLSO shows good performance in coping with

large-scale optimization, the obtained solutions to some func-

tions are still far from the global optima, which is the common

issue for the state-of-the-art algorithms as well, as seen in

Tables I and II. Therefore, how to further improve DLLSO

to obtain solutions as near the global optima as possible

is the first direction for future investigation. In addition,

since dividing the whole swarm into levels is only associ-

ated with the population, whether the proposed LL strategy

and the exemplar selection strategy are promising for other

population-based EAs, such as DE, is another direction for

future investigation.
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