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Abstract—In this paper, an asynchronous analog-to-information
conversion system is introduced for measuring the RR intervals of
the electrocardiogram (ECG) signals. The system contains a mod-
ified level-crossing analog-to-digital converter and a novel algo-
rithm for detecting the R-peaks from the level-crossing sampled
data in a compressed volume of data. Simulated with MIT-BIH
Arrhythmia Database, the proposed system delivers an average
detection accuracy of 98.3%, a sensitivity of 98.89%, and a posi-
tive prediction of 99.4%. Synthesized in 0.13 µm CMOS technology
with a 1.2 V supply voltage, the overall system consumes 622 nW
with core area of 0.136 mm2 , which make it suitable for wearable
wireless ECG sensors in body-sensor networks.

Index Terms—Analog-to-digital converter (ADC), asynchronous
analog-to-information conversion system, level-crossing sampling,
QRS detection, wearable electrocardiogram (ECG) monitoring
devices.

I. INTRODUCTION

L
EVEL-CROSSING sampling is getting popular in a wide

class of low-power sensor–interface systems due to its sim-

plicity and superior power efficiency. The activity-dependent

nature of this sampling scheme, in which a new sample is

taken only when a significant change occurs in the input-signal

value, leads to a considerable performance improvement in the

data acquisition systems when operating on sparse burst-like

signals. The advantages of level-crossing sampling over tradi-

tional Nyquist sampling were first reported in [1], where its

ability in data compression is demonstrated. The application

of level-crossing sampling scheme to analog-to-digital convert-

ers (ADCs) also attracted much attention [2], [3]. Other sys-

tems utilizing the level-crossing sampling has been reported in

the past decade including speech [3]–[5], ultrasound [6], ac-

celerometer [7], and biomedical signal acquisition [8]. Utilizing

level-crossing sampling for creating an event-driven system is

considered by a growing number of researches, some focus on

developing complete level-crossing-based systems [including
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ADC, processor, and digital-to-analog converter (DAC)] [9],

[10], others try to improve the efficiency of the system for spe-

cific applications [5], [7], [8], [11], [12], and yet others develop

circuit techniques for low-cost circuit implementation of level-

crossing-based systems [13]–[15].

In this paper, we focus on developing level-crossing-based

QRS detector for cardiac monitoring devices. Electrical activity

of the heart, which is detectable by placing the electrodes at

the outer surface of the skin, can be recorded by the electrocar-

diograph device. The electrocardiogram (ECG) signal provides

valuable information about the rate and regularity of the heart

beats, which can be used in diagnosis of cardiac diseases. The

most significant feature of the ECG signal is the QRS complex,

the peak of which is specified as R-peak [16]. The RR interval,

which is the time interval between two consecutive R peaks,

can be used to detect irregularities in the heart normal opera-

tion, called arrhythmia. Many QRS-detection algorithms were

proposed and widely studied for decades. The basic techniques

are based on the amplitude, i.e., first derivative or first and second

derivatives of the signal [17], [18]. More complicated algorithms

such as wavelet-based QRS detection, filter-bank methods, neu-

ral network approaches, mathematical morphology, and others

are reviewed and compared in [19]. Despite the high functional-

ity of these methods, most of them need complex computations

that restrict their use in the body sensor networks (BSNs). The

ambulatory monitoring in BSN usually uses wearable devices to

record the signals continuously for a long period of time. Such

systems have to be designed with minimum size, complexity,

and power consumption.

Several solutions have been presented in order to achieve

these goals, most of which are aimed to extract the desired

characteristics of the signal by using a compressed number

of samples. The suggested methods such as wavelet compres-

sion and compressed sensing suffer from large amount of ac-

quired data and the complex digital postprocessing for data

reconstruction, respectively, and therefore are not applicable for

wearable devices, especially for self-powered devices in BSN.

Asynchronous level-crossing sampling scheme is an alternative

approach for this purpose, which meets both targets of data

compression and feature extraction simultaneously [7], [8]. Un-

der the scheme, the sampling rate is directly proportional to the

activity of the input signal and no power is wasted for sam-

pling, converting, and processing the useless data in the inac-

tive parts of the signal. This is well suited for ECG signal due

to its sparse and burst-like nature. However, there are limited

works studying the QRS detection using level-crossing sampled

data [8], [11], [20].
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Fig. 1. Different sampling schemes with the same number of samples in the
active part of the signal: (a) regular synchronous sampling and (b) level-crossing
sampling.

In this paper, a novel algorithm for extracting the RR in-

tervals from the output data of the level-crossing-based ADC

(LC-ADC) is proposed. It employs special features of level-

crossing sampling in order to achieve improved power effi-

ciency as well as detection accuracy. The system performance

is evaluated using all recordings of the MIT-BIH Arrhythmia

Database [21]–[23].

The rest of the paper is organized as follows: Section II in-

cludes a brief description about the basics of the LC-ADC op-

eration. The proposed QRS-detection algorithm is introduced

in Section III. The evaluation of the algorithm is presented in

Section IV, followed by performance comparison in Section V.

Finally, the concluding remarks are presented in Section VI.

II. LEVEL-CROSSING ADC

The illustrations of the synchronous and level-crossing sam-

pling are shown in Fig. 1. The synchronous sampling is based

on a reference clock with a constant period of TS and so the time

intervals between the samples are constant. The level-crossing

sampling, on the other hand, is an irregular or asynchronous

sampling method. It divides the amplitude into 2M −1 quanti-

zation levels, indicated as dotted lines in Fig. 1(b), in which

M is the ADC physical number-of-bits or resolution. A sam-

ple is taken only when the input signal crosses one of these

quantization levels [2].

Using the level-crossing sampling, the conversion process

and so the operation of the LC-ADC is dependent on the am-

plitude change in the input signal and so the sampling rate is

proportional to the activity of the input signal. This property

may lead to advantages in using the LC-ADC for two types of

signals. The first type is the sparse signals that are approximately

constant in most of the times and active in small time intervals

such as speech, pressure, temperature, heart, and neural signals.

In these types of signals, when the signal has small variations

such that no level-crossing happens, the circuit is in the sleep

mode and no sample is taken. No extra power is wasted for

data conversion in the intervals with little useful data and the

average sampling rate can be reduced that improves the sys-

tem efficiency. The other type of signals is burst-like signals

such as ECG, electroencephalogram (EEG), and electromyo-

gram (EMG). Unlike the conventional synchronous ADCs, the

accuracy of the LC-ADC is not limited by using limited num-

ber of the quantization levels. In the applications with burst-like

signals, the power efficiency can be improved by using smaller

hardware number of bits, which results in lower data rate and

hardware complexity [3]. In the example shown in Fig. 1, the

number of samples taken in the active part is the same as in the

inactive part for a fixed interval under synchronous sampling

scheme while level-crossing sampling takes much less samples

in the inactive region. Since the ECG signal is both sparse and

burst-like, it can benefit from level-crossing sampling.

Unlike the synchronous sampling, samples in the level-

crossing sampling are unevenly distributed. Faster the input

signal changes, closer the samples. Therefore, in addition to the

value of the signal, the sampling instants should also be recorded

by the LC-ADC. Several methods are presented for recording

and processing the nonuniform sampled data coming from an

LC-ADC. In order to transport and store these data by using

a common synchronous system, the time intervals between the

samples (Dti) can be quantized and represented with a limited

number of bits [3]. Due to the fact that the values of the samples

are exactly known and the sampling instants are quantized, the

LC-ADC operation in this situation is the dual operation of a

synchronous ADC, in which the sampling instants are exactly

known and the data values are quantized. In order to measure the

time interval between two adjacent samples, a local timer can

be used. This timer can be simply a counter with a constant pe-

riod of TTimer or a more complicated time-to-digital converter

(TDC). Unlike the synchronous analog-to-digital conversion, in

level-crossing ADC, no inherent noise is added to the data val-

ues due to the limited number of quantization levels. The limited

resolution of the timer is the factor that may reduce the accuracy

of the ADC.

Irregular level-crossing samples of value and time can be

processed using asynchronous signal processing methods [24],

which is the method used in this paper for detecting the QRS

complexes from the ECG signal. In this method, no additional

circuitry is needed to convert the nonuniform sampled data to

uniform ones as in [2] and no special continuous-time digital

signal processor is needed to be designed as in [9].

III. QRS-DETECTION SYSTEM

A traditional QRS-detection system includes electrodes, low-

noise amplifier, filter, variable-gain amplifier, ADC, and pro-

cessing unit. In this section, we present a new approach for

QRS detection that is based on asynchronous level-crossing

ADC and nonuniformly spaced data processing. It is shown

that by using this system, the processing data volume can be

reduced considerably that may result in lower power consump-

tion, especially for wireless transmission. Also the proposed
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Fig. 2. Operation of the increased-gap LC-ADC: k = 3 LSB.

system significantly improves detection accuracy compared to

the previous works that use LC-ADC for QRS detection.

A. Exploiting LC-ADC for QRS Detection

Detecting the QRS complex is challenged by appearance of

various noise sources, such as muscles’ contraction, power-line

interference, baseline drift due to respiration, electrode contact

noise, and motion artifact, especially in the case of wearable

devices. Also other components of the signals, such as large P

and T waves may destroy the detection process. In addition, the

basic morphological feature of the QRS complex varies from

patient to patient. Therefore, almost all the QRS-detection al-

gorithms use some kinds of filtering to attenuate the unwanted

parts of the signal, which can be implemented both in the analog

domain (before the ADC) or digital domain (after the ADC and

before the detection algorithm). In order to realize this filter in

the analog domain with sufficient linearity, a narrow-band high-

order bandpass filter is needed (5–15 Hz [25]), which cannot

be implemented without increasing power consumption. Im-

plementing the filter in the digital domain also burden extra

computation and so power consumption to the system. It will

be shown in the following that by using an LC-ADC one can

simply omit most of the undesired noises and even signals with

the amplitude less than a specified value. Using this property,

a simple algorithm can be utilized to detect the QRS complex

without using any additional circuitry or computation for excess

filtering. There are just few works that mentioned the QRS de-

tection by using the level-crossing samples [8], [11], in which

just the activity-decrement property of the level-crossing sam-

pling is considered. Pre-ADC filtering and adaptive-resolution

techniques are used in [8] to enhance the detection performance

at the expense of higher complexity and power consumption.

In order to explain the idea, it is necessary to understand

the basic operation of LC-ADC, which is illustrated in Fig. 2.

The LC-ADC produces the output based on a pair of in-process

quantization levels, which should be specified and stored in two

registers. The input signal should always be surrounded by these

two quantization levels. Whenever the input signal leaves the

gap between the two in-process quantization levels, the values

of these levels increase or decrease by one least-significant bit

(LSB) approaching the input signal. The LSB value is defined

as follows:

LSB =
2AF S

2M
(1)

Fig. 3. Effect of the increasing the gap between the two in-process quantization
(k) on level-crossing sampling: (a) k = 1 LSB, (b) k = 2 LSB, and (c) k =
3 LSB.

where AF S is the ADC input voltage amplitude range and M

is the ADC resolution. Then, the new quantization levels are

compared with the input signal again. This means that if the input

signal is greater than the upper level, both levels are increased

by 1 LSB and if the input signal is less than the lower level, both

levels are decreased by 1 LSB. When the ADC starts operating,

this process is performed repeatedly until the input signal is

surrounded by the in-process quantization levels. Therefore,

the LC-ADC may need an initial time to settle to the proper

operation.

The gap between the two in-process quantization levels (de-

noted with k) is conventionally selected to be equal to 1 LSB,

not to miss any level-crossing. In the situation of k = 1 LSB, as

shown in Fig. 3(a), if the input signal experiences noise at the

level-crossing point, it generates multiple crossings, i.e., there

are too many un-wanted output samples that do not contain any

useful information. In order to avoid such a problem, one way

is to increase the k value to more than 1 LSB. Fig. 2 shows an

example of k = 3 LSB. As it can be observed from this fig-

ure, samples are taken only when the signal changes more than

1 LSB at the same direction or k-1 LSB at the opposite direction.

Under such a sampling scheme, as shown in Fig. 3(b) and (c),

with every changing of direction in the input signal from rising

to falling and vice versa, k−1 level-crossings are skipped and

the signals with the amplitude of less than k LSB do not appear
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Fig. 4. Flowchart of the algorithm operation.

in the output. The benefits of the scheme are reduced sample

points as well as noise filtering.

Different values of k can be applied to the ADC simply by

loading the proper values into the registers that holds the values

of the in-process quantization levels, at the startup. Therefore,

no additional circuitry or complicated processes are needed to

apply the selected k to the ADC or even change the value of k

during the system operation.

B. QRS Detection Using Level-Crossing Samples

The main drawback of the level-crossing sampling method

is that the subsequent signal processing needs to be done on

nonuniformly sampled data comes from an LC-ADC. Com-

plicated digital signal processing techniques are essential in

order to apply the conventional QRS-detection algorithms to

the asynchronous level-crossing sampled data. This may com-

pletely destroy the advantage of LC-ADC. In previous works

that study the QRS detection using level-crossing sampled data,

they either use amplitude thresholding [8] or convert nonuni-

form samples to uniform ones [11]. For amplitude thresholding,

the large baseline wandering or sudden amplitude change in the

signal, such as high R-peak or PVC (premature ventricular con-

traction), affect the accuracy of QRS detection. For nonuniform

to uniform conversion [11], it requires extra conversion circuit

or algorithm in addition to QRS-detection algorithm, which is

not power efficient. As it is shown in the following, a simple

but accurate QRS-detection algorithm can be developed that

processes nonuniformly sampled data from an LC-ADC.

The flowchart of the proposed algorithm is shown in Fig. 4. As

the first step, the ECG signal is passed through the LC-ADC. The

block-diagram of the LC-ADC, including a sample of the input

and output signals is shown in Fig. 5. The LC-ADC provides

three signals at the output: a 2-bit signal representing the change

of each sample value from the previous one (DVi) {1 LSB

(“01”), k – 1 LSB (“00”), −1 LSB (“10”), −k + 1 LSB (“11”)},

a token signal to indicate the sampling occurrence and an 11-bit

signal representing the time interval between the current sample

and the previous one (Dti). The algorithm does not use the

Fig. 5. Block diagram of the LC-ADC, including samples of the input and
output signals.

value of the signal, but the change in the direction of the signal

(up or down), which helps to detect the peaks. The second step

is to detect the peaks of the signal that can be done by finding

out that the DVi value of the current sample is matched with

“00” or “11” values.

The final step of the algorithm, which is the main one, is to

find out whether this peak is an R-peak or not. The fundamental

of this part of the algorithm is almost similar to the derivative-

based algorithms. In the derivative based algorithms [16], as

the time period of the sampling is constant, the difference be-

tween the values of consecutive samples represents the gradient

of the input signal at each moment. For the level-crossing sam-

pled data, the difference between the amplitude of consecutive

samples is constant and so the time interval between two con-

secutive samples can be a representation of the input signal

gradient. Smaller the time interval, larger the gradient of the

input signal. Using this property, in the proposed algorithm, the

time intervals (Dti) of a constant window of level-crossings

(W level-crossing, which means W – k + 1 sample) around the

detected peak is stored. The sum of the stored time intervals

(dur) can be a representation of the spike duration that can be

used to recognize the R-peaks:

dur(P ) =

P +[W
2 ]−k+j
∑

i=P −[W
2 ]

Dti , j =

{

0, even W

1, odd W
(2)

where P is the index of the sample in which the peak is detected

and [x] represents the largest integer that is less than or equal to

x.

The detection of a QRS complex is completed by comparing

dur with a threshold value (TH1). If dur is less than TH1 , which

means that the duration of the spike is short enough and the
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Fig. 6. Basics of operation of the proposed QRS-detection algorithm.

variation of the spike is fast enough, the peak can be declared as

an R-peak. The operation of this method on a real ECG signal is

shown in Fig. 6, which is a section cut of the Tape 103 of MIT-

BIH Arrhythmia Database. The value of k is equal to 4 LSBs

in this example. The signal has 4 peaks in this time interval and

the values of dur are shown for W = 9. As it can be seen, the

dur value for the R-peak is much smaller than the three other

peaks.

As the slope of the R-waves and also the amplitude of the QRS

complex varies from patient to patient and also over time, the

range of dur values can be changed. Therefore, in order to reduce

the sensitivity of the algorithm to the threshold value, TH1 is

tuned adaptively [26] during the algorithm operation using the

following algorithm. This algorithm has three variables (SP, NP,

and TH1), which are initially set and adaptively updated by the

algorithm, and two coefficients (coeff1 and coeff2), which are

constant during the operation. SP is the running estimate of the

dur value for the signal R-waves and NP is the running estimate

of the dur value for the noise (not R-wave) peaks. If the detected

peak is decided to be an R-peak

SP = SP − [coeff1 × (SP − dur)] (3)

otherwise,

NP = NP − [coeff1 × (NP − dur)] (4)

and for each detected peak the value of TH1 is updated using

TH1 = SP + [coeff2 × (NP − SP)]. (5)

The values of the coeff1 and coeff2 are both selected to be 0.25

and so the [coeff. x] terms of the aforementioned equations can

be simply implemented by ignoring the two LSB bits without

using an additional multiplier.

To avoid false QRS detection due to fast high T-waves, a

dead-time zone is set up adaptively in order to reject any QRS

detection too close to the previous one. In order to measure

the RR intervals, either a local timer can be used or the time

interval can be calculated by summing the Dti values. This part

of the algorithm can be realized by comparing the time interval

between the current sample and the previous R-peak (∆TBeat)

with a threshold (TH2). The value of TH2 is selected to be half of

the average period of the beats (PoB). The PoB value is initially

set and whenever an R-peak is detected, its value is updated

adaptively using the following equation:

PoB = PoB − [coeff3 · (PoB − ∆TBeat)]. (6)

The value of coeff3 is selected to be 0.125 in order to simplify

the implementation of [coeff3 . x] by just ignoring the three LSB

bits. Therefore, all the coefficients are selected such that all the

multiplications can be implemented using truncation. In order to

prevent the algorithm from failure at the presence of a period of

missed beats (e.g., in Tape 203 at around 1490 s), there should

be a specified upper bound for PoB. An upper bound of 1 s is

selected in this design.

In summary, the proposed algorithm detects the QRS com-

plexes from the level-crossing sampled data by making use of

special features embedded in the level-crossing samples, i.e.,

gradient and the time intervals between the samples. No addi-

tional circuitry is needed to convert the nonuniformly sampled

data to uniform ones. The QRS detector fully benefits from the

asynchronous operation of the LC-ADC and its data compres-

sion capability.

As it is obvious from the nature of the algorithm, in order to

have a well-operated algorithm, minimum of W level-crossings

should be captured by the LC-ADC from the R-wave. The num-

ber of the samples taken from the R-wave is directly related to the

resolution of the LC-ADC (M). In order to find out the desired

value of M for the QRS detection, the 48 half-hour-recorded

ECG signals of the MIT-BIH Arrhythmia Database are applied

to an LC-ADC that is modeled in MATLAB with various values

of M and k. In order to have sufficient samples in the case of

large values of M , linear interpolation is utilized to increase

the sampling rate of the recordings of the MIT-BIH Arrhythmia

Database by 16 times before applying to the LC-ADC. Using

the LC-ADC output data, the possible locations of the beats are

estimated utilizing simple peak detection and the numbers of

missed beats are measured using beat-by-beat comparison [27].

The ratio of these values over the total number of beats (109428

beats in total) is calculated and plotted in Fig. 7(a) versus k for

different values of M . To keep the missed beats within 0.05%,

M should be greater than 7 bits for k ≥ 3 LSB. Fig. 7(b) re-

veals the average sampling frequency of the entire 48 half-hour

signals of the MIT-BIH Arrhythmia Database for the same val-

ues of M and k. It is obvious that 7-bit LC-ADC achieves

much lower average sampling frequency at the same k values

compared to its 8-bit counterpart. Furthermore, as mentioned in

Section III-A and shown in Fig. 3(a), the cases of k = 1 LSB

are not acceptable because the average sampling frequency is

very sensitive to noise in these cases. The best design points are

{M = 7, k = 2, 3, 4} and {M = 6, k = 2}. Although the case

{M = 6, k = 2} has the lowest average sampling frequency, the

samples at the active portions of the ECG signal is too sparse in

this case, especially for low-amplitude signals, which affects the

accuracy of QRS detection. Therefore, since higher values of k

are preferred because of the noise immunity and lower average
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Fig. 7. Test results of the LC-ADC operation on the MIT-BIH Arrhythmia
Database recordings.

sampling frequency, the case {M = 7, k = 4} can be a preferred

design point. The average sampling frequency, over the entire

database, is about 67 Hz in this case. This value is much less

than the sampling frequency used by regular sampling systems,

which is about 200–600 Hz (360 Hz for MIT database). Based

on the maximum gradient of the input signals, a counter with the

clock frequency of 5.76 kHz is used as the timer. It should also

be mentioned that, since the minimum time interval between

two consecutive samples is large enough (more than 0.5 ms),

the algorithm can process the data and make decision before

the next sample is captured. Therefore, no conflict is happened

for processing close peaks. Also, based on the maximum time

interval between consecutive samples, an 11-bit counter is used

as the timer. If the timer reaches its maximum value before the

next level-crossing, an extra sample is recorded to the output

of the ADC. Although this sample does not represent a level-

crossing and may contain k LSB error, it does not affect the

detection algorithm because it is located in the inactive portion

of the signal.

The best performance of the QRS detector is obtained for

W = 9 by tuning the performance over MIT-BIH Arrhythmia

Database. Using W = 9 and based on (2), just six samples are

used for each beat evaluation. Based on (2), in the case of k =
4 and W = 9, the detection of the R-peaks is delayed by two

samples. Simulation shows that this delay is less than 0.17 s for

all the records of MIT-BIH Arrhythmia Database and the mean

value of the delay is about 0.012 s, which are portions of the

duration of the QRS complex. These values are at the order of

the delay reported by other QRS-detection algorithms that is,

for example, equal to half of the maximum possible duration of

the normal QRS complex [16].

IV. PERFORMANCE EVALUATION

The proposed QRS detector is modeled and simulated in

MATLAB. In order to evaluate the system functionality, the

first channels of the 48 half-hour ECG recordings of MIT-BIH

Arrhythmia Database are used. The signals are passed through

Fig. 8. Detection of the QRS using Tape 100 of MIT-BIH Arrhythmia
Database with a standard ECG waveform and a zoom-in segment to show
the exact location of the flags.

Fig. 9. Detection of the QRS using Tape 105 of MIT-BIH Arrhythmia
Database: [(a) and (b)] baseline wander and (c) severe noises.

a 7-bit LC-ADC with k = 4 LSB and a 10 mV full-scale in-

put range and then evaluated by the proposed algorithm. The

performance of the algorithm, dealing with different abnormal

ECG signals, is shown in Figs. 8–10.

In Fig. 8, a detection example of the QRS using Tape 100 and

a zoom-in segment of this tape are shown. As it can be seen,

nearly all the samples are taken from the QRS regions and no

power is wasted to sample the silent parts of the signal with

small variations. Fig. 9 shows the performance of the algorithm

under the presence of the artifact using Tape 105. Fig. 10(a) and

(b) demonstrates the handling of large P or T waves and irregular

ECG signals, respectively. From all examples, it can be seen that

the proposed system correctly detects the QRS complexes of the

ECG signal, even under the presence of baseline drift, severe

noise, large P or T waves, and irregular ECG waveform.
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Fig. 10. Detection of the QRS using MIT-BIH Arrhythmia Database: (a) Tape
117: Large P or T waves, (b) Tape 200: Irregular ECG waveform.

In order to evaluate the performance of the QRS-detection

algorithm, the numbers of failings to detect an R-peak (false

negative or FN) and false beat detection (false positive or FP)

are calculated for all 48 tapes under investigation using the

standard of [27]. The results are reported in Table I. Using

these values, three other parameters of sensitivity (Se), positive

prediction (+P ), and detection error rate (DER) are calculated

and reported, which are defined as follows:

Se =
TP

TP + FN
(7)

+P =
TP

TP + FP
(8)

DER =
FP + FN

Total Beat
(9)

in which true positive (TP) means the number of truly detected

beats [27]. Based on the results of Table I, a detection error

of 1.71% is obtained against the recordings of the MIT-BIH

Arrhythmia Database. This performance is comparable to the

current QRS-detection algorithms, all achieved at very large

amount of sampled data, using complicated pre/post ADC fil-

tering and complicated detection algorithms.

As it can be seen in Table I, there are just a few tapes (such

as 203, 207, 213, and 222) in which almost large values are ob-

tained for FN and/or FP characteristics. As shown in Fig. 11(a),

Tape 203 suffers from high-amplitude, high-frequency noise.

Therefore, as no filtering is used in the system and all the noises

cannot be removed with the selected value of k, some noises are

detected as beat. Moreover, detecting a noise signal as a beat

just before an actual beat signal, causes missing the actual beat

because of the period constraint and so couples of FP and FN

are created. The constant value of k is tuned to reach the best

result over the entire database, which also contains some very

low-amplitude signals such as Tapes 222 and 232. Therefore,

the value of k cannot be increased. This issue can be resolved

TABLE I

PERFORMANCE EVALUATION OF THE SYSTEM BY USING THE MIT-BIH
ARRHYTHMIA DATABASE

by filtering the input signal or tuning the value of k based on the

amplitude of the input signal.

In just three specific parts of Tape 207, a part of which is

shown in Fig. 11(b), the input signal is messy and contains ab-

normal beats with large duration. It seems that for such a signal,

the value of TH2 should be updated at these specific parts of
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Fig. 11. Detection of the QRS using MIT-BIH Arrhythmia Database: (a) Tape
203: sever noise results in couples of FP and FN, (b) Tape 207: missing beats
due to messy input signal and abnormal beats with large duration, (c) Tape 213:
missing beats due to abnormal beats with large duration, and (d) Tape 222:
missing beats due to the lack of enough samples.

the signal. There are similar situations in some specific parts of

Tape 213, which is shown in Fig. 11(c). Such a situation in

which a couple of beats are missed due to thresholds’ mis-

alignment, can be resolved by using a conventional search-back

technique [26], at the expence of more complexity.

The other factor that affects the performance of the proposed

algorithm is large variations in signal amplitude, e.g., from a

quarter of the full-scale to the full-scale. Actually the amplitude

values of 97.9% of tapes are less than 80% of the full-scale

range. Among them, about 50% are less than 50% of the full-

scale range. There are also some signals such as Tapes 222 and

232, the amplitude values are just around a quarter of the full-

scale range. Since the LC-ADC specifications (M and k) are

supposed to be fixed and tuned for best performance over the

TABLE II

COMPARISON OF THE PROPOSED ALGORITHM WITH ONE USED IN [8]

entire database, low amplitude means less samples are taken

by the ADC. An example of such case is shown in Fig. 11(d)

for Tape 222. Better results can be obtained if the amplitude of

the input signals are tuned by using some kind of variable-gain

amplifier, before applying to the ADC or using small values of

k in the case of low-amplitude input signals. For example if the

amplitude of the Tape 222 is multiplied by 1.5 before applying

to the LC-ADC, the DER reduces from 8.1% to 2% for this tape.

It is possible to further improve the accuracy, but it requires

additional circuits to adaptively adjust other parameters such

as k and W , utilizing a search-back technique to recover the

missed beats, or using sophisticated adaptive thresholding. All

of them are at the expenses of higher complexity, power con-

sumption and larger area. Since our target is for QRS detection

in self-powered wearable device, the proposed algorithm strikes

a balance between power and performance.

V. PERFORMANCE COMPARISON

In comparison to existing QRS-detection algorithms, the pro-

posed one requires much less power. For a 7 bit LC-ADC and

a gap of 4 LSB between the in-process quantization levels,

the average sampling frequency is less than 67 Hz. By reduc-

ing the average sampling frequency, the activity of the system

is minimized resulting significant reduction in dynamic power

compared to the Nyquist sampling systems. In addition, as it is

obvious from the algorithm operation, all the processing except

the comparison of the two-bit data value with “00” and “11”

and the timer operation, is done after a peak is detected. This

reduces the processing rate from 67 Hz to less than 5 Hz, which

is the average number of peaks per unit of time. In most of the

conventional derivative-based algorithms, all of the subtractions

and additions are performed for each sample and so the process-

ing rate for these parts is equal to the sampling rate. Also as just

6 samples are needed for the detection, the memory require-

ment is lowest among all algorithms. Finally, the processing

blocks involve only shift registers, adders, and comparators. No

complex processing blocks such as multipliers are required. All

these could lead to an ultra-low-power implementation of the

proposed sampling-and-processing QRS-detection system. This

is in contrast to many reported high-accuracy QRS-detection

algorithms that utilize power-hungry complicated processing

circuitries and abundant memory capacity [28], [29].

Although level-crossing sampling is used in [8] for the QRS-

detection application, the LC-ADC in [8] does not utilize the

increased value of k. Hence in [8] an analog filter is assumed to

be employed before applying the signal to the ADC. Also adap-

tive thresholding is utilized in [8] in order to extract the critical

features from the input signal, which may increase the power

consumption in the implementation. In the proposed method, the
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TABLE III

PERFORMANCE COMPARISON WITH OTHER QRS-DETECTION PROCESSORS

filtering function is embedded in detection process, which elimi-

nates the use of extra filter for pre-processing. Also the proposed

algorithm is simple in implementation and achieves acceptable

performance over the entire MIT-BIH Arrhythmia Database.

Table II shows the comparison of the proposed duration-based

algorithm with the conventional amplitude-thresholding algo-

rithm [8]. It can be seen that the proposed duration-based

algorithm improves the detection performance for some of

tapes.

To illustrate the low-power feature of the proposed algorithm,

the proposed QRS detector including a 7-bit LC-ADC and the

proposed duration-based QRS-detection algorithm was imple-

mented in a 0.13 µm CMOS technology. The Synopsys Design

Compiler is used for the synthesis of the LC-ADC and proces-

sor logics as well as power estimation. ECG signals from the

MIT-BIH Arrhythmia Database are used as a test bench for

generating switching activities in power estimation. The logic

occupied area has been estimated using SoC Encounter. Simula-

tions show that using a 5 kHz clock signal for the LC-ADC timer,

and with a 1.2-V supply voltage, the LC-ADC and the processor

consume 175 and 447 nW, respectively. The power consumption

is dominated by leakage power, which can be further reduced by

using low-power libraries. Without applying any low-power

techniques, the power consumption of proposed system is much

lower than conventional synchronous solutions, which are com-

pared in Table III. Low power consumption and small area

occupation of the proposed QRS-detection methodology make

it suitable for body-area-network devices.

VI. CONCLUSION

A power-efficient asynchronous analog-to-information con-

version system for QRS-detection application has been pre-

sented that contains a level-crossing ADC and a novel QRS-

detection algorithm. It is shown that by reducing the processing

rate to less than 5 Hz and using a few numbers of samples to

make the decision, the system can be implemented with less

complexity and less power consumption compared to the con-

ventional regular-sampling synchronous systems. The system

performance has been evaluated using the MIT-BIH Arrhythmia

Database with a sensitivity of 98.89% and a positive prediction

of 99.4%, without any filtering requirement. The performance

of the proposed algorithm might be enhanced by applying tech-

niques such as search-back and adaptive thresholding, at the

cost of more power consumption.
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