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Abstract

A level set algorithm for tracking discontinuities in hyperbolic con-
servation laws is presented. The algorithm uses a simple finite differ-
ence approach, analogous to the method of lines scheme presented in
[20]. The zero of a level set function is used to specify the location
of the discontinuity. Since a level set function is used to describe the
front location, no extra data structures are needed to keep track of the
location of the discontinuity. Also, two solution states are used at all
computational nodes, one corresponding to the “real” state, and one
corresponding to a “ghost node” state, analogous to the “Ghost Fluid
Method” of [6]. High order pointwise convergence is demonstrated for
linear and nonlinear conservation laws, even at discontinuities and in
multiple dimensions. The solutions are compared to standard high
order shock capturing schemes. This paper focuses on scalar conser-
vation laws. Level set tracking for systems of conservation laws in
multi-dimensions will be presented in future work [2].
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1 Introduction

While high order shock capturing schemes have proven to be invaluable tools
in solving hyperbolic conservation laws, they generally do not converge at
high order in the presence of discontinuities. Typically, there will be a few
“intermediate” points within a numerical shock profile. The state at these
“intermediate” points are in error by an O(1) amount, causing L1 conver-
gence to be at best first order accurate, and L∞ convergence to be zeroth
order accurate. These errors are even worse in the case of a linear discon-
tinuity (usually less than first order in the L1 norm), since the the number
of intermediate points typically grows with time (an exception would be a
scheme that employs artificial compression, for example [23]).

For scalar equations, high order rates of convergence can be achieved
if one measures convergence at a finite distance away from the location of
discontinuities, for examples see [20] [14]. This is due to the fact that the
characteristics of a scalar hyperbolic equation will either run in parallel to
the discontinuity (linear) or travel into the discontinuity (nonlinear). So, it
is expected that O(1) errors near a discontinuity will not effect the solution
a finite distance away from the discontinuity under mesh refinement.

For nonlinear systems of conservation laws, there will be information that
passes through a shock wave, and typically there will be a loss of high order
convergence, even away from discontinuities. These errors also show up as
“noise” in the non-shock characteristic fields. This is observed in slowly
moving shock waves [18] [17] [1]. This “noise” will typically limit the rate of
convergence, even a finite distance away from shock waves. As pointed out
in [1], there may be no way of eliminating this noise without using subcell
resolution or tracking [3] [12] [7].

This paper is devoted to presenting a level set technique [15] for tracking
linear and nonlinear discontinuities for scalar conservation laws. The algo-
rithm is based on a method of lines, finite difference framework. Since a level
set formulation is used to denote the location of the discontinuity, there is no
extra front logic required. All variables are located numerically on a uniform
Cartesian grid, and are updated with standard method of lines, essentially
non-oscillatory (ENO) schemes.

The O(1) errors introduced by most schemes can be attributed to inter-
polating across a discontinuity. It will be shown that the present algorithm
is similar to Harten’s subcell resolution technique [7], in that this algorithm
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does not interpolate across a discontinuity, and the difference algorithm al-
ways “sees” a continuous solution, even near discontinuities. Harten achieves
this by replacing a standard interpolation scheme, in cells that contain a dis-
continuity, with one that extrapolates in a conservative manner from smooth
regions of the flow. Although the subcell method works quite well in one
dimension, there seems to be no easy way to extend it to multidimensional
problems, or to problems involving nonlinear discontinuities (shocks) [20].
There are four main differences between Harten’s method and the present
work: 1) Linear and nonlinear discontinuities can be treated, 2) Multidimen-
sional problems are relatively straightforward, 3) Conservation is achieved
under mesh refinement. The scheme has conservation errors of the same or-
der as the truncation errors, but still converges to the proper weak solution.
4) The zero of a level set function is used to specify the location of the dis-
continuity, thus one must know the initial location of any discontinuities to
initialize the level set function; no discontinuity detectors are used, and any
shocks that form later in time, away from the zero of the level set function,
will be captured.

The outline of the paper is as follows. The mathematical formulation is
presented in Section 2. Section 3 describes the fifth order numerical imple-
mentation. In Section 4, examples are presented to demonstrate the high
rates of convergence that are achieved by the level set tracking method, even
near discontinuities. And finally, Section 5 discusses future aspects of this
method with respect to multidimensional systems of conservation laws.

2 Mathematical Formulation

2.1 Shock jump condition

Here, we present the mathematical formulation of the level set tracking
method for scalar conservation laws. We wish to solve the scalar conser-
vation law

u,t +f(u),x = 0. (1)

where ,t and ,x denote partial derivatives with respect to x and t. Equation
(1) is hyperbolic, and admits discontinuous solutions. Depending on the
form of f(u), these discontinuities may be linear or nonlinear. Of particular
interest is the formulation of a numerical method that treats the propagation
of these discontinuities accurately. Shock waves, where u is discontinuous,
are of greatest importance. Other discontinuities, such as derivatives of u
in the case of rarefaction corners, are also important, but shock capturing
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schemes already typically converge at second order in the L1 norm and first
order in the L∞ norm in these cases (an exception would be the creation of
a self similar rarefaction wave, see [4] [19]). Here, a method for dealing with
linear and nonlinear discontinuities in u is presented.

It is well known that a shock will travel at a speed that depends, in
general, on the value of u on both sides of the discontinuity as well as the
flux function, f(u). For a scalar conservation law, the shock speed is given
by:

s =
[f(u)]

[u]
=
f(ur)− f(ul)

ur − ul
, (2)

where ur is the value of u just to the right of the shock wave, and ul is
the value of u just to the left of the shock. While equation (2) guarantees
conservation, it doesn’t necessarily guarantee that the weak solution will be
the proper viscosity limiting solution. For the solution to be a shock wave,
the following entropy condition must also be satisfied:

f ′(ul) ≥ s ≥ f ′(ur) (3)

Note, the standard entropy condition, f ′(ul) > s > f ′(ur), doesn’t admit
discontinuities in linear equations, whereas equation (3) does, see [11]. If
equation (3) is not satisfied, the solution will be a rarefaction wave. Again,
the focus of this paper is to deal with shock waves, since they introduce the
largest numerical errors. Nonconvex flux functions have a slightly more com-
plicated entropy condition, since both shocks and rarefactions can originate
from a single discontinuity, see [11] and the references therein. Issues relating
to nonconvex flux functions are not addressed here.

2.2 Representation

The key idea to avoiding discretizing across discontinuities is to have two
solution states, u1 and u2, at all locations, each of which is continuous across
the discontinuity. Note that this approach is similar to the “Ghost Fluid
Method” of [6], where a level set function, ψ, is used to determine the location
of the discontinuity. The real solution state at a point is selected to be u1 or
u2, depending on the sign of the level set function at that location.

Denoting the real solution state as u, we have

u =
{
u1, if ψ > 0
u2, if ψ ≤ 0

(4)

and ψ is the continuous level set function, whose zero is located at the dis-
continuity. The ghost state, ug, is given by
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ug =
{
u1, if ψ ≤ 0
u2, if ψ > 0

(5)

Since this algorithm works with the variables u1, u2 and ψ, and never
uses u directly, all variables are typically continuous. To make this clear,
consider representing the following discontinuous function:

u =
{

cos(x), if x ≤ 0
sin(x), if x > 0

(6)

This can be represented by the following u1, u2 and ψ:

u1 = sin(x) (7)

u2 = cos(x) (8)

ψ = x (9)

Importantly, even though u is discontinuous, u1, u2 and ψ are all continuous.
Clearly, discretizing continuous functions will yield higher order convergence
than using the discontinuous function directly.

2.3 Solution

Here, we describe how to solve equation (1) using u1, u2 and ψ. For initial
conditions, define u1, u2 and ψ such that equation (4) is satisfied at the
initial time. Since u1 and u2 can take on any value for ψ ≤ 0 and ψ > 0
respectively, and still satisfy equation equation (4), this representation is
not unique. It will be advantageous to extend u1 and u2 smoothly into
their respective “ghost node regions.” The nonuniqueness also extends to the
level set function. Any level set function, ψ, whose zero corresponds to the
discontinuity is adequate. Here, the signed distance function is usually used
to initialize ψ(t = 0).

Clearly, when ψ > 0, we need to solve

u1,t +f(u1),x = 0, (10)

since u = u1 when ψ > 0. Likewise, when ψ ≤ 0, we need to solve:

u2,t +f(u2),x = 0. (11)

For smoothness, it is desirable to solve equations (10) and (11) every-
where. But, since u2 (u1) will be considered a shocked state of u1 (u2) when
ψ > 0 (ψ ≤ 0), we have to check to see if u2 (u1) satisfies the shock entropy
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condition equation (3). Appropriate left and right states in the shock entropy
condition can be cast in terms of u1, u2 and ψ by:

ul =
{
u1, if ψ,x ≤ 0
u2, if ψ,x > 0

(12)

ur =
{
u1, if ψ,x > 0
u2, if ψ,x ≤ 0

(13)

And the shock entropy condition can be recast (for a convex flux function)
as:

f ′(ul) ≥ f ′(ur) (14)

If ψ > 0 (ψ ≤ 0) and the state u2 (u1) does not satisfy the shock entropy
condition equation (14), we set u2 = u1 (u1 = u2). This will only affect the
smoothness of u1 or u2 in their ghost node states, and will locally reduce to a
shock capturing scheme. This will only affect the accuracy of solution when
an initial discontinuity will form a self-similar rarefaction, and not a shock.

Once entropy satisfying states u1 and u2 have been given, we define the
shock speed by equation (2). This shock speed function, s, will be determined
everywhere, and this speed is used in the level set equation to propagate the
level set function, ψ:

ψ,t +sψ,x = 0. (15)

Importantly, at ψ = 0, s will be the proper shock speed for the discontinuity
in u. Also, if u1 and u2 are both smooth functions near ψ = 0, then s will
also be smooth. This is important numerically, since accuracy will be lost if
s is not smooth near ψ = 0.

So, in summary, we initialize u1 and u2 with smooth functions, and set ψ
to be the signed distance function from the discontinuity location (or some
other smooth function whose zero corresponds to the initial location of the
discontinuity). This satisfies equation (4) at the initial time. Then, making
sure that the ghost node states satisfy the shock entropy condition (for all
time), solve equations (10), (11) and (15) everywhere. The real solution, u,
can be recovered easily by using equation (4) anytime the solution state is
required.

2.4 Justification

Clearly, the algorithm should work for a linear problem, where the charac-
teristics are parallel to any discontinuity, and are also state independent. It
is not obvious that the method will work for nonlinear problems, where the
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shock speed is determined by both states, u1 and u2. In particular, how does
the algorithm prevent seemingly arbitrary initial conditions in the ghost state
from polluting the real state? The answer lies in applying the shock entropy
condition. We consider specific examples next. The arguments presented
here are not formal proofs, but simple reasons why the method should work.

Consider equation (1) with a convex flux function, where f ′(u) is a mono-
tonically increasing function of u. Also, take ψ(x) to be a decreasing function
of x. Assume that a single discontinuity exists at the initial time. Therefore,
to the left of ψ = 0, u = u1, and to the right of ψ = 0, u = u2. So, there
exists a ghost state for u1 to the right of ψ = 0, and a ghost state for u2

to the left of ψ = 0. In particular, we want to see if it is possible to pick a
ghost node state that will yield a spurious solution. Since, for this example,
we have ψ,x< 0, we have the following shock entropy condition to the right
of ψ = 0:

u1 ≥ u2 (16)

And, to the left of ψ = 0 we have:

u2 ≤ u1 (17)

Clearly, when u1 = u2 the problem reduces back to the shock capturing
algorithm, and it is expected to achieve the proper solution. Furthermore,
if u1 > u2 for ψ < 0, then any disturbance in the ghost state, u1, will travel
away from the discontinuity faster than the real state, u2. The analogous
result holds for ψ > 0. Therefore, the solution will not depend on what
function is given in the ghost state, since that information will travel away
from the true discontinuity at least as fast the true characteristic. Again,
for numerical purposes, it is advantageous to extend the ghost state in a
continuous fashion, so as not to lose numerical accuracy.

At worst, the above algorithm will reduce to a standard shock capturing
algorithm. For example, examine what happens given the following initial
conditions: u1(x, t = 0) = 0, u2(x, t = 0) = 1 and ψ(x, t = 0) = −x (which
corresponds to u(x, t = 0) = H(x), where H is the Heaviside function, whose
solution will be a self similar rarefaction fan.) For this example, both the
u1 ghost state for ψ < 0 and the u2 ghost state for ψ > 0 don’t satisfy the
shock entropy condition, so they are initially set equal to each other in their
ghost node region, and therefore u1(x, t = 0) = u2(x, t = 0) = u(x, t = 0) =
H(x). Clearly, this will result in the same numerical solution as discretizing
u directly. If the ghost node states were not checked for entropy violation,
the solution will be a shock, which moves at a speed according to equation
(2), which satisfies conservation, but is an entropy violating solution.
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Another example would be: u(x, t = 0) = H(−x). Clearly, the real
solution is a shock moving at speed (f(1)−f(0)). If we take u1(x, t = 0) = 1,
u2(x, t = 0) = 0 and ψ(x, t = 0) = −x, then we obtain the proper solution.
But what happens if we modify the u1 ghost state? Let’s examine what
happens when u1(x > 0, t = 0) = −1. This still satisfies equation (4), but
doesn’t satisfy (14). The solution to u1 will have a shock traveling at speed
(f(1) − f(−1))/2 which, for a convex flux function, will be slower than the
true shock speed, (f(1) − f(0)). When this happens, information from the
ghost region of u1 will influence the solution, and the correct solution will
not be achieved. Again, projecting the ghost values into entropy satisfying
states seems to always give the proper viscosity limiting solution.

2.5 Extension to two dimensions

The above formulation extends easily to multidimensional problems. In par-
ticular, the scalar conservation law in two dimensions is:

u,t +f(u),x +g(u),y = 0. (18)

Again, equation (4) can be used to represent the solution. The states u1 and
u2 are evolved according to

u1,t +f(u1),x +g(u1),y = 0 (19)

u2,t +f(u2),x +g(u2),y = 0, (20)

and the level set function, ψ, according to

ψ,t +~s · ~∇ψ = 0, (21)

where

~s =
[f(u)]

[u]
ı̂+

[g(u)]

[u]
̂. (22)

Again, one needs to make sure that the ghost node state satisfies the
shock entropy condition. In multiple dimensions, for a convex flux function,
it is sufficient to check if the characteristics flow into the shock. In two
dimensions, the characteristic velocity is given by:

~c = f ′(u)̂ı+ g′(u)̂. (23)

Also, the orientation of a shock will be given by
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n̂ =
~∇ψ
|~∇ψ|

(24)

So, the characteristic speeds for the states u1 and u2 in the normal direction
are given by

c1 = n̂ · (f ′(u1)̂ı+ g′(u1)̂), (25)

c2 = n̂ · (f ′(u2)̂ı+ g′(u2)̂). (26)

For the states u1 and u2 to satisfy the shock entropy condition, the fol-
lowing must be true:

c2 ≥ c1 (27)

In one dimension, equation (27) is equivalent to equation (3).

3 Discretization

Here, one particular discretization is presented. Numerical results are given
in the next section. Recall that equations (10), (11), (15) along with the
shock entropy condition need be discretized. Notice equations (10) and (11)
are scalar conservation laws, equation (15) is a Hamilton-Jacobi-like partial
differential equation, and the entropy condition is an algebraic constraint on
the ghost state.

3.1 Grid

A uniform Cartesian grid is used to discretize the domain x ∈ (xmin, xmax),
with Nx + 1 equally spaced nodes. The numerical solution of u1 is denoted
by u1(i, n), where i is the spatial node number corresponding to the location
xi = xmin + i∆x, where ∆x = (xmax − xmin)/Nx. And n is the time level
corresponding to tn = n∆t, where ∆t = tfinal/Nt. The states u2 and ψ are
denoted similarly.

3.2 Time integration

An explicit method of lines approach is taken. The results presented here
use a third order TVD Runge-Kutta time integrator [20]. For example, the
solution to u1(i, n) will be advanced from t = tn to t = tn+1 via:
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u1(i, ∗) = u1(i, n) + ∆tL(u1(i, n))

u1(i, ∗∗) =
3

4
u1(i, n) +

1

4
∆tL(u1(i, ∗)) (28)

u1(i, n+ 1) =
1

3
u1(i, n) +

2

3
u1(i, ∗∗) +

2

3
∆tL(u1(i, ∗∗)).

Here, the ∗ and ∗∗ represent intermediate stages of the Runge-Kutta inte-
gration. The updates for u2 and ψ are similar. Note that the L() operator
corresponds to the spatial flux differences for u1 and u2, or derivatives of ψ.
These are described in the next section.

3.3 Spatial discretization

3.3.1 Project ghost nodes into entropy satisfying state

As described in section 2.3, it is necessary to make sure that the ghost node
state be an entropy satisfying state. This is done at the beginning of every
Runge-Kutta cycle. As stated in section 2.3, the ghost node state is only set
to the real state if equation (14) in one dimension, or (27) in two dimensions
is not satisfied. If the entropy condition is satisfied, then the ghost node
state is not modified. The entropy condition is only an algebraic constraint
on the ghost node state, but requires knowledge of ψ,x (and ψ,y in two
dimensions). These spatial derivatives are obtained by averaging the two
choices in equation (50)

3.3.2 Conservative discretization for u1 and u2

For L(u1(i, n)) and L(u2(i, n)) we use the fifth order weighted ENO (WENO)
scheme of [10], with a local Lax-Friedrichs solver. This scheme is a conserva-
tive flux difference method, which has been shown to be stable, and yield the
proper viscosity vanishing solution to equation (1). The operator L(u1(i, n))
is given by:

L(u1(i, n)) = −(f̂i+1/2 − f̂i−1/2)/∆x (29)

where f̂i+1/2 and f̂i−1/2 are numerical approximations to the flux function,
f(u). In particular, for the local Lax-Friedrichs scheme, we take

f̂i+1/2 = f̂+
i + f̂−i+1 (30)

where
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f̂+
i = WENO5(f+

i−2, f
+
i−1, f

+
i , f

+
i+1, f

+
i+2) (31)

f̂−i+1 = WENO5(f−i+3, f
−
i+2, f

−
i+1, f

−
i , f

−
i−1) (32)

and

f+
i =

1

2
(f(u1(i, n)) + αu1(i, n)) (33)

f−i =
1

2
(f(u1(i, n))− αu1(i, n)) (34)

and

α = max(|f ′(u1(i, n))|, |f ′(u1(i+ 1, n))|). (35)

The function WENO5(a, b, c, d, e) is defined next. First, define three
interpolated values:

q1 =
a

3
− 7b

6
+

11c

6
(36)

q2 = − b
6

+
5c

6
+
d

3
(37)

q3 =
c

3
+

5d

6
− e

6
(38)

and three indicators of smoothness:

IS1 = 13(a− 2b+ c)2 + 3(a− 4b+ 3c)2 (39)

IS2 = 13(b− 2c+ d)2 + 3(d− b)2 (40)

IS3 = 13(c− 2d+ e) + 3(3c− 4d+ e)2 (41)

and take

α1 =
1

(ε+ IS1)2
(42)

α2 =
6

(ε+ IS2)2
(43)

α3 =
3

(ε+ IS3)2
(44)
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and finally

WENO5(a, b, c, d, e) =
α1q1 + α2q2 + α3q3

α1 + α2 + α3

. (45)

In all computations presented here, ε = 10−6, as suggested in [14], [10] and
[9]. The operator for u2 is the same, with u2 replacing u1. Note, for the
linear advection equation, the local Lax-Friedrichs scheme is equivalent to
the standard upwind discretization.

3.3.3 Level set discretization

For the level set equation (15), we have the operator

L(ψ(i, n)) = −s(i, n)ψ̂,x (46)

Where s(i, n) is the shock speed and ψ̂,x is the numerical approximation
to ψ,x. First, the shock speed at each node location, s(i, n), is determined
from u1 and u2 as:

s(i, n) =
f(u1(i, n))− f(u2(i, n))

u1(i, n)− u2(i, n)
(47)

The ψ,x derivative is approximated using a fifth order WENO scheme for
Hamilton-Jacobi equations [9]. Define the first order difference operators:

D−i =
ψ(i, n)− ψ(i− 1, n)

∆x
(48)

D+
i =

ψ(i+ 1, n)− ψ(i, n)

∆x
. (49)

The numerical spatial derivative, ψ̂,x is then given by:

ψ̂,x =

{
WENO5(D−i−2, D

−
i−1, D

−
i , D

−
i+1, D

−
i+2), if s(i, n) ≥ 0

WENO5(D+
i+2, D

+
i+1, D

+
i , D

+
i−1, D

+
i−2), otherwise.

(50)

4 Examples

Here, we present solutions to various scalar hyperbolic conservation laws
using both the level set tracking algorithm and traditional shock capturing
algorithm. Notice that the discretization presented in section 3 will have a
truncation error of O(∆t3)+O(∆x5) in smooth regions. All computations
are performed with ∆t ∝ ∆x5/3, which effectively yields a truncation error of
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O(∆x5) in smooth regions. For all cases, the number of timesteps, Nt, and
number of spatial node, Nx, are noted in the Tables and Figures.

4.1 Linear Advection Equation

The algorithm presented in Sections 2 and 3 is tested on a standard test
problem [8] [7] [21]. The equation to be solved is the linear advection equa-
tion:

u,t +u,x = 0 (51)

with periodic boundary conditions at x = ±1 and subject to the initial
conditions:

u =



2(x+ 1)− 1
6

sin(3π(x+ 3
2
)), −1 < x < −1

2

−(x− 1
2
) sin(3

2
π(x− 1

2
)2), −1

2
< x < 1

6

sin(2π(1
2
− x)), 1

6
< x < 1

2

sin(2π(x− 1
2
)), 1

2
< x < 5

6

2(x− 1)− 1
6

sin(3π(x− 1
2
)), 5

6
< x < 1.

(52)

Notice that this initial condition has discontinuities at x = −1
2
, x = 1

6

and x = 5
6
. Also, there is a discontinuity in derivative at x = 1

2
, see Figure

1. This function is represented by equation (4) with

u1 =


2(x+ 1)− 1

6
sin(3π(x+ 3

2
)), −1 < x < −1

6

sin(2π(1
2
− x)), −1

6
< x < 2

3

2(x− 1)− 1
6

sin(3π(x− 1
2
)), 2

3
< x < 1,

(53)

u2 =


sin(2π(x− 1

2
)), −1 < x < −5

6

−(x− 1
2
) sin(3

2
π(x− 1

2
)2), −5

6
< x < 1

3

sin(2π(x− 1
2
)), 1

3
< x < 1,

(54)

ψ =



x+ 7
6
, −1 < x < −5

6

−x− 1
2
, −5

6
< x < −1

6

x− 1
6
, −1

6
< x < 1

3

−x+ 1
2
, 1

3
< x < 2

3

x− 5
6
, 2

3
< x < 1.

(55)

Although u1 and u2 are also discontinuous and ψ is discontinuous in deriva-
tive, they are all C∞ at the true discontinuity locations of u. And since most
shock capturing schemes will be convergent away from the discontinuities
(at least in a scalar problem), it is expected that using equation (4), and
operating on u1, u2 and ψ will be more accurate than discretizing u directly.
This is confirmed numerically. At t = 2 with Nt timesteps, the error in the
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Figure 1: Plot of initial conditions corresponding to equation (52).
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numerical solution using the discrete L1 and L∞ norms is measured. These
norms measure the pointwise convergence of the numerical solution to the
exact solution (all points in the numerical solution are included, not just the
points away from discontinuities). The errors are denoted by E1 and E∞, and
the order at which they converge are denoted by R1 and R∞, respectively.
Also, a subscript LST indicates the level set tracking algorithm, and SC
indicates the WENO5 shock capturing algorithm, see Table 1. Notice that
the level set tracking algorithm converges at fifth order in both the L1 and
L∞ norms. The standard shock capturing algorithm converges at roughly
5/6 order in the L1 norm. This is commensurate with the notion that a

captured linear discontinuity will smear at a rate proportional to N
1/(r+1)
t ,

where r is the order of the scheme [5]. The L∞ error for the capturing was
roughly constant, and equal to 1/2 the maximum jump in u, as expected.
Figure 2 shows the solution of the WENO5 shock capturing algorithm, and
Figure 3 shows the solution using the WENO5 level set tracking algorithm.
Notice that this is the roughly the same resolution used in [7], with compara-
ble results. Importantly, the level set tracking algorithm maintains a perfect
discontinuity in u, while achieving high order pointwise convergence.

TABLE 1: Numerical accuracy for 1D linear advection.
Nx Nt E1−LST R1−LST E∞−LST R∞−LST E1−SC R1−SC
61 75 7.24e-3 3.46e-2 2.37e-1
121 235 3.32e-4 4.52 1.64e-3 4.40 1.18e-1 1.01
241 740 1.04e-5 4.99 6.58e-5 4.64 6.31e-2 0.90
481 2340 2.91e-7 5.16 2.90e-6 4.51 3.47e-2 0.86
961 7425 9.58e-9 4.93 1.54e-7 4.23 1.93e-2 0.85
1921 23555 2.36e-10 5.34 3.51e-9 5.46 1.08e-2 0.84

4.2 Burgers’ Equation

Here, the level set tracking algorithm is tested on the nonlinear Burgers’
equation:

u,t +(
u2

2
),x = 0 (56)

with periodic boundary conditions at x = 0 and x = 1 subject to the initial
conditions:

u =

{
1
2
(1 + cos(2πx)), 1

3
< x < 2

3
1
2

+ sin(2πx), otherwise
(57)
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Figure 2: Plot of WENO5 shock capturing solution at t = 2 with Nx = 61,
¦, and exact solution, solid line.
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Figure 3: Plot of WENO5 level set tracking solution at t = 2 with Nx = 61,
¦, and exact solution, solid line.

18



-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Figure 4: Plot of initial conditions corresponding to equation (57).

Notice that this initial condition has discontinuities at x = 1
3

and x = 2
3
, see

Figure 4. This function is represented by equation (4) with

u1 =
1

2
+ sin(2πx), (58)

u2 =
1

2
(1 + cos(2πx)), (59)

ψ =

{
1
3
− x, 0 ≤ x < 1

2

x− 2
3
, 1

2
≤ x < 1

(60)

Again, u1 and u2 are also discontinuous and ψ is discontinuous in derivative,
but they are all C∞ at the true discontinuity locations of u. The L1 and
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L∞ errors and rates of convergence, R1 and R∞, are measured at t = 0.2.
These are measured by comparing with a numerical solution using twice as
fine of a grid, thus we measure the pointwise self convergence of the solution.
Fifth order convergence in both the L1 and L∞ norm is achieved for the level
set tracking algorithm, while first order is achieved in the L1 norm for the
capturing scheme, see Table 2. Line plots at t = 0.2 are shown for both the
capturing scheme, Fig. 5, and the level set tracking scheme, Fig. 6.

It is interesting to run the problem further in time, since at roughly
t ≈ 0.369 the two shocks collide. At this time, the ψ < 0 region disappears,
and the algorithm then captures the remaining shock. Even in this case, the
level set tracking scheme achieves the correct solution, but after t ≈ 0.369,
it reduces back to a capturing scheme. It would be interesting to see if using
two level sets, and three solution states could accurately track the merging
of two tracked shocks into one.

TABLE 2: Numerical accuracy for Burgers’ equation.
Nx Nt E1−LST R1−LST E∞−LST R∞−LST E1−SC R1−SC
40 15 1.84e-4 1.09e-3 1.48e-2
80 50 8.16e-6 4.49 6.70e-5 4.03 7.84e-3 0.92
160 150 1.67e-7 5.61 9.15e-6 2.87 3.43e-3 1.19
320 480 9.40e-9 4.15 6.53e-7 3.81 1.47e-3 1.22
640 1525 2.56e-10 5.20 2.48e-8 4.72 7.63e-4 0.95
1280 4840 4.72e-12 5.76 2.70e-10 6.52 2.76e-4 1.47

4.3 Two Dimensional Linear Advection Equation

Here, a two dimensional test is conducted. The equation to be solved is the
two dimensional linear advection equation:

u,t +u,x +u,y = 0 (61)

with periodic boundary conditions at x = 0, x = 1, y = 0 and y = 1 and
subject to the initial conditions:

u =

{
cos(2πx) + cos(2πy) + 2, if ((x− 1/2)2 + (y − 1/2)2)1/2 < 1/3
cos(2πx) + cos(2πy)− 2, otherwise

(62)
Notice that this initial condition has a discontinuity along a circle of

radius, R = 1/3, whose center is located at (x, y) = (1/2, 1/2). This function
is represented by equation (4) with

u1 = cos(2πx) + cos(2πy) + 2 (63)
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Figure 5: Plot of WENO5 shock capturing solution at t = 0.2 with Nx = 40,
¦, and converged level set tracking solution (Nx = 2560), solid line.
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Figure 6: Plot of WENO5 level set tracking solution at t = 0.2 with Nx = 40,
¦, and converged level set tracking solution (Nx = 2560), solid line.
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u2 = cos(2πx) + cos(2πy)− 2 (64)

ψ =
1

3
− ((x− 1/2)2 + (y − 1/2)2)1/2 (65)

Since this problem is linear, the level set equation will become:

ψ,t +ψ,x +ψ,y = 0. (66)

And also, there is no need to check for an entropy satisfying ghost node
state. The y derivatives are calculated in an analogous fashion as the x
derivatives. At t = 1 with Nt timesteps, the error in the numerical solution
using the discrete L1 and L∞ norms is measured, see Table 3. Notice that
the level set tracking algorithm converges at fifth order in both the L1 and
L∞ norms. Again, for this linear problem, the standard shock capturing
algorithm converges at roughly 5/6 order in the L1 norm. Figure 7 shows a
surface plot of the solution of the WENO5 shock capturing algorithm, and
Figure 8 shows the solution using the WENO5 level set tracking algorithm.
Figure 9 show a line plot of the shock capturing solution at t = 1 at y = 1/2.
Figure 10 shows a line plot of the level set tracking solution at t = 1 at
y = 1/2.

TABLE 3: Numerical Accuracy for 2D linear advection.
Nx = Ny Nt E1−LST R1−LST E∞−LST R∞−LST E1−SC R1−SC
20 50 2.43e-3 5.99e-3 4.78e-1
40 160 7.50e-5 5.01 2.08e-4 4.85 2.70e-1 0.83
80 500 2.30e-6 5.03 6.59e-6 4.98 1.52e-1 0.82
160 1600 7.00e-8 5.04 2.05e-7 5.01 8.54e-2 0.83
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Figure 7: Surface plot of WENO5 shock capturing solution at t = 1 with
Nx = Ny = 40.
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Figure 8: Surface plot of WENO5 level set tracking solution at t = 1 with
Nx = Ny = 40.
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Figure 9: Plot of WENO5 shock capturing solution at y = 0.5, t = 1 with
Nx = Ny = 40, ¦, and exact solution, solid line.
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Figure 10: Plot of WENO5 level set tracking solution at y = 0.5, t = 1 with
Nx = Ny = 40, ¦, and exact solution, solid line.
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4.4 Two Dimensional Solid Body Rotation

Here, a non-constant coefficient two dimensional test is conducted. The
equation to be solved is the two dimensional linear advection equation, cor-
responding to solid body rotation:

u,t +(−2πyu),x +(2πxu),y = 0 (67)

subject to the initial conditions:

u =

{
1− y2 cos(2x), if ((x− 0.3)2 + (y − 0.3)2)1/2 < 1/3
0, otherwise

(68)

Numerically, linear extrapolation is used at all boundaries, x = −1, x = 1,
y = −1 and y = 1. Notice that this initial condition has a discontinuity along
a circle of radius, R = 1/3, whose center is located at (x, y) = (0.3, 0.3). This
function is represented by equation (4) with

u1 = 1− y2 cos(2x) (69)

u2 = 0 (70)

ψ =
1

3
− ((x− 0.3)2 + (y − 0.3)2)1/2 (71)

Since this problem is linear, the level set equation will become:

ψ,t−2πyψ,x +2πxψ,y = 0. (72)

Again, there is no need to check for an entropy satisfying ghost node state. At
t = 1 (1 full rotation) with Nt timesteps, the error in the numerical solution
using the discrete L1 and L∞ norms is measured, see Table 4. Notice that
the level set tracking algorithm converges at fifth order in both the L1 and
L∞ norms. Again, for this linear problem, the standard shock capturing
algorithm converges at roughly 5/6 order in the L1 norm. Figure 11 shows a
surface plot of the solution of the WENO5 shock capturing algorithm, and
Figure 12 shows the solution using the WENO5 level set tracking algorithm.
Figure 13 show a line plot of the shock capturing solution at t = 1 at x = 1/2.
Figure 14 shows a line plot of the level set tracking solution at t = 1 at
x = 1/2.
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Figure 11: Surface plot of WENO5 shock capturing solution at t = 1 with
Nx = Ny = 40.

TABLE 4: Numerical Accuracy for 2D solid body rotation.
Nx = Ny Nt E1−LST R1−LST E∞−LST R∞−LST E1−SC R1−SC
20 130 5.85e-4 4.13e-3 2.01e-1
40 415 2.00e-5 4.87 6.64e-4 2.64 1.09e-1 0.88
80 1310 2.15e-7 6.54 9.49e-6 6.13 6.20e-2 0.82
160 4160 7.56e-9 4.83 7.95e-7 3.58 3.53e-2 0.81
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Figure 12: Surface plot of WENO5 level set tracking solution at t = 1 with
Nx = Ny = 40.
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Figure 13: Plot of WENO5 shock capturing solution at x = 0.5, t = 1 with
Nx = Ny = 40, ¦, and exact solution, solid line.

31



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

Figure 14: Plot of WENO5 level set tracking solution at x = 0.5, t = 1 with
Nx = Ny = 40, ¦, and exact solution, solid line.
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4.5 Two Dimensional Burgers’ Equation

Here, a nonlinear two dimensional test is conducted. The equation to be
solved is the two dimensional Burgers’ equation:

u,t +(
u2

2
),x +(

u2

2
),y = 0, (73)

with periodic boundary conditions at x = 0, x = 1, y = 0 and y = 1, subject
to the initial conditions:

u =

{
1
2
(1 + cos(2π(x+ a))), if 1

3
< x+ a < 2

3
1
2

+ sin(2π(x+ a)), otherwise
(74)

where

a = 0.1 sin(2πy). (75)

Notice that this initial condition has discontinuities along the curves x =
1
3
− 0.1 sin(2πy) and x = 2

3
− 0.1 sin(2πy). See Figure 15.

This function is represented by equation (4) with

u1 =
1

2
+ sin(2π(x+ a)) (76)

u2 =
1

2
(1 + cos(2π(x+ a))) (77)

ψ =

{
1
3
− (x+ a), if x+ a < 1

2

x+ a− 2
3
, otherwise

(78)

At t = 0.1 with Nt timesteps, the error in the numerical solution using
the discrete L1 and L∞ norms is measured, see Table 5. Notice that the
level set tracking algorithm converges at fifth order in both the L1 and L∞
norms. Again, the standard shock capturing algorithm converges at first
order in the L1 norm. Figure 16 shows a surface plot of the solution of the
WENO5 shock capturing algorithm, and Figure 17 shows the solution using
the WENO5 level set tracking algorithm. Figure 18 show a line plot of the
shock capturing solution at t = 0.1 at y = 1/2. Figure 19 shows a line plot
of the level set tracking solution at t = 0.1 at y = 1/2.

TABLE 5: Numerical Accuracy for 2D Burgers’ equation.
Nx = Ny Nt E1−LST R1−LST E∞−LST R∞−LST E1−SC R1−SC
20 5 1.83e-3 8.15e-3 2.89e-2
40 15 1.77e-4 3.37 1.55e-3 2.39 1.36e-2 1.09
80 50 9.72e-6 4.18 1.43e-4 3.44 6.34e-3 1.10
160 150 1.73e-7 5.81 5.41e-6 4.72 3.08e-3 1.04
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Figure 15: Surface Plot of initial conditions corresponding to equation (74).
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Figure 16: Surface plot of WENO5 shock capturing solution at t = 0.1 with
Nx = Ny = 40.

Figure 17: Surface plot of WENO5 level set tracking solution at t = 0.1 with
Nx = Ny = 40.
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Figure 18: Plot of WENO5 shock capturing solution at y = 0.5, t = 0.1 with
Nx = Ny = 40, ¦, and converged level set tracking solution (Nx = Ny = 320),
solid line.

36



-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Figure 19: Plot of WENO5 level set tracking solution at y = 0.5, t = 0.1 with
Nx = Ny = 40, ¦, and converged level set tracking solution (Nx = Ny = 320),
solid line.
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5 Conclusions and Discussion

A simple level set algorithm for solving scalar hyperbolic conservation laws
is presented. For scalar problems, high rates of convergence are demon-
strated in linear and nonlinear problems, even near discontinuities and in
multi-dimensions. Note that this scheme takes roughly 3 times as many
numerical operations and memory as a standard capturing scheme, but the
benefit greatly outweighs any extra computational time or storage. Also, this
extrapolation free method can be applied to the original ghost fluid method
[6], by initially extrapolating the density, etc. in a smooth fashion, and only
projecting the ghost node states into the proper boundary condition states.
Note that one can also use this algorithm for tracking discontinuous deriva-
tives in Hamilton-Jacobi equations, with the modification that the “shock”
speed will be a function of the derivatives of the solution states, since it has
been shown in [15] and [16] that there is a relation between Hamilton-Jacobi
equations and scalar conservation laws.

Work is currently being done to track multi-dimensional shock fronts in
gas dynamics with a level set formulation. The largest difference is that in
a system, there are characteristics that pass through the shock front, and so
the boundary treatment must take this into account. Also, the two states will
not be symmetric, as in the scalar case; one state, say ~u2, will be considered
a shock state of the other, ~u1. A simple way to apply the appropriate ghost
region state for ~u2 is to project this ghost region state into an appropriate
shock state of the unshocked fluid, ~u1. This shock state is determined once
one has an appropriate shock speed. The shock speed can be determined from
a local Riemann problem. This can be determined exactly (eg. Godunov’s
method), or it can be determined from an approximate method (eg. Roe’s
method). The ghost region for ~u1 is not critical, since in the shock attached
reference frame, ~u1 is supersonic. Again, one must ensure that both ~u1 and
~u2 are entropy satisfying states in their respective ghost regions. Preliminary
results indicate that this method converges to the proper solution, with im-
proved convergence and accuracy. Figure (20) shows the density field for a
level set tracking algorithm, using a non-decomposition based Lax-Friedrichs
scheme [22], [13], with a shock speed given from a Roe averaged ū+ c̄, corre-
sponding to example 6 and Figure 14 (b) of [21]. Importantly, note there is
no “intermediate” shock points near the lead shock at x ≈ 2.4. Again, this
work will be investigated in greater detail elsewhere [2].
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Figure 20: Plot of WENO5 level set tracking solution at t = 1.8 with Nx =
Nt = 400, ¦, and converged level set tracking solution (Nx = Nt = 1600),
solid line.
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