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A LEVEL SET APPROACH
FOR COMPUTING DISCONTINUOUS SOLUTIONS

OF HAMILTON-JACOBI EQUATIONS

YEN-HSI RICHARD TSAI, YOSHIKAZU GIGA, AND STANLEY OSHER

Abstract. We introduce two types of finite difference methods to compute the
L-solution and the proper viscosity solution recently proposed by the second
author for semi-discontinuous solutions to a class of Hamilton-Jacobi equa-
tions. By regarding the graph of the solution as the zero level curve of a
continuous function in one dimension higher, we can treat the corresponding
level set equation using the viscosity theory introduced by Crandall and Lions.
However, we need to pay special attention both analytically and numerically
to prevent the zero level curve from overturning so that it can be interpreted
as the graph of a function. We demonstrate our Lax-Friedrichs type numeri-
cal methods for computing the L-solution using its original level set formula-
tion. In addition, we couple our numerical methods with a singular diffusive
term which is essential to computing solutions to a more general class of HJ
equations that includes conservation laws. With this singular viscosity, our
numerical methods do not require the divergence structure of equations and
do apply to more general equations developing shocks other than conservation
laws. These numerical methods are generalized to higher order accuracy using
weighted ENO local Lax-Friedrichs methods as developed recently by Jiang
and Peng. We verify that our numerical solutions approximate the proper vis-
cosity solutions obtained by the second author in a recent Hokkaido University

preprint. Finally, since the solution of scalar conservation law equations can
be constructed using existing numerical techniques, we use it to verify that
our numerical solution approximates the entropy solution.

1. Introduction

Nonlinear Hamilton-Jacobi equations arise in many different fields, including
mechanics, calculus of variations, geometric optics, control theory, and differential
games. Because of the nonlinearity, the Cauchy problems usually have nonclassical
solutions due to the crossing of characteristic curves.

For scalar equations of conservation law type, there is a well known theory re-
garding the existence and uniqueness of a weak solution, called an entropy solution,
using the special integral structure of the equation [23]. Advanced numerical meth-
ods, e.g., [15], [16], [30], [34], have been developed and widely used to compute
approximations that converge to the correct entropy solutions.
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Nevertheless, this notion of weak solution cannot be applied to many fully nonlin-
ear equations, e.g., the eikonal equation ut+ |∇u| = 0. In 1983, Crandall and Lions
[7] first introduced the notion of viscosity solution for this type of equations, based
on a maximum principle and the order-preserving property of parabolic equations.
In general, for any given Hamilton-Jacobi equation of the form

ut +H(x, t, u,Du) = 0,

where H is a continuous function from Ω×R+ × R× Rn, nondecreasing in u, and
Ω is an open subset of Rn, there exists a unique uniformly continuous viscosity
solution if the initial data is bounded and uniformly continuous.1 The continuity
of the solution can be understood intuitively from the 1D fact that “HJ equations
are the conservation laws integrated once.” The viscosity solution is sometimes
understood as the limit of the solutions to the equation with vanishing viscosity.

Correspondingly, Crandall and Lions in [6] proved the convergence of two ap-
proximations to the viscosity solution of equations whose Hamiltonians only depend
on Du. This was generalized by Souganidis to equations with variable coefficients
in [31]. Many sophisticated numerical methods have since been developed [21], [24],
[26], [27].

However, there are problems in control theory and differential games which de-
mand discontinuous solutions. The original viscosity theory does not apply to dis-
continuous initial data. The notion of semicontinuous viscosity solution has been
introduced first by Ishii [18, 20] using an extension of Perron’s method. Because of
the nonuniqueness in Ishii’s result, other notions of semicontinuous solutions were
proposed by various authors [2], [4], with different kinds of additional properties
imposed on the Hamiltonian. Some of these notions need serious restrictions on
the Hamiltonians, and others are implicit in the sense that the processes of tak-
ing supremum and infimum are involved. As a consequence, one cannot develop
numerical methods to construct approximations. For an overview of the viscosity
theory and applications, see [3] and [1].

Finally, for the class of equations with Hamiltonians H(x, u,Du) nondecreasing
in u, M.-H. Sato and the second author [14] introduced a new notion of semicontin-
uous solution. This notion of solution is defined by the evolution of the zero level
curve of the auxiliary level set equation which embeds the original HJ equation. It
is thus called the L-solution. In this article, we will devise a Lax-Friedrichs type
scheme to compute approximation of the L-solution in its original formulation (i.e.,
level set). We will also show that with suitable CFL condition, our schemes keep
the discrete version of an important property of this class of HJ equations.

When the Hamiltonian H(t, x, u,Du) is not nondecreasing in u, the solution may
develop shocks in finite time even if the initial data is continuous. Recently, a new
notion called the proper viscosity solution was introduced by the second author [13]
to track the whole evolution. This notion is consistent with the entropy solution
when the equation is a conservation law. In order to approximate the proper
viscosity solution of a class of more general HJ equations, we introduce a singular
diffusive term in the vertical direction to the auxiliary level set equations so that the
level curves will not overturn. In the case of conservation laws, the proper viscosity
solution is consistent with the entropy solution. We will show numerically that the
shock solutions we obtain from the regularized level set equations satisfy the “equal

1Notice that the conservation laws do not fall into this category because the corresponding H
might not be monotone in u; e.g., shocks may develop from smooth initial data.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEVEL SETS FOR HJ DISCONTINUOUS SOLUTIONS 161

area” entropy condition, and thus demonstrate the validity of our regularization
terms. We emphasize that, based on our numerical results, the global property of
our singular diffusion term regularizes our nonconservative level set equations so
that the entropy condition is satisfied during the time iterations.

We remark that a simple monotone Lax-Friedrichs scheme seems to produce con-
vergent approximations of the L-solution for the first class of HJ equations in their
original form, even though the scheme does not follow the original definition of the
L-solution. However, for the second class of equations, it is likely that the numeri-
cal approximations obtained this way converge to the wrong weak solution. This is
a well known fact for monotone schemes for conservation laws in nonconservative
form. In contrast, our numerical approximations for the corresponding “nonconser-
vative” level set equations appear to converge to the right weak solution; i.e., the
proper viscosity solution and, in case of conservation laws, the entropy solution.

In the following sections, we first review briefly the previous work on using level
sets as a tool to analyze and compute solutions of given PDEs. We then derive the
level set equation from a given HJ equation. We then devise numerical methods
for the level set equations for the computation of the solutions of the HJ equations
according to the behavior of Hu. We extend each type of our numerical schemes to
higher order accuracy using the WENO schemes devised in [21].

1.1. Analysis by the level set function. Osher [25] rediscovered a method of
Jacobi [5] to study the Cauchy problem for general first order nonlinear equations
through the aid of the level set equations. In that paper, Osher derived from the
general first order equation

F (x, y, u, ux, uy) = 0

a time-dependent Hamilton-Jacobi equation

φt +H(x, y, t, φx, φy) = 0

and proved that the zero level set of its solution at time t is the set {(x, y) : u(x, y) =
t}. With continuous initial values, the viscosity solution theory gives the existence
and uniqueness of the solution to the time-dependent Hamilton-Jacobi equations
provided that H does not change sign.

In [8], Evans used the level set method described in [25] to obtain the level surface
heat equation. He gave the geometric interpretation of the instant “unfolding” of
multi-valued initial data of the solution of the linear heat equation. By considering
the viscous Burgers’ equation

ut + uux = εuxx, ε > 0,

as a lower order perturbation to the heat equation, Evans provided further analysis
and a geometrical explanation as to how the term εuxx keeps the solution from
becoming multi-valued.

Recently, M.-H. Sato and the second author proposed to characterize the semi-
continuous solutions of HJ equations using a similar approach. In their paper [14],
they define the L-solution and prove its existence and uniqueness with a class of
Hamiltonians. We remark that the L-solution is equivalent to the conventional
viscosity solution if the hypotheses are identical.

The idea is to represent the “graph” of a semicontinuous function u(x) as the
zero level set of a function φ : R2 → R1 with the requirement that every level set
of φ is the graph of some function of x. More precisely, we define the subgraph
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of a function u be be sg(u) := {(x, y) ∈ R2 : y ≤ u(x)} and the curve Γ(t) to be
the upper boundary of sg(u). For smooth functions u(x, t), Γ(t) is simply the graph
of u at time t. The numerical construction of such functions is described in the
appendix.

Consider the general first order equation

ut +H(t, x, u, ux) = 0,(1.1)

where u is a function from R → R. Embed Γ(t) as the zero level set of a function
φ : R2 × R+ → R; i.e., φ(t, x, y) = 0 for all (x, y) ∈ Γ(t) for each t ∈ R+. Taking
partial derivatives, we have

0 =
d

dt
φ(t, x, y) =

d

dt
φ(t, x, u(t, x)) = φt + φy · ut;

0 =
d

dx
φ(t, x, y) =

d

dx
φ(x, u(t, x)) = φx + φy · ux.

Therefore, we have formally ut = −φt/φy and ux = −φx/φy, and equation (1.1)
becomes

φt − φyH
(
t, x, y,−φx

φy

)
= 0.(1.2)

Under the hypotheses described in the next section, equation (1.2), together with a
Lipschitz continuous initial function φ0 which embeds the initial data u0, is in the
class of HJ equations that is known to have continuous solution φ(x, y, t).

However, in order to interpret the zero level set Γ(t) of φ(x, y, t) as the evolu-
tion of the “graph” of u(x, t), Γ(t) has to be a one-to-one mapping of the vari-
able x. We will call this requirement “nonoverturning”. If φ(x, y, 0) is set up with
φy(x, y, 0) ≥ 0 everywhere, the nonoverturning requirement is equivalent to the
condition φy(x, y, t) ≥ 0 for all t ≥ 0. In devising numerical approximations, it is
important to make sure that this condition is true discretely.

In the following sections, we will use Hu to denote the partial derivative of
H(x, u, ux) with respect to u for the original HJ equations. Finally, the level set
function φ is set up to be nondecreasing in y initially in the examples of this paper.

2. Model equations

We first consider the scalar 1D equation

ut +H(x, u, ux) = 0

with the Hamiltonian H(x, u, ux) satisfying the following properties:
1. H is Lipschitz in all its arguments.
2. limλ→0 λH(x, u, p/λ) exists.

In addition, we are concerned with the following two classes of equations: 1) equa-
tions with Hu ≥ 0 but with discontinuous initial data; 2) equations such as conser-
vation laws that do not belong in the first class.

Let us consider the following two model equations, both of which can be in either
the first or the second class depending on the parameters:
• Equations that contains both terms from conservation laws and fully nonlinear

first order terms:

ut + uux + a u|ux| = 0, a ∈ R.(2.1)
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The associated level set equation is

φt − y · (a sign(φy) |φx| − φx) = 0.(2.2)

We can see that the value of a determines an important property of Hu : for
a ≥ 1, Hu will be nondecreasing. Thus the viscosity theory applies if the initial
data is uniformly continuous, and we know the solution will be uniformly
continuous. This falls into the first class of equations. For 0 ≤ |a| < 1, Hu

changes signs according to the value of ux. Then equation (2.1) belong to the
second class. Notice that if a = 0, we have the inviscid Burgers’ equation.
• Equations that prescribe the normal motion of the graph of u:

ut − v(u)
√

1 + u2
x = 0.(2.3)

The corresponding level set equation is

φt + sign(φy) v(y)|∇φ| = 0.(2.4)

The function v is the normal velocity of the graph of u, or the level sets of φ.
If v ever decreases, then Hu ≤ 0 and the equation fails to be in the first class.

The role of sign(φy). Let us look at the characteristics of equation (2.4) more
carefully. The term sign(φy) flips the direction of the characteristics whenever φy
changes signs. If the characteristics on the upper part of the jump travel faster than
those on the lower part (i.e., v(y) is increasing), the overturning will develop. With
the sign(φy) term, whenever overturning just happens, the direction of a character-
istic will be reversed, making it travel backward and thus eliminate the overturning.
However, this fact is not directly suitable for numerical implementation.

2.1. Geometrical explanation of the nonoverturning conditions. As men-
tioned earlier, we need to pay special attention in order to prevent the overturning of
the level curves of φ. One equivalent criterion is to demand the minimum principle:
φy(x, y, t) ≥ 0 for t ≥ 0.

In light of the level set equation (2.4), we have a more geometrical requirement on
the speed function v. By the method of characteristics, we know that v(y) prescribes
the normal velocity of the level sets of φ. On the vertical segments of the level sets,
which correspond to jumps in u, v(y) prescribes the horizontal velocity according
to y. Overturning will happen if v(y) is increasing, since the upper part of the jump
of u moves faster than the lower part. See Figure 1.

Consider the primitive function of v:

V (y) =
∫
v(s)ds.

The nonincreasing condition of v translates to the concavity of V ! This fact reminds
us of one of the entropy conditions for conservation laws with nonconcave flux
function. It says that the entropy solution of a conservation law with nonconvex
flux f is the classical solution of the conservation law with the flux f∗, where f∗ is
the minimal concavification of f over the increasing jump interval. This, in turn,
provides a hint on the regularization of HJ equations (2.4)—we need to impose a
regularization that concavifies the primitive function on the vertical segments of the
level sets and nowhere else. We shall demonstrate numerically that our proposed
singular diffusive regularization term does exactly that in a later part of this article.
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Figure 1. Overturning is caused by the normal velocity, which is
increasing in the y-direction.
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Figure 2. The concavification of the flux in the Buckley-Leverett equation.

2.2. Equations with Hamiltonian Hu ≥ 0. We first consider the equations for
which Hu ≥ 0, and the corresponding level set equation. Equation (1.2) can be
simplified to

φt − H̃(t, x, y, φx, φy) = 0.(2.5)
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For example, with the homogeneity hypothesis, the factor φy in (1.2) can be brought
into the original Hamiltonian H(x, y, φx/φy), which then transforms into a new
Hamiltonian H̃(x, y, φx, φy). The reduction from equation (2.3) to equation (2.4)
is one such example.

The minimum principle. The assumption that the Hamiltonian is nondecreasing in
u has an important consequence. We present here an argument about this minimum
principle based on an argument in [14]. Consider φh(x, y, t) := φ(x, y+ h, t), where
h > 0 and φ(x, y, t) is the uniformly continuous viscosity solution of equation (2.5)
with uniformly continuous initial data φ0(x, y). By definition, φh is the viscosity
solution of

φt − H̃(t, x, y + h, φx, φy) = 0

with initial data φh0 (x, y). Let v be a C1 function; then at any local minimum of
φh − v,

vt − H̃(t, x, y + h, vx, vy) ≥ 0.

It is clear that if Hy ≥ 0, then H̃y ≥ 0, where H̃ is the Hamiltonian of the corre-
sponding level set equation. Consequently, we have

vt − H̃(t, x, y, vx, vy) ≥ vt − H̃(t, x, y + h, vx, vy) ≥ 0

at any local minimum of φh − v for any C1 test function v. Thus φh is a viscosity
supersolution of equation (2.5).

If φh(x, y, 0) − φ(x, y, 0) ≥ 0 for all x and y, then φh(x, t) ≥ φ(x, t) ≥ 0 by
the comparison principle (the reader is referred to [11] and [19] for the proof).
This basically says that if φy(x, y, t = 0) ≥ 0 initially, then φy(x, y, t) ≥ 0 for all
time! It also implies that {φ = c} will remain as a graph throughout the evolution.
Therefore, we can remove the sign(φy) term from the derived level set equation
(1.2) of this class of equations.

Without causing confusion, we shall continue using the notation H(x, y, φx, φy)
in place of H̃(x, y, φx, φy) in the following parts of this article.

The Lax-Friedrichs schemes for the level set equation. Following the methods orig-
inally conceived for HJ equations φt + H(Dφ) = 0 in [27], see also [26], and sup-
pressing the dependence of H on x and y, we use the Local Lax-Friedrichs (LLF)
flux

ĤLLF (p+, p−, q+, q−) = H

(
p+ + p−

2
,
q+ + q−

2

)
−1

2
αx(p+, p−)(p+ − p−)− 1

2
αy(q+, q−)(q+ − q−),

for the approximation of H. In the above scheme,

αx(p+, p−) = max
p∈I((p+,p−),C≤q≤D

|Hφx(p, q)|,

αy(q+, q−) = max
q∈I((q+,q−),A≤p≤B

|Hφy(p, q)|,

I(a, b) = [min(a, b),max(a, b)],

and p±, q± are the forward and backward approximations of φx and φy, respectively.
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We can use a simple forward Euler time discretization and obtain the fully dis-
cretized scheme

φn+1
i,j = φni + ∆t ĤLLF (xi, yj , D+

x φ
n
i,j , D

−
x φ

n
i,j)(2.6)

for the level set equations with H independent of φy (after removing sign(φy)), and

φn+1
i,j = φni + ∆t ĤLLF (xi, yj , D+

x φ
n
i,j , D

−
x φ

n
i,j , D

+
y φ

n
i,j , D

−
y φ

n
i,j)(2.7)

for equations such as equation (2.3), since the Hamiltonians depend on φy. Here,
φni,j := φ(xi, yj, tn), and ∆x, ∆y, and ∆t are the step size in x, y and t.

Rewrite the above schemes in the form

φn+1
i,j = G(xi, yj , φni+1,j+1, φ

n
i+1,j , φ

n
i,j+1, φ

n
i,j , φ

n
i−1,j , φ

n
i,j−1, φ

n
i−1,j−1).

If G is nondecreasing in all its arguments except xi and ∆−y φni,j ≥ 0 for all i, j ∈ Zd,
then

∆−y φ
n+1
i,j = φn+1

i,j − φn+1
i,j−1

= G(xi, yj , φni+1,j+1, φ
n
i+1,j , φ

n
i,j+1, φ

n
i,j , φ

n
i−1,j , φ

n
i,j−1, φ

n
i−1,j−1)

−G(xi, yj−1, φ
n
i+1,j , φ

n
i+1,j−1, φ

n
i,j , φ

n
i,j−1, φ

n
i−1,j−1, φ

n
i,j−2, φ

n
i−1,j−2)

≥ 0.

Because of the hypothesis that Hy ≥ 0, our Lax-Friedrichs schemes preserve the
minimum principle discretely (i.e., given ∆+

y φ
n
i,j ≥ 0 for all i, j ∈ Zd, then ∆+

y φ
n+1
i,j

≥ 0 for all i, j ∈ Zd) if
∆t
∆x
≤ C min(1/||Hφx ||∞, 1/||Hφy ||∞),

where C = 1 for equation (2.6) and C = 2 for equation (2.7).

Extension to higher order of accuracy. To achieve higher order accuracy and have
less numerical disspation, we can discretize the spatial derivatives using WENO
schemes described in [21], which essentially replace the forward/backward differ-
encing by higher order WENO approximations. For higher order accuracy in time
discretization, the TVD third order Runge-Kutta method from [30] can be used.

2.2.1. Examples. We provide here some numerical computations for some equations
that belong to the class we are considering.

Constant motion along the normal. Consider the equation

ut + c
√

1 + u2
x = 0.(2.8)

Given a continuous initial data, it is well-known that the following equation corre-
sponds to motion of the graph with constant normal velocity c.

Using the notion of the L-solution, we can easily describe the motion defined by
equation (2.8), even with piecewise continuous data. The corresponding level set
equation is simply

φt + c|∇φ| = 0,

which describes the constant normal speed motion of each level set of φ. We em-
phasize here that since the level sets of φ are continuous, we can simply use the
existing classical viscosity theory for the solution. Figure 3 shows the zero level
curves of φ in different times. The reader can see that each curve is equidistant
from the original curve (shown as red).
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Figure 3. Numerical solution by first order LLF method for the
Riemann problem for equation (2.8) with uL = 1.0, uR = 0.0, and
c = 1.0. We plotted the zero level set at times t = 0, 0.2, 0.4 and
0.6.
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Figure 4. Numerical solution using third order WENO-LLF to
the Riemann problem for equation (2.1) with uL = 0.0, uR = 0.1,
and a = 2.0. We plotted the zero level set at times t = 0, 0.1, and
0.2.
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Figure 5. Incorrect (as expected) numerical solution to the Rie-
mann problem for equation (2.2) with uL = 1.0, uR = 0.0, and
a = 0.1. We plotted the zero level set at times t = 0, 0.5, and 1.0.

Model equation ut + uux + a u|ux| = 0. With a ≥ 1.0, we know that this model
equation retains the property that φy ≥ 0 for all time. Figure 4 show the compu-
tational result using (2.6) and third order WENO-LLF. The numerical solutions of
this equation are computed with a = 2.0. Finally, we show that our Lax-Friedrichs
type scheme cannot be applied to compute solutions for equation with a < 1. See
Figure 5.

2.3. Singular viscosity regularization. Consider the model equation (2.2) with
|a| < 1, and equation (2.3) with v(y) nondecreasing. We know that it no longer has
the minimum principle in φy, and “overturning” or “folding” in its solution might
develop.

Motivated by the work on a type of singular diffusion in [9, 10, 22], we will add
a similar singular diffusion term in the y-direction to both our model equations:

M |∇φ| ∂
∂y

(
φy
|φy|

)
.

We first notice that this viscosity is activated only when sign(φy) = φy/|φy| changes
signs! With M sufficiently large, this term ∂(sign(φy))/∂y can be shown, at least
formally, to concavify the primitive of the speed function on the vertical part of the
level sets [12].

We briefly describe how to find the minimum value of M. Consider the primitive
function V (y) of the speed function v(y) of equation (2.3) over [a, b] that is a jump
of u. Let V ∗ be the function whose graph is the upper boundary of the convex hull
of V. Let VM = V ∗ + 2M. We claim that M has to be large enough so that VM
is tangent to or never crosses V ∗. See Figure 6 for an example with V (y) = y2/2.
Since the purpose of this paper is to provide the numerics, we refer the reader to
the recent paper [12] of the second author for the formal reasoning.
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Figure 6. V (y) = y2/2 on [0, 1]. The minimum value of 2M
should be 1/8.

Alternatively, we describe another intuitive motivation behind this diffusion
term. Consider the Heaviside function y = H(x) and the level set function φ(x, y)
for which this is the zero level set. If we treat the zero level set of φ locally as
a function of y wherever it is vertical, we see that the “overturning” will increase
the total variation of {φ = c} as a function of y. This motivates the following
regularization:

min
φ

∫
|φy| dy.

The corresponding Euler-Lagrange derivative is

∂

∂y

(
φy
|φy|

)
.

To make the diffusion term geometrical, i.e., invariant of the choice of level set
function, we multiply it by |∇φ| and arrive at the same diffusion term. Of course,
in using this argument, we have to assume that the Hamiltonian is also the Euler-
Lagrange derivative of some variational integral.

Now, let us go back to our model equation with this viscosity term:

φt − y · (a sign(φy) |φx| − φx) = M |∇φ| ∂
∂y

(
φy
|φy|

)
.

We use central differencing to approximate the singular diffusion term on the right
hand side: √

(D0
xφi,j)2 + (D0

yφi,j)2 ·
tanh(γ D+

y φi,j)− tanh(γ D−y φi,j)
∆y

,

where the signum function φy/|φy| is approximated by tanh(γφy) with γ = 1/∆y,
and

tanh(γ D+
y φi,j) = tanh

(
γ
φi,j+1 − φi,j

∆y

)
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is an approximation of φy/|φy| evaluated at (xi, yj+1/2). Similarly tanh(γ D−y φi,j)
is an approximation for φy/|φy| at (xi, yj−1/2). The partial derivative φx on the left
hand side is approximated by upwind differencing:
|a| < 1 :

y ≥ 0 : φx ← D−x φ,
y < 0 : φx ← D+

x φ,
|a| ≥ 1 :

sign(D0
yφ) a y ≤ 0 : φx ← (Dx

−φ)+ − (Dx
+φ)−,

sign(D0
yφ) a y > 0 : φx ← −(Dx

−φ)− + (Dx
+φ)+.

Here, p− denotes the negative part of p (with sign) and p+ the positive part.
Because of the singular diffusion term, the stability condition becomes

∆t
∆x3

≤ CM,H ,

where CM,H is a constant depending on the diffusion coefficient M and the maxi-
mum values of Hφx and Hφy .

Extension to higher order accuracy. Again, we may combine the central differencing
approximation of the viscosity term and the WENO-LLF scheme described in the
earlier section for numerical computation. This is needed for future generalization
to more complex equations or to systems of equations, because upwinding is no
longer easy.

2.3.1. Test on the model equation: ut+uux+a u|ux| = 0. We first test our numerical
scheme for the case a = 0.1, which cannot be handled by the Lax-Friedrichs scheme
(2.6). Figure 7 shows that the “overturning” is prevented, in contrast to the result
shown in Figure 5.

0.4 0.2 0 0.2 0. 4 0. 6 0. 8 1 1. 2 1.4 1.6
–0. 4

–0. 2

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

1. 6

Figure 7. Numerical solution to the Riemann problem for equa-
tion (2.2) with uL = 1.0, uR = 0.0, a = 0.1, and M = 0.2. We
plotted the zero level set at times t = 0, 0.5, and 1.0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEVEL SETS FOR HJ DISCONTINUOUS SOLUTIONS 171

2.3.2. Tests on conservation laws. As we have mentioned earlier, equation (2.1)
with a = 0 is equivalent to Burgers’ equation in nonconservative form. Here we go
one step further to demonstrate numerically that our regularization is equivalent
to the entropy condition for conservation law equations.

We consider the conservation law

ut + f(u)x = 0(2.9)

with f ′ ≥ 0 and its corresponding linear level set equation

φt + f ′(y)φx = 0.(2.10)

The numerical results shown in the following examples are obtained by plotting
the zero contour of the numerical solution φ to the regularized equation:

φt + f ′(y)φx = M |∇φ| ∂
∂y

(
φy
|φy|

)
.(2.11)

Burgers’ equation. With f(u) = u2/2,we have the inviscid Burgers equation in non-
conservative form. The corresponding level set equation becomes a linear transport
equation with variable coefficient:

φt + yφx = 0.

It is then clear that the graph will overturn if u is decreasing in x.
We consider the Riemann problem u(x) = uL = 4.0 for x < 0.0 and u(x) =

uR = 0.0 for x ≥ 0.0. See Figure 8. The result shown in Figure 8 verifies the

–1 0 1 2 3 4 5 6
–1

0

1

2

3

4

5

x

u

Figure 8. Numerical solution (WENO5-LLF) to the Riemann
problem of Burgers’ equation with uL = 4.0, uR = 0.0, and
M = 2.1. We plotted the zero level set at times t = 0, 2.0, and
2.5.
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Figure 9. Numerical solution to the Riemann problem of Burgers’
equation with uL = 1.0, uR = 0.0. We plotted the zero level sets
at times t = 0 and 0.5 obtained from M = 0.04 and 1.0.

Rankine-Hugoniot shock speed:

s =
[f ]
[u]

= 2.0.

Figure 9 shows a similar computation with uL = 1.0, uR = 0.0 and two different
values of the diffusion coefficients (M = 0.04 and M = 1.0). We can see that
overturning will develop if M is not large enough, and if it is sufficiently large, this
coefficient does not affect the shock speed as predicted in [12] (the critical value for
M is 0.0625 in this case). We also compute the approximation obtained with no
diffusion term (i.e., M = 0) and plot it (green curve) against the one obtained from
M = 0.2 (blue curve), and show that the “equal-area” entropy condition is satisfied
by the latter (blue curve). See Figure 10. Figure 11 shows the result of a Riemann
problem with two shocks and a rarefaction. We also verify that the shocks in this
case travel with the right speed.

Finally, we compute the solution to Burgers’ equation starting with a sine curve:
α sin(πx) + β. Figure 12 shows a first order approximation of the well-known N -
wave starting with initial conditions using α = −0.8, β = 0.0. Our diffusion term
successfully keeps the vertical part from overturning. In Figure 13, we obtained
the numerical approximation, with α = −1.0 and β = 0.5, using the fifth order
WENO local Lax-Friedrichs in space and third order TVD Runge-Kutta in time.
One can see that the excessive drop in height caused by numerical diffusion using
the standard first order Lax-Friedrichs method (Figure 12) is greatly reduced.

Consider the conservation law of equation 2.9 with initial condition u0(x). Until
shock develops, the exact solution is defined implicitly by

u = u0(x− f ′(u) t).

Thus, for every fixed (x, t), this can be thought of as a root-finding problem in u
using Newton’s iterations

uν+1 = uν − f(uν)
f ′(uν)

,
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Figure 10. Numerical solution to the Riemann problem of Burg-
ers’ equation with uL = 1.0, uR = 0.0. We plotted the zero level
sets at times t = 0 and 0.5 obtained from M = 0.2 and 0.0.
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Figure 11. Numerical solution (WENO5-LLF) to the Riemann
problem for Burgers’ equation with uL = 0.1, uM1 = 1.8, uM2 =
1.0, uR = 0.5, and M = 0.2. We plotted the zero level set at times
t = 0 and 0.192.
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Figure 12. Numerical solution of Burgers’ equation with sine
wave as initial data. We plotted the zero level set at times t = 0
and 0.5.
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Figure 13. Numerical solution (WENO5-LLF) to the Burgers’
equation with shifted sine wave as initial data. We plotted the
zero level set at times t = 0 and 0.5.

where f(u) := u0(x− f ′(u) t)− u. We use this simple iterative method to find the
smooth solution to the machine accuracy and compare it to the solution obtained
by our level approach. Some results are provided in Tables 1 and 2, in which we
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Table 1. Numerical convergence (WENO5-LLF-RK3) of Burgers’
equation with initial values −0.8 sin(πx) + 0.5. T = 0.2.

dx = 2/50 dx = 2/100 dx = 2/200 dx = 2/400
max error 5.99774e− 06 3.65247e− 07 3.39605e− 08 3.88563e− 09

rate 4.0375 3.4269 3.1276

Table 2. Numerical convergence of WENO5-LLF-RK3 on Burg-
ers’ equation with initial values −0.8 sin(πx), M = 0.2, T = 0.384.

dx = 2/25 dx = 2/50 dx = 2/100
max error 0.007603086 0.0009753479 9.64295e− 05

rate 2.9626 3.3384

use a third order linear interpolation to approximate the location of the zero level
curve on each grid point. In particular, Table 2 shows a third order convergence of
the numerical solutions in the region excluding a 5∆x neighborhood of the shock.

Buckley-Leverett equation. Finally, we test our numerical method for equation
(2.11) to substantiate our assertion that the singular diffusion term minimally con-
cavifies the flux function f over the jump interval. We solve the Riemann problem
of the conservation law

ut + f(u)x = 0

with

f(u) =
u2

u2 + a(1− u)2
, a > 0, u ∈ [0, 1].

and uL = 1.0, uR = 0.0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 14. Numerical solution to the Riemann problem for the
Buckley-Leverett equation with uL = 1.0, uR = 0.0 and a = 0.5.
We plotted the zero level set at times t = 0, 0.25, and 0.5.
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Figure 15. Numerical solution to the Riemann problem for the
Buckley-Leverett equation with uL = 1.0, uR = 0.0 and a = 0.5.
We plotted the zero level sets at times t = 0 and 0.3 obtained from
M = 0.2 and 0.0. The little fragment of contour at the lower part
of the jump is due to the contour plotter.

The upper boundary of the convex hull of sg(f) consists of a straight line segment
L from (0, 0) to (u∗, f(u∗)) followed by (u, f(u)) for u ∈ [u∗, 1], where L is a tangent
line of f(u). See Figure 2. The slope of L is also the correct shock speed for the
Riemann problem. With a = 0.5, a simple calculation shows that u∗ = 1/

√
3 .=

0.57735.
Figure 14 shows the expected rarefaction from uL to u∗ and a shock between u∗

and uR. Figure 15 shows an overlap of the solutions obtained with and without
regularization. One can observe that the “equal-area” entropy condition is satisfied.

2.3.3. A two-dimensional example. To show that our numerical schemes extend
naturally to higher dimensions, we show our numerical solutions for the equation

ut − u
√

1 + u2
x + u2

y = 0.

When u is continuous, this is motion in the normal direction of the graph of u with
speed u. The corresponding level set equation

φt + z
√
φ2
x + φ2

y + φ2
z = 0

gives a straightforward geometrical interpretation of the solution as level sets of
φ. Results are shown in Figures 16 and 17. In both figures, the initial data are
represented by the blue surfaces (one cubical and the other spherical) and the
solutions during later times are represented by the green and yellow surfaces. The
left subfigures are computed without the regularization, whereas the right ones are
regularized by the singular diffusive term M |∇φ|∂/∂(φz/|φz |).
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Figure 16.

Figure 17.

2.3.4. The vanishing viscosity approach. Consider the Lax-Friedrichs type scheme
of the following form:

un+1
i = uni −∆tH(xi, uni , D

0
xu

n
i ) + c∆+

x ∆−x u
n
i /2,(2.12)

where ∆±x u
n
i denotes the undivided forward/backward difference of uni and 0 ≤ c ≤

1. With

∆t ≤ min
(

1− c
||Hu||∞

,
c∆x
||Hux ||∞

)
(2.13)

the scheme is monotone and seems to yield convergent approximations for the
equations with Hu ≥ 0.

However, this scheme is not suitable for the HJ equations, whose solutions de-
velop shocks. Figure 18 shows the numerical approximations using (2.12) with
different values of c and fairly small grid size. The leftmost curve is the initial
data. The remaining curves from left to right are obtained using c = 0.1, 0.99, and
0.9, respectively. One can see that the numerical solutions converge to different
functions.

We maintain that our level set approach is no less efficient since we can do the
computation locally around the zero level curve [28]. Also, the level set approach
is more “natural” since it is a part of the theoretical notion of solutions to the HJ
equations that we are concerned with.
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Figure 18. The numerical solutions of the Buckley-Leverett equa-
tion in nonconservative form obtained from the monotone Lax-
Friedrichs scheme (2.12). The approximations are computed to
t = 0.1 on [0, 1] with 2, 500 grid points.

3. Summary

In this paper, we provided two classes of finite difference methods for the com-
putation of the semicontinuous L-solution of a class of HJ equations. By studying
the level set equation derived from the HJ equations, we pointed out the necessary
condition for the validity of the solution defined as the zero contour line of the level
set function. We have also discussed the geometrical interpretation of the motion
of the solution embedded in the level set function. The remarks provide hints on
how to regularize the zero level curve motion so that it can be interpreted as the
graph of a function.

For the class of HJ equations with Hy ≥ 0, we applied a straightforward Lax-
Friedrichs type scheme with possibility of extension to higher order accuracy. We
showed numerically that the singular diffusion term |∇φ| ∂(φy/|φy|)/∂y can be ap-
plied to compute the shock solution for the class of HJ equations we considered. In
particular, we numerically verified that our numerical schemes yield approximations
compatible with the entropy solution of a conservation law equation with noncon-
vex flux. Of course, we have also shown the extension of our numerical schemes to
higher order WENO-local Lax-Friedrichs schemes.

Finally, we remark here that our numerical schemes for the derived level set
equations can be computed locally around the zero level curve using the technique
described in [28] for efficiency.

4. Systems of conservation laws

We generalize the result of our singular viscosity to study the solution of con-
servation law systems and the link to Riemann invariants. Here we briefly describe
how we approach this problem.
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Let ~u = (u, v) ∈ R2, φ(t, x, y) : R+×R×R2 7→ R2 be the vector-valued level set
function such that φ(t, x, ~u(t, x)) = 0. The system

~ut +A(~u)~ux = 0

can be formally translated to

φt + φyA(y)φ−1
y φx = 0.

We shall use the Riemann invariants for the 2× 2 system to diagonalize A(y) and
desingularize the term φ−1

y .
We propose a singular diffusion term similar to the scalar one we used. With an

abuse of notation, this term can be written as

|∇x,yφ|∇y · (|∇yφ|−1∇yφ),

where ∇x,yφ is the Jacobian matrix of φ with respect to x and y, ∇yφ = φy is the
Jacobian matrix of φ, and |A| :=

√
AA∗ is the Euclidean norm of the matrix A.

Acknowledgments. The authors YT and SO would like to thank Paul Burchard
for very useful conversations on this topic, and Chi-Wang Shu for his careful reading
of the first draft.

Appendix: Initializing the level set function

Since the introduction of level set methods [26], several techniques have been
developed to compute the level set function for a given curve Γ (this is called the
initialization step in standard level set jargon). We point out several such techniques
for completeness of the numerics.

If the curve Γ in question is the graph of a smooth function u(x), the easiest way
to initialize the level set function φ(x, y) is simply

φ(x, y) = y − u(x).

However, if u(x) is only piecewise smooth, we cannot use the same approach to
initialize φ, since the function obtained this way becomes discontinuous.

The next easy way is to use the signed distance function of the upper boundary
of sg(u) as the level set function; that is, consider the upper boundary of sg(u) as
a continuous curve Γ ∈ R2, and set

φ(x, y) = m(x, y) dist((x, y),Γ),

where m(x, y) = sgn(y − u(x)). We notice that the level set function constructed
this way is Lipschitz continuous everywhere.

There are a variety of techniques to compute the distance function. For ex-
ample, the fast marching method [17], [29], [33] can be used to find φ quickly by
constructing a first order approximation of the solution of the eikonal equation

|∇φ| = 1.

For a piecewise linear curve, the method described in [32] can be used for accurate
and rapid construction of the distance function. The initialization of the numerical
examples presented in this paper are all constructed this way.
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