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A Level Set Approach for Shape-driven
Segmentation and Tracking of the Left Ventricle

Nikos Paragios

Abstract— Knowledge-based segmentation has been explored
significantly in medical imaging. Prior anatomical knowledge can
be used to define constraints that can improve performance of
segmentation algorithms to physically corrupted and incomplete
data. In this paper our objective is to introduce such knowledge-
based constraints while preserving the ability of dealing with local
deformations. Towards this end, we propose a variational level
set framework that can account for global shape consistencyas
well as for local deformations. In order to improve performance
the problems of segmentation and tracking of the structure of
interest are dealt with simultaneously by introducing the notion
of time in the process and looking for a solution that satisfies
that prior constraints while being consistent along consecutive
frames. Promising experimental results in MR and ultrasonic
cardiac images demonstrate the potentials of our approach.

Index Terms— Curve Propagation, Optical Flow, Level Set
Technique, Prior Shape Knowledge.

I. I NTRODUCTION

Computer aided diagnosis is a growing application domain
of medical image analysis. Segmentation and tracking of
cardiac structures are advanced techniques used to assist
physicians in various states of treatment of cardiovascular
diseases.

Segmentation is an ill-posed problem. Pose and reflection
properties of the object, noise from the acquisition devices are
some of the factors that can interfere with the process. Medical
imaging is a bounded area regarding the above conditions. The
clinical user can control the acquisition process while sensor
perturbations can be considered known. Last, but not least,
the physical entities to be recovered are constrained to follow
known topology with certain degree of variation.

Model-based segmentation methods encode such prior
knowledge in the form of parametric representations. Optimal
solution corresponds to the lowest potential of a an image
driven objective function defined along the object represen-
tation. In the absence of prior knowledge, the use of model-
free techniques based on geometric flows, statistical methods,
Markov random fields, graph theory and region-growing tools
were investigated.

Snake-driven approaches [5] are popular in medical image
segmentation. B-Splines, deformable templates, Fourier de-
scriptors are common ways to describe the structure of interest.
Level set representations [10] in an emerging technique to
represent shapes and track moving interfaces for segmentation
and tracking [8]. Dealing with local deformations, multi-
component structures and changes of topology are the main
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strengths of these representations. At the same time, account-
ing for prior shape knowledge - a significant limitation - was
recently addressed in various forms [2], [7], [13].

Tracking is a complementary to segmentation task that
involves the recovery of the structure of interest in the temporal
domain. While such consideration can increase complexity,at
the same time the use of dynamic information can improve
segmentation performance [15]. Quite often tracking is equiv-
alent with seeking pixel-wise correspondence, thus estimating
the apparent motion. Optical flow estimation is required to
establish correspondence from one frame to the next. Global
motion models is a compromise between low complexity and
good matching for planar objects.

In this paper we propose a level set framework for shape-
driven knowledge-based segmentation and tracking that is
parameter free, implicit and intrinsic. Prior shape knowledge
is represented using a probabilistic level set distance mapand
global shape consistency is inherited to the process through a
rigid registration of the evolving interface to the prior model.
Visual evidence is integrated through a boundary and a region-
based segmentation module while internal smoothness con-
straints are also imposed. Temporal information is accounted
by seeking for a global motion model for the structure of
interest that satisfies the visual constancy constraint. Related
segmentation techniques with our approach can be found in
[4], [11], [15].

The reminder of this paper is organized as follows; In
section 2 we introduce the application context and the level
set method. Prior shape knowledge is introduced in section 3
while in section 4 we couple segmentation and tracking using
parametric motion models. Discussion is part of section 5.

II. L EFT VENTRICLE SEGMENTATION & L EVEL SET

METHODS

Identifying the heart chambers, the endocardium and the
epicardium is a powerful diagnostic tool. In particular the
detection, segmentation and tracking of the left ventricleis
of great importance because it pumps oxygenated blood out
to distant tissue in the entire body. Furthermore, measuring
the ventricular blood volume, wall mass, wall motion and the
wall thickening properties over various stages of the cardiac
cycle are components with strong diagnostic power.

Magnetic Resonance Images exhibit high quality, while
involving misleading visual information, like the papillary
muscles [11]. On the other hand, the signal-to-noise ratio
is very high for the ultrasound modality making its direct
use inappropriate for data-driven automated solutions. One
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can consider the use of prior knowledge to address these
limitations for both modalities. Clinical expertise can beused
to derive a set of training examples and a representative shape
model of the structure of interest.

The segmentation and tracking of the left ventricle can be
viewed as a bi-modal frame partition problem. One would like
to separate the endocardium from the background. We address
this partition by considering a curve propagation approach.
Visual (boundary and regional) terms, prior shape knowledge
and internal constraints are used to derive an automated
solution for detection and tracking of the left ventricle.

The level set method [10], [9] is an emerging technique
for tracking moving interfaces. To this end, given a motion
equation that dictates the propagation of a closed structure, one
can construct a structure of a higher dimension and define a
corresponding flow such that its zero level set yields alwaysto
the position of the input structure. A step further is to consider
the definition of the problem and the objective function [16],
[14] directly on the space of level set representations.

Towards this end, one can define the approximations of
Dirac and Heaviside [16] distributions;
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and use them to introduce an image partition objective func-
tion. Boundary attraction as well region-consistency terms can
be defined based on an evolving functionΦ. The geodesic
active contour [1], [6] can be used for example to perform
boundary extraction.

EB(Φ) =

∫∫

Ω

δα(Φ)b(|∇I|)|∇Φ|dΩ

︸ ︷︷ ︸

boundary module

(3)

where b : R+ → [0, 1] is a monotonically decreasing
function. The lowest potential of this functional corresponds to
a minimal length geodesic curve attracted by the boundaries
of the structure of interest. Calculus of variations will lead
to a one-directional flow that aims at shrinking or expanding
(mutually exclusive) the initial interface towards the object
boundaries while being constrained by the curvature.

d

dt
Φ = δα(φ)div

(

b(|∇I|)
∇Φ

|∇Φ|

)

(4)

Regional/global information can improve performance of
boundary-based flows [12] that suffer of being sensitive to the
initial conditions. The central idea behind this module is to
use the evolving interface to define an image partition that is
optimal with respect to some grouping criterion. Within level
set representations such partition is natural according tothe
sign of the embedding function. The Heaviside function can

be considered to define such partition;

ER(Φ) =

∫∫

Ω

Hα(Φ)rO(I)dΩ

︸ ︷︷ ︸

endocardium

+

∫∫

Ω

(1 − Hα(Φ))rB(I)dΩ

︸ ︷︷ ︸

background

(5)
according to some region descriptors functionsrO : R+ →
[0, 1], rB : R+ → [0, 1] that are monotonically decreasing
functions. Such descriptors measure the quality of matching
between the observed image and the expected regional prop-
erties of the structure of interest and the background.

MR sequences of the left ventricle [Figure (1)] can be
decomposed into three populations [4]: (i) the blood (bright),
(ii) the muscles (gray) and (iii) the air-filled lungs (dark gray).
The characteristics of these populations can be discriminated
fairly well and the observed distribution (histogram) of the
epicardium region is a mixture model with three components
(assumed to be Gaussian) [11]. LetpE be the endocardium
density function,pM the myocardium density function and
pB the density function of the rest of the cardiac organs
(background). Then, we can write

p(I) = PE pE(I) + PM pM (I) + PB pB(I) (6)

wherePE , PM , PB are thea priori probabilities for the en-
docardium, the myocardium and the background hypotheses.
The unknown parameters of this model can be estimated
using the expectation-maximization principle. The background
distribution is considered to be either the distribution ofthe
myocardium or of the other human organs. A similar analysis
can be considered for ultrasonic images of the left ventricle
using an exponential function for the endocardium and a
Gaussian distribution for the heart walls.

The minimum of the region-driven segmentation module
corresponds to the optimal grouping of the observed visual
information according to some pre-defined criteria where ho-
mogeneity is a particular case. Using the calculus of variations
one can recover the following motion equation;

d

dt
Φ = δα(Φ)(rO(I) − rB(I)) (7)

Such flow aims refers to an adaptive balloon force. It shrinks
or expands the contour towards the direction that is best sup-
ported by the visual information, given the expected intensity
properties of the structure of interest and the background.

Integration of the boundary and the region-driven term
can be considered to perform segmentation [12], namely
the geodesic active region model. In the absence of noise,
occlusions and corrupted visual information, such method can
deal with local deformations. On the other hand, it cannot
account for prior shape knowledge, deal with noisy, corrupted
and occluded data.

III. PRIOR SHAPE KNOWLEDGE

Shape-driven constraints were considered within the propa-
gation of curves in various ways. To this end, one has first to
select an appropriate shape representation when introducing
such constraints. Moreover, the extraction of an optimal set
of parameters able to describe these constraints is to be
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done given a set of training examples. We consider a pixel-
wise stochastic level set representation [13] to encode prior
knowledge;

pM,{x,y}(φ) =
1√

2πσM (x, y)
e
−

(φ−ΦM (x,y))2

2σ2
M

(x,y) (8)

defined in the pixel level that consists of two unknown
variables;

• The shape imageΦM ,
• The local degrees of variability imageσM .

Distance transforms are used as embedding function in the
definition of ΦM . Such prior model also consists of a vari-
ability image that describes the confidence of the prior model.
In areas where important local deformations are plausible
high variability estimates are present. Variational principles
according to the maximum likelihood criterion between the
model and a training set are used to determine the function
ΦM and the variability estimatesσM [13]. This model can be
used within the segmentation process to enforce global shape
consistency.

Let Φ be a level set representation to which we would like
to introduce a global rigid-invariant shape constraint according
to the modelΦM . We assume thatΦ is part of the family
of shapes that consists of all possible rigid-transformations
of the model. Introducing such constraint can be done by
updating locally the evolving representation to meet the model
properties; optimal local match. Correspondence is determined
through a rigid registration.

Thus, given the current stateΦ, we assume the existence of
an ideal transformationA between the evolving representation
and the shape model. In order to better account for the
nature of the structure of interest, we assume that the optimal
registration corresponds to the maximum likelihood between
the representation and the model;

(x, y) → A(x, y)

maxx,y

{
pM,A(x,y) (sΦ(x, y))

}
∀(x, y) : Hα(Φ(x, y)) ≥ 0

where s is the scale factor of the registration model. Level
Set Representations with distance transforms as embedding
function are invariant to translation and rotation but not to
scale variations. Their values are scaled accordingly. Conse-
quently scale appears as a multiplicative factor in the matching
process. Solving segmentation/registration now is equivalent
with finding a representationΦ and a global registration model
A;

EM (Φ, A) =

∫∫

Ω

Hα(Φ)

[

log(σM (A)) +
(sΦ − ΦM (A))2

2σ2
M (A)

]

This functional consists of two unknown variables; (i) a
level set representation that is optimal when it becomes a
rigid transformation of the prior model, (ii) a transformation
(registration) between the evolving current representation and
the model. This term is defined in a qualitative manner; model
parts with low variability are more significant than the ones
that undergo important local deformations.

One can integrate this module with the previously defined
visual driven terms

E(Φ, A) = β1 EB(Φ) + β2ER(Φ) + EM (Φ, A) (9)

whereβ1, β2 are blending parameters, leading to a data-driven
segmentation approach that privileges certain prior knowledge
on the structure of interest.

IV. T EMPORAL INFORMATION & T RACKING

Dynamic acquisition of scalar as well as volumetric images
is a standard procedure in medical image analysis. Periodic
motion in some sense is a natural constraint in cardiac imag-
ing. Motion trajectories are important diagnostic tools and can
provide better support compared to static images.

Tracking is a well explored topic in image processing and
computer vision that was implicitly in many cases linked with
the segmentation problem. Towards this end, one can consider
segmentation known and then perform temporal tracking. The
outcome of the tracking process can be used as an initial guess
to the segmentation process. These two steps can alternate to
deal with both tasks simultaneously. Such approach has certain
strengths and important limitations.

Low complexity is the main advantage of going with a de-
coupled approach. At the same time though, temporal informa-
tion is not exploited properly. Given a bi-modal segmentation
assumption, one would like to modify the segmentation mod-
ules to also account for temporal tracking.

Visual constancy in the temporal domain is a common
tracking constraint. In medical image analysis, one can control
the acquisition devices and avoid global changes of the illu-
mination. Reflections properties of the tissue being mapped
do not change and the hypothesis of constant depth for the
structure of interest can be valid. Then tracking refers to an
optimal transformationT for the structure of interest between
the two imagesIt, It+1 that satisfies the visual constancy
constraint;

(x, y) → T (x, y)

It(x, y) ≈ It+1(T (x, y)), ∀(x, y) : Hα(φt(x, y)) ≥ 0
(10)

where this transformation can be either a parametric motion
model (rigid, affine, projective) or a local deformation field
(u(x, y), v(x, y)). A cost functional like the sum of square
differences between between the image intensities can be used
to recover the optimal transformation. Under the assumption
of a global motion model, we can then write;

E(φt, φt+1, T ) =

∫∫

Ω

Hα(φt) (It − It+1(T ))
2
dΩ (11)

Meaningful correspondences between the two images are
considered. Using such functional one can guarantee an one-
to-one correspondences from framet to framet+1. However,
the same criterion is not valid for the inverse procedure. In
[3] the use of direct as well as inverse transformation was
proposed for volume registration. Furthermore, least square
estimators like the sum of square differences are sensitiveto
the presence of outliers. Therefore, one can replace the least
square estimator with a more robust normρ that refers to a
bounded error function;

ET (Φt,Φt+1, T ) =

∫∫

Ω

Hα(Φt)ρ (It − It+1(T )) dΩ

+

∫∫

Ω

Hα(Φt+1)ρ
(
It(T

−1) − It+1

)
dΩ

(12)
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(a) (b) (c) (d)

Fig. 1. Cardiac Segmentation/Tracking for Magnetic Resonance Images pre-
sented in raster-scan format. (a) inputt frame, (c) segmentedt frame, (b-d)
motion estimation (flow) for the structure of interest between framet and
frame t + 1 up-scaled four times for demonstration purposes.

whereT−1 is the inverse transformation betweenIt andIt+1.
Calculus of variations within a gradient descent method canbe
used to recover the optimal estimates of the motion parameters.
We consider a rigid transformation to capture the motion of
the endocardium. One can integrate the tracking component
to the segmentation process;

E(Φt, Φt+1,At, At+1, T )) = β1 EB(Φ) + β2ER(Φ)

+ β3EM (Φ, A) + E(Φt, Φt+1, At, At+1, T )
(13)

where segmentation and (optical flow) tracking are performed
by evolving a initial curve according to the observed visual
information while respecting some global shape consistency.
One can ignore the propagation term that is derived from
the motion component of the objective function since is a
constant shrinking force. Within the proposed framework,
improvements on the segmentation result lead to a better
tracking and vice-versa.

V. D ISCUSSION

In this paper we have proposed a shape-driven variational
framework for knowledge-based segmentation and tracking.
Our approach integrates visual information with shape con-
straints in the spatial and temporal domain to deal simultane-
ously with these tasks.

Promising experimental results using cardiac [Figure (1,2)]
MRI and ultrasound were obtained. The 3D implementation
of our approach is under investigation. Non-parametric shape
representations within the space of distance transform is astep
forward for our approach. Changes of topology is a strength
of level set representations. Our approach can detect single
objects with complex topology but cannot recover structures
of different topology that are connected.
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(a) (b)

Fig. 2. Cardiac Segmentation/Tracking for Ultrasonic Images. (a) segmentedt
frame, (b) motion estimation (flow) between framet and framet+1 up-scaled
four times for demonstration purposes.

REFERENCES

[1] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours.
IJCV, 22:61–79, 1997.

[2] Y. Chen, H. Thiruvenkadam, H. Tagare, F. Huang, and D. Wilson. Using
Prior Shapes in Geometric Active Contours in a Variational Framework.
IJCV, 50:315–328, 2002.

[3] G. Christensen, A. Joshi, and M. Miller. Volumetric Geometric Trans-
formations for Mapping Anatomy.IEEE TMI, 16:864–877, 1997.

[4] M.-P. Jolly. Combining Edge, Region, and Shape Information to
Segment the Left Ventricle in Cardiac MR Images. InMICCAI, pages
482–490, 2001.

[5] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour
Models. IJCV, 1:321–332, 1988.

[6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi.
Gradient flows and geometric active contour models. InIEEE ICCV,
pages 810–815, 1995.

[7] M. Leventon, E. Grimson, and O. Faugeras. Statistical Shape Influence
in Geodesic Active Controus. InIEEE CVPR, pages I:316–322, 2000.

[8] R. Malladi, J. Sethian, and B. Vemuri. Shape Modeling with Front
Propagation: A Level Set Approach.IEEE PAMI, 17:158–175, 1995.

[9] S. Osher and N. Paragios.Geometric Level Set Method in Imaging,
Vision and Graphics. Springer, 2003.

[10] S. Osher and J. Sethian. Fronts propagating with curvature-dependent
speed : Algorithms based on the Hamilton-Jacobi formulation. Journal
of Computational Physics, 79:12–49, 1988.

[11] N. Paragios. A Variational Approach for the Segmentation of the Left
Ventricle in Cardiac Image Analysis.IJCV, 50:345–362, 2002.

[12] N. Paragios and R. Deriche. Geodesic Active Regions: A New
Framework to Deal with Frame Partition Problems in ComputerVision.
Journal of Visual Communication and Image Representation, 13:249–
268, 2002.

[13] M. Rousson and N. Paragios. Shape Priors for Level Set Representations.
In ECCV, pages II:78–93, Copenhangen, Denmark, 2002.

[14] L. Vese and T. Chan. A Multiphase Level Set Framework forImage
Segmentation Using the Mumford and Shah Model.IJCV, 50:271–293,
2002.

[15] A. Yezzi, L. Zollei, and T. Kapur. A Variational Framework for Joint
Segmentation and Registration. InIEEE MMBIA, pages 44–51, 2001.

[16] H-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational Level
Set Approach to Multiphase Motion.Journal of Computational Physics,
127:179–195, 1996.


