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The level set method is used for shape optimization of the energy functional for the Signorini problem. The boundary
variations technique is used in order to derive the shape gradients of the energy functional. The conical differentiability of
solutions with respect to the boundary variations is exploited. The topology modifications during the optimization process
are identified by means of an asymptotic analysis. The topological derivatives of the energy shape functional are employed
for the topology variations in the form of small holes. The derivation of topological derivatives is performed within the
framework proposed in (Sokołowski and Żochowski, 2003). Numerical results confirm that the method is efficient and
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1. Introduction

In the present paper a numerical method for shape and
topology optimization of the energy functional for the Sig-
norini problem is proposed. The method requires the eval-
uation of the shape gradients and topological derivatives
of the functional in question, and the level set method is
used for the evolution of geometrical domains.

The Hamilton-Jacobi nonlinear hyperbolic equation
models the evolution of the level set function. The nor-
mal speed of the moving boundaries is determined from
the shape gradients obtained for the energy functional
(Sokołowski and Zolesio, 1992).

During the optimization process, the topology
changes are defined by the topological derivatives of the
energy functional. Small holes are injected into the actual
geometrical domain with the centers at the points deter-
mined by the maximization of the topological derivatives.

We also provide arguments which allow us to de-
termine the topological derivatives. To this end, the do-
main decomposition technique is applied. The proof of
the asymptotic expansion of the Steklov-Poincaré opera-

tor used in such a technique is given in Appendix. The
technique for such an analysis is proposed in (Masmoudi,
2002; Sokołowski and Żochowski, 2005a).

Singular perturbations of domains in the framework
of shape optimization are studied in (Allaire et al., 2005;
Jackowska et al., 2002; Jackowska et al., 2003; Maz’ya
et al., 2000; Nazarov, 1999; Nazarov and Sokołowski,
2003b; Nazarov and Sokołowski, 2003a; Nazarov and
Sokołowski, 2004a; Nazarov and Sokołowski, 2004b;
Nazarov et al., 2005; Sokołowski and Żochowski, 1999;
Sokołowski and Żochowski, 2001; Sokołowski and Żo-
chowski, 2003). The construction of the asymptotic ex-
pansion for the Steklov-Poincaré operator is given in
(Sokołowski and Żochowski, 2005b).

2. Signorini Problem

We introduce the model problem. Let U and V be two
bounded open subsets of R

2 such that V ⊂⊂ U . For
any open set ω ⊂ R

2, we denote by #ω the number of
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connected components of ω and we consider the set of
admissible domains

Ok = {Ω = U \ ω; ω open set, ω ⊂ V, #ω ≤ k}. (1)

For any Ω ∈ Ok, k ≥ 1, the boundary of Ω can be split
into ∂Ω = ΓN ∪ ∂U with ΓN = ∂ω. The boundary ∂U is
divided in two components ∂U = ΓS ∪ ΓD. The bound-
aries ΓN and ΓD will have Neumann and Dirichlet bound-
ary conditions, respectively, whereas Signorini conditions
will be imposed on ΓS . Let us point out that the open set ω
is not necessarily any connected set as illustrated in Fig. 1.

Ω = U \ ω
ω

ω
ΓN

ΓN

∂U = ΓD ∪ ΓS

Fig. 1. Admissible domain Ω.

For f ∈ C∞(U), we consider the following Sig-
norini problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−∆u + u = f in Ω,

u = 0 on ΓD,

∂nu = 0 on ΓN ,

u ≥ 0, ∂nu ≥ 0, u∂nu = 0 on ΓS ,

(2)

where n is the unit outward normal vector to ∂Ω and ∂n

stands for the normal derivative on ∂Ω. The Signorini
problem (2) admits a unique weak solution u(Ω) ∈ K(Ω)
satisfying the variational inequality

∫

Ω

∇u · ∇(v − u) dx ≥
∫

Ω

(f − u)(v − u) dx,

∀v ∈ K(Ω), (3)

with

K(Ω) = {v ∈ H1
ΓD

(Ω)| v ≥ 0 a.e. on ΓS}, (4)

and where H1
ΓD

(Ω) stands for the classical Sobolev space
of functions which belong to H1(Ω) and with null traces
on the boundary ΓD.

Now, let us consider the energy functional

E(Ω, u) =
1

2

∫

Ω

(

|∇u|2 + u2
)

dx −
∫

Ω

fu dx. (5)

Observe that the energy E(Ω, u) can also be written as

E(Ω, u) = −1

2

∫

Ω

(

|∇u|2 + u2
)

dx

= −1

2

∫

Ω

fu dx.
(6)

In this paper, we are interested in the shape functional

J(Ω) = E(Ω, u) + λA(Ω) − µPc(Ω)2, (7)

where A(Ω) and Pc(Ω) are defined by

A(Ω) = |Ω|, (8)

Pc(Ω) = max(0, ℓ(∂Ω) − c). (9)

In the above definitions, |Ω| denotes the Lebesgue mea-
sure of Ω in R

2 and ℓ(∂Ω) is the 1-dimensional Hausdorff
measure of ∂Ω. The constants λ and µ are positive and
allow us to take into account the area and the perimeter
constraint, respectively. The constant c is positive and de-
fines a shift of the perimeter beyond which the perimeter
constraint becomes active. All constants have to be well
chosen for efficient and appropriate solutions of the nu-
merical problem.

For any k ≥ 1, we are interested in the following
shape optimization problem:

max{J(Ω) : Ω ∈ Ok}. (10)

Since the exterior boundary of Ω is fixed to be ∂U ,
the domains Ω admissible in (10) are actually determined
by their internal boundary ΓN . We refer the reader to
(Laurain, 2006) for an existence result of an optimal do-
main in (10) for the case of the linear problem, i.e., with
ΓS = ∅.

In the following two sections, we study the shape
differentiability, and we perform an asymptotic analysis
which results in topological derivatives of the functional
J . To make the paper self-contained, we provide the
proofs in Appendix. Then, in Section 5, we construct a
level set representation based on the shape derivative of
J . This formulation provides a practical way to increase
the numerical values of the shape functional J . The ap-
pearance of a new hole is not possible with the only use
of the level set method based on the shape derivatives. In
particular, the knowledge of topological derivatives allows
us to create a new hole in order to increase J .

Finally, in Section 6, a numerical algorithm of shape
optimization is described. The finite element method for
the Signorini problem is introduced in Section 7. In Sec-
tion 8, a finite difference method for Hamilton-Jacobi
equations is introduced. Numerical results are presented
in Section 9.
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3. Shape Derivative

The shape derivatives of solutions for the Signorini prob-
lem can be evaluated by an application of the abstract re-
sult on Hadamard differentiability of the projection op-
erator onto convex sets in Hilbert spaces (Jarusek et

al., 2003). A complete study of shape differentiation of
solutions of elliptic equations and variational inequali-
ties can be found in the monographs (Delfour and Zole-
sio, 2001; Henrot and Pierre, 2005; Sokołowski and Zole-
sio, 1992).

Let δ ≥ 0 be a given parameter and ξ ∈ C∞
0 (U) a

given vector field. We consider the mapping Fδ = I + δξ
and we set Ωδ = Fδ(Ω). Since ξ has compact support in
U , for small δ we have that Ωδ ⊂ U and Fδ(∂U) = ∂U ,
that is, the exterior boundary of Ω is maintained fixed.

There exists a unique element uδ ∈ Kδ(Ωδ) given
by a solution to the following variational inequality: Find
uδ ∈ Kδ(Ωδ) such that for all v ∈ Kδ(Ωδ)

∫

Ωδ

∇uδ · ∇(v − uδ) dx ≥
∫

Ωδ

(f − uδ)(v − uδ) dx, (11)

where

Kδ(Ωδ) = {v ∈ H1(Ωδ)| v = 0 a.e. on ΓD,

v ≥ 0 a.e. on ΓS}.
(12)

We assume that Ω is a smooth domain. It can be
easily shown that the limit

dJ(Ω, ξ) := lim
δ→0

J(Ωδ) − J(Ω)

δ
(13)

exists and is equal to

dJ(Ω; ξ) =

∫

ΓN

(

1

2
|∇u|2 +

1

2
u2 − fu

)

〈ξ, n〉dσ

+

∫

ΓN

(λ − 2µPc(Ω)H)〈ξ, n〉dσ, (14)

where H is the curvature of the boundary ΓN and n is the
unit normal vector to ΓN , directed outwards of Ω.

4. Topological Derivative

4.1. Topological Derivatives for Variational In-

equalities. A method for the evaluation of topologi-
cal derivatives for variational inequalities is proposed in
(Sokołowski and Żochowski, 2005a). The method is
based on the so-called conical differentiability of solutions
to variational inequalities with respect to the coefficients
of the governing differential operator. It is required that
the metric projection in the energy space onto the convex
set K be Hadamard differentiable with respect to the per-
turbations of the point. Such a property is sufficient to

obtain the directional differentiability of solutions to the
variational inequality with respect to the boundary varia-
tions and, as a result, with respect to the changes in the
topology by the creation of a small hole. We derive the
result for a specific problem, and obtain the topological
derivative of the energy functional, which is, in fact, of the
same form as in the case of a linear problem. However, the
proof of this result is not the same and from the technical
point of view it is much more involved. In particular, the
results obtained by the linearization of nonlinear problems
are not applicable to the Signorini problem, which cannot
be linearized. Therefore, the so-called truncation method
(Amstutz and Andrä, 2006) cannot be used in order to ob-
tain the topological derivatives for variational inequalities.
The reason is that in the case of variational inequalities the
adjoint state cannot be introduced.

4.2. Topological Derivative of the Energy Functional.

For simplicity, in this section we assume that Ω = U
(i.e., ΓN = ∅) and that the boundary ∂U will only re-
ceive the Signorini conditions (i.e., ΓD = ∅), so that
∂Ω = ∂U = ΓS . Let us now consider the perforated
domain Ωρ = U \ Bρ, where Bρ is the ball of radius
ρ, centered at x0 and with boundary Γρ = ∂Bρ. In or-
der to study the topological derivative of the functional
J for the nonlinear Signorini problem, we need to derive
the asymptotic expansion with respect to ρ of the energy
E(Ωρ, uρ), where uρ is the solution to the Signorini prob-
lem

⎧

⎪

⎨

⎪

⎩

−∆uρ + uρ = f in Ωρ,

uρ ≥ 0, ∂nuρ ≥ 0, uρ ∂nuρ = 0 on ΓS ,

∂nuρ = 0 on Γρ.

(15)

To this end, we shall make use of the so-called trun-
cated domain technique (Masmoudi, 2002; Sokołowski
and Żochowski, 2005a). In this section we explain the
main lines of the technique used in order to derive the
asymptotic expansion of the functional J . The detailed
proofs of the results of this section can be found in Ap-
pendix.

Now, we describe the truncated domain technique for
the Signorini problem. Let us denote by ΩR the domain

ΩR = U \ BR, (16)

where BR is the ball of radius R with R > ρ, centered
at x0, and we define the ring C(R, ρ) such that Ωρ =
ΩR ∪ ΓR ∪C(R, ρ). We consider the following truncated
problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∆uR
ρ + uR

ρ = f in ΩR,

uR
ρ ≥ 0, ∂nuR

ρ ≥ 0, uR
ρ ∂nuR

ρ = 0 on ΓS ,

−∂nyρ + ∂nuR
ρ = Aρ(u

R
ρ ) on ΓR.

(17)
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In the above problem, Aρ is the Steklov-Poincaré operator
defined by

Aρ :

{

H
1

2 (ΓR) → H− 1

2 (ΓR)

v → ∂nwρ

, (18)

where wρ = wρ(v) is the unique solution of the problem

⎧

⎪

⎨

⎪

⎩

−∆wρ + wρ = 0 in C(R, ρ),

wρ = v on ΓR,

∂nwρ = 0 on Γρ,

(19)

with a given v ∈ H
1

2 (ΓR).

Finally, the function yρ appearing in the problem (17)
is the solution to the following problem:

⎧

⎪

⎨

⎪

⎩

−∆yρ + yρ = f|C(R,ρ) in C(R, ρ),

yρ = 0 on ΓR,

∂nyρ = 0 on Γρ.

(20)

Then the following result can be easily proved.

Proposition 1. The solution uR
ρ to the problem (17)

satisfies

uR
ρ = uρ|ΩR

, (21)

and we also have

uρ|C(R,ρ) = wρ(u
R
ρ ) + yρ, (22)

with wρ and yρ denoting the solutions to (19) and (20),
respectively.

In order to obtain the topological derivative of J , we
have to perform an asymptotic analysis of the energy func-
tional E(Ωρ, uρ) with respect to the small radius ρ. Recall
that, cf. (6),

E(Ωρ, uρ) = −1

2

∫

Ωρ

(

|∇uρ|2 + u2
ρ

)

dx.

Using the domain truncation technique, in the version
adapted to our problem (Sokołowski and Żochowski,
2005a), we can split the integral in two parts and obtain

E(Ωρ, uρ) = E(ΩR, uR
ρ ) − 1

2
E(1)

ρ (uR
ρ ) +

1

2
E(2)

ρ (f),

(23)
where

E(ΩR, uR
ρ ) = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx (24)

and

E(1)
ρ (uR

ρ ) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx, (25)

with wρ = wρ(uR
ρ ) and

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx. (26)

Using an abstract result on the conical differentia-
bility of the solution of a variational inequality given
in (Jarusek et al., 2003), we can adapt a result from
(Sokołowski and Żochowski, 2005a) and show that the so-
lution uR

ρ of (2) on the truncated domain ΩR admits the
following expansion:

uR
ρ − uR

0 = O(ρ2). (27)

Actually, it can be proved that there exists a function q
called the exterior topological derivative of the solution u
to the Signorini problem (2) such that

uR
ρ = uR

0 + ρ2q + o(ρ2). (28)

This function q is the unique solution of a variational in-
equality and does not depend on ρ. More precisely, the
following result holds true (see (Rao and Sokołowski,
2000) for a simple proof of the conical differentiability
for the Signorini problem):

Proposition 2. The exterior topological derivative is

given by the restriction of the solution to the problem

q ∈ SK(u) : a(q, ϕ − q) + b(u, ϕ − q) ≥ 0

to ΩR for all ϕ ∈ SK(u). In the above, the bilinear form

a is given by a(u, v) =
∫

Ω ∇u · ∇v + uv, the bilinear

form b(u, v) is the first variation of the energy functional

(see (Sokołowski and Żochowski, 2003) for an equivalent

expression of such a variation), and the cone is defined by

SK(u) = { v ∈ H1
ΓD

(Ω)| v ≥ 0 a.e. on Ξ(u),

a(u, v) = (f, v) }

with the coincidence set Ξ(u) = {x ∈ ΓS | u(x) = 0}.

Moreover, the expansion (28) of uR
ρ with respect to ρ is

valid in ΩR, for all R > 0.

The expansion (27) allows us to perform the asymp-
totic expansion of (23) and we obtain (see the Appendix
for the proof)

E(Ωρ, uρ)

= E(Ω, u) −
[

u(x0)
2

2
+ |∇u(x0)|2 − f(x0)u(x0)

]

· πρ2 + o(ρ2). (29)

Now, using the expansions

A(Ωρ) = A(Ω) − πρ2, (30)

Pc(Ωρ)
2 = Pc(Ω)2 + 4πPc(Ω)ρ + o(ρ2), (31)
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we obtain the asymptotic expansion for J .

Theorem 1. We have the following expansion of J(Ωρ):

J(Ωρ)

= J(Ω)

−
[

u(x0)
2

2
+ |∇u(x0)|2 − f(x0)u(x0) + λ

]

πρ2

− 4µπPc(Ω)ρ + o(ρ2), (32)

and the topological derivative TΩ(x0) of the functional J
at point x0 ∈ Ω is given by

TΩ(x0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−|∇u(x0)|2 − 1
2u(x0)

2 + uf(x0) − λ

if Pc(Ω) = 0,

−4µPc(Ω) if Pc(Ω) > 0.

(33)

5. Level Set Formulation

5.1. Hamilton-Jacobi Equation. The basic idea of the
level set method is to represent a domain and its bound-
ary as level sets of a continuous function φ defined on the
whole domain U .

Let us consider the evolution of a domain Ω ⊂ U ⊂
R

2 under a velocity field ξ. More precisely, we define
Ωt = (I + tξ)(Ω), t ∈ R

+, with a smooth vector field
ξ. The domain and the boundary are defined by a function
φ = φ(x, t) such that

Ωt = {x ∈ U, φ(x, t) < 0} (34)

and
∂Ωt = {x ∈ U, φ(x, t) = 0}, (35)

i.e., the boundary ∂Ωt is the level curve of the function φ
(see Fig. 2).

Ω (t)
φ

>0 φφ

>0

φ=0

φ=0

<0

n

n

Fig. 2. Domain and level set function.

Let x(t) be the position of a particle on the bound-
ary ∂Ωt moving with velocity ξ = ẋ(t). Differentiating

the relation φ(x(t), t) = 0 with respect to t leads to the
transport equation

φt + ξ · ∇φ = 0. (36)

Moreover, the normal directions n to the level sets of φ
are given by n = ∇φ/|∇φ|. The evolution of φ is then
governed by the Hamilton-Jacobi equation

φt + ξn|∇φ| = 0 in U × R
+, (37)

where ξn is the normal velocity (the normal component
of V ), i.e., ξn = 〈ξ, n〉. Initial data and boundary con-
ditions have to be imposed together with the Hamilton-
Jacobi equation (37). The initial data φ(0, x) = φ0(x)
are chosen as the signed distance function to the initial
boundary ∂Ω0 = ∂Ω, i.e.,

φ0(x) = ± dist(x, ∂Ω0), (38)

with the minus (resp. plus) sign if the point x is inside
(resp. outside) the initial domain Ω0 = Ω .

A boundary condition also has to be imposed on the
part of the boundary ∂U of the domain U where the nor-
mal velocity ξn is negative, i.e., where the velocity is di-
rected inwards the domain U . Alternatively, we decide to
impose a homogeneous Neumann boundary condition on
the whole boundary ∂U :

∂nφ = 0 on ∂U. (39)

5.2. Normal Velocity for the Level Set Equation.

When a hole is created inside the domain, the bound-
ary conditions for the state equation on the boundary of
the hole are of the Neumann type. The shape deriva-
tive is then given by (14). Since we locally (i.e., under
small perturbations of the domain) require that the condi-
tion dJ(Ω; ξ) > 0 be satisfied, this leads to the following
choice for the normal component ξn = 〈ξ, n〉 of the ve-
locity field ξ:

ξn =
1

2
|∇u|2+1

2
u2−uf+λ−2µPc(Ω)H on ΓN . (40)

With a velocity field ξ satisfying (40), we clearly have
dJ(Ω; ξ) > 0 and then J(Ωt) > J(Ω) for t small enough.

The Hamilton-Jacobi equation (37) necessitates ve-
locity fields defined in the whole domain U . So, we need
an extension to U of the normal velocity, given by the
shape gradients in the following form:

ξn = Vn − 2µPc(Ω)H on ΓN , (41)

with

Vn =
1

2
|∇u|2 +

1

2
u2 − uf + λ on ΓN . (42)
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The curvature H is given by

H = div

( ∇φ

|∇φ|

)

(43)

and, therefore,H is defined in U . The normal velocity part
Vn given by (42) has to be extended outside the boundary
ΓN . Let Vext denote such an extension (see Section 8.1
below for a detailed construction). The Hamilton-Jacobi
equation is then

φt+

(

Vext − 2µPc(Ω) div

( ∇φ

|∇φ|

))

|∇φ| = 0 in U×R
+.

(44)

6. Shape Optimization Algorithm

Let us now describe the steps of the general shape opti-
mization algorithm.

First step: Initial domain

First of all, we choose an initial domain Ω0 and we com-
pute the solution to the Signorini problem (2) in Ω0.
This is performed using a piecewise linear finite element
method on appropriate (unstructured) meshes with the
Uzawa algorithm for the treatment of the boundary con-
straint (see Section 7 for details). Then we compute the
topological derivative TΩ0(x) for all x ∈ Ω0, according to
(33).

Second step: Creating a hole

We use the topological derivative to create a hole in the
domain Ω0. More precisely, we find a point x0 ∈ Ω0

such that TΩ0(x0) = maxx∈Ω0 TΩ0(x). If TΩ0 (x0) > 0,
then we create a circular hole ωρ of a small radius ρ > 0,
centered at x0. We denote by Ω0

∗ the new domain with
the hole. A Neumann condition will be imposed on the
boundary of the new hole. Observe that the radius of
this hole should be as small as possible, depending on the
space step of the mesh.

Third step: Evolution

Now we proceed with the evolution of the domain Ω0
∗.

We need to compute the solution φ to the Hamilton-Jacobi
equation (37)–(39) with (41)–(43). The initial φ is taken
as the signed distance function on the domain Ω0

∗. Ac-
cording to (40), we compute the normal velocity ξn on
the internal boundary part ΓN of ∂Ω0

∗. Remark that this
requires a new computation of the solution for the Sig-
norini problem in Ω0

∗. Since the normal velocity ξn is only
known on the boundary part ΓN , we need to extend ξn to
the whole domain U . This is required in order to solve the
level set equation (37) in U . The next section will explain
how to proceed with the construction of the extended nor-
mal velocity in a numerically accurate way.

Several iterations of the Hamilton-Jacobi equations
are needed in order to determine the new domain Ω1.
Then we go back to the first step with Ω1, which replaces
Ω0.

7. Numerical Method for the Signorini

Problem

We use a piecewise linear finite element method with the
Uzawa algorithm to compute a solution to the Signorini
problem (2). The Uzawa algorithm is used for the non-
negative boundary constraint on ΓS . In the finite element
framework, we are looking for uh ∈ U ⊂ R

n such that

Eh(uh) = inf
v∈U

Eh(v),

where U = {v ∈ R
n | Cv ≥ 0} and where the approxi-

mate energy functional

Eh(v) =
1

2
(Av, v) − (b, v)

corresponds to the finite element discretization of the en-
ergy functional

E(v) =
1

2

⎛

⎝

∫

Ω

|∇v|2 + v2 dx

⎞

⎠ −
∫

Ω

fv dx.

In the above definition of Eh, the matrix A ∈ Mn×n(R)
is the usual stiffness-mass matrix associated with natural
Neumann boundary conditions on ΓS . The vector b ∈ R

n

is given by the finite element discretization of the source
term f . The matrix C ∈ Mm×n(R) in the definition of
the space U selects the entries of a vector only on the
nodes located at the boundary ΓS (m is the number of
nodes on the Signorini boundary ΓS).

The Uzawa algorithm consists in the computation of
a sequence (uk

h, λk
h) ∈ R

n × R
+, k ≥ 0, defined by the

following relations:

• Auk
h − b − CT λk

h = 0,

• λk+1
h = max(λk

h − ρ(Cuk
h)i, 0) for 1 ≤ i ≤ m.

Under the condition that 0 < ρ < 2λ1(A)/‖C‖2, where
λ1(A) denotes the smallest eigenvalue of A, the sequence
uk

h converges to a finite element approximation uh of the
Signorini problem (2).

8. Numerical Method for the Level Set

Equation

Now we describe how to construct the extended normal
velocity on the whole domain U and how to solve the level
set equation (37).

Let us start with a general remark on the numerical
solution of (37). For the sake of numerical accuracy, the
solution of the level set equation (37) should be neither too
flat nor too steep. This condition is fulfilled, e.g., if φ is
the distance function, i.e., |∇φ| = 1. Unfortunately, even
if we start with a (signed) distance function for the initial
data φ0, the solution φ of the level set equation (37) does
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not generally remain close to any distance function. We
can perform a reinitialization of φ at a time t by determin-
ing the solution ϕ = ϕ(x, τ) of the following equation, up
to the stationary state (Peng et al., 1999):

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in U × R
+, (45)

ϕ(x, 0) = φ(x, t), x ∈ U, (46)

Here S is an approximation to the sign function, i.e.,

S(d) =
d

√

d2 + |∇d|2ε2
(47)

with ε = min(∆x, ∆y), where ∆x and ∆y stand for the
space discretization steps in the x and y directions, respec-
tively (see below). Other choices are also possible for the
approximate sign function. We refer the reader to (Peng
et al., 1999) for details.

8.1. Extended Normal Velocity. The normal velocity
part Vn (see (42)) should be defined on the whole domain
U for the well posedness of the level set equation (37).
Since the normal velocity Vn is only given on the bound-
ary ΓN , we need to extend Vn to the domain U . Another
reason for extending the velocity is to enforce the solution
φ of the level set equation to remain (close to) the distance
function. Indeed, if we are able to compute an extended
normal velocity Vext such that

∇Vext · ∇φ = 0 in U × R
+, (48)

then it can be shown (Zhao et al., 1996) that the solution
φ to the level set equation (37) satisfies |∇φ| = 1. A way
to construct an extension Vext satisfying (48) at time t is
to solve the following equation for q, up to the stationary
state (Osher and Fedkiw, 2004; Peng et al., 1999):

qτ + S(φ)
∇φ

|∇φ| · ∇q = 0 in U × R
+ (49)

q(x, 0) = p(x, t), x ∈ U, (50)

where p equals Vn given by (42) on the boundary ΓN and
0 elsewhere. The function S is the approximate sign func-
tion defined by (47).

8.2. Discretization of the Level Set Equation. We fix
U as the unit square U = (0, 1)×(0, 1). For the discretiza-
tion of the Hamilton-Jacobi equation (37), we first define
the mesh grid of U . We introduce the nodes Pij whose co-
ordinates are given by (i∆x, j∆y), where ∆x and ∆y are
the discretization steps in the x and y directions, respec-
tively. Let us also denote by tk = k∆t the discrete time
for k ∈ N, where ∆t is the time step. We are seeking an
approximation φk

ij ≃ φ(Pij , t
k). The numerical scheme

we use was proposed in (Osher and Fedkiw, 2004; Osher

and Sethian, 1988; Sethian, 1996). This explicit upwind
scheme is

φk+1
ij = φk

ij − ∆t g(Dx
−φk

ij , D
x
+φk

ij , D
y
−φk

ij , D
y
+φk

ij),
(51)

where

Dx
−φij =

φij − φi−1,j

∆x
, Dx

+φij =
φi+1,j − φij

∆x
(52)

are respectively the backward and forward approxima-
tions of the x-derivative of φ at Pij . Similar expres-
sions hold for the approximations Dy

− and Dy
+ of the y-

derivative. The numerical flux is given by

g(Dx
−φij , D

x
+φij , D

y
−φij , D

y
+φij)g

(1)
ij + g

(2)
ij . (53)

The numerical flux part g
(1)
ij corresponds to the discretiza-

tion of the first-order part of the Hamilton-Jacobi equation
and is given by

g
(1)
ij = max(vij , 0)G+ + min(vij , 0)G−

with

G+ =
[

max(Dx
−φij , 0)2 + min(Dx

+φij , 0)2

+ max(Dy
−φij , 0)2 + min(Dy

+φij , 0)2
]1/2

,

G− =
[

min(Dx
−φij , 0)2 + max(Dx

+φij , 0)2

+ min(Dy
−φij , 0)2 + max(Dy

+φij , 0)2
]1/2

,

and vij = Vext(Pij) is the extended normal velocity at
point Pij .

The numerical flux part g
(2)
ij in (53) is the cen-

tered finite difference approximation of the second-order
term of the Hamilton-Jacobi equation, i.e., g

(2)
ij ≃

−2µPc(Ω)H|∇φ|(Pij ).

This upwind scheme is stable under the following
two conditions:

(max
U

|Vext|)
∆t

min(∆x, ∆y)
≤ 1

2
√

2
, (54)

4µPc(Ω)
∆t

min(∆x2, ∆y2)
≤ 1. (55)

The condition (54) arises from the upwind part of the
scheme corresponding to the discretization of the first-
order term of the Hamilton-Jacobi equation. The condi-
tion (55) comes from the centered difference discretiza-
tion used for the second-order term involving the curva-
ture.
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8.3. Computing the Extended Velocity. At each iter-
ation k of the previous scheme, we compute the extended
normal velocity Vext as the stationary solution of (49) and
(50). We compute qn

ij ≃ q(Pij , t
n) from the following

upwind approximation of (49) :

qn+1
ij = qn

ij − ∆τ [ max(sijn
x
ij , 0)Dx

−qij

+ min(sijn
x
ij , 0)Dx

+qij

+ max(sijn
y
ij , 0)Dy

−qij

+ min(sijn
y
ij , 0)Dy

+qij ] , (56)

where sij = S(φn
ij). We use central differences to com-

pute the approximation nij of the unit normal vector n =

(nx, ny) = (φx/
√

φ2
x + φ2

y , φy/
√

φ2
x + φ2

y) at node Pij .

The initial value q0 coincides with Vn at the grid points
with the distances to the interface less than min(∆x, ∆y)
and is zero elsewhere.

9. Numerical Results

We fix U as the unit square U = (0, 1) × (0, 1) and we
choose ΓD = ∅, i.e., Signorini conditions are imposed on
the external boundary ∂U .

First numerical example. We first present a numerical
computation performed with

λ = 0.3, µ = 0.001, c = 4.6.

The source term f is chosen with compact support in U
and is given by (see Fig. 3)

f =

⎧

⎪

⎨

⎪

⎩

10 in [0.2, 0.4]2,

−10 in [0.6, 0.8]2,

0 elsewhere.

Fig. 3. First numerical example: the source
function f .

The initial domain is chosen as U \ ω0, where ω0 is a cir-
cle of radius 0.25 centered at (0.5, 0.5) (see the first plot
of Fig. 5). We observe that the initial hole ω0 disappears
thanks to the use of the shape derivative in the level set for-
mulation. On the other hand, two other holes are created
in different locations by the application of the topologi-
cal derivative. We also observe that the functional J con-
verges to a maximum which is equal to 0.2798122, while
the domain also converges to an optimal domain Ω (see
Fig. 5). The numerical solution u and its gradient are rep-
resented in Fig. 4 when the optimal domain is achieved.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u

−0.02

−0.01

0

0.01

0.02

0.03

Fig. 4. First numerical example: the numerical
solution u on the optimal domain.

Second numerical example. Now we present a numerical
computation performed with

λ = 1, µ = 0.4, c = 4.6.

The source term f is not compactly supported in U any-
more and is given by (see Fig. 6):

f = 100(2x− y)y(1 − x).

We choose the initial domain as the whole domain
U without any initial hole. The numerical solution u and
its gradient when the optimal domain is reached are rep-
resented in Fig. 8. There it can be clearly observed that
the Signorini boundary ΓS can be divided into two parts:
the first part with the homogeneous Dirichlet boundary
condition and the second one with the homogeneous Neu-
mann boundary condition. It should be mentioned that the
splitting of such boundary conditions cannot be predicted
without computations.

Let us point out that the evolution of the domain is
very sensitive to small perturbations as we can see from
the oscillations of the energy functional during the iter-
ations. This is due to the fact that the shape derivative
is only a directional derivative for the nonlinear Signorini
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Valeur optimale: 0.2798122

Fig. 5. First numerical example: the evolution of the domain and shape functional J .

problem while it is a Fréchet derivative for the related lin-
ear problem obtained with ΓS = ∅, i.e., when the external
boundary only has Dirichlet boundary conditions.
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Appendix

Topological Derivative with Neumann

Conditions on the Hole

We present results which are used in order to determine
the topological derivatives of the energy functional. The
technique is proposed in (Masmoudi, 2002; Sokołowski
and Żochowski, 2005a). The proof of the asymptotic
expansion of the Steklov-Poincaré operator is given in
(Sokołowski and Żochowski, 2005b). For the reader’s
convenience, we present complete arguments.

The domain decomposition technique can be de-
scribed in the following way. The actual domain is di-
vided into two parts Ωρ = ΩR ∪ ΓR ∪ C(R, ρ). The
singular perturbation of the domain is located in the ring
C(R, ρ), the moving part of its boundary Γρ for ρ > 0
being a small parameter. In the other part of its bound-
ary ΓR, the Steklov-Poincaré operator is defined and the
asymptotics of the operator are determined as a function
of the parameter ρ. The second domain ΩR of the de-
composition depends only on the parameter ρ > 0 by
the nonlocal boundary conditions prescribed in terms of
the Steklov-Poincaré operator Aρ, so we have the regular
perturbation of the boundary conditions for the nonlinear
boundary value problem in ΩR. The conical differentia-
bility of solutions to the variational inequality in ΩR is
shown and results in the asymptotic expansion of the en-
ergy functional for our shape optimization problem under
investigation.

Now we give the asymptotic expansions of the en-
ergy terms E

(1)
ρ (v), E

(2)
ρ (f) and E(Ωρ, uρ) appearing in

the relation (23). For simplicity, we shall assume that
x0 = 0.

A1. Asymptotic Expansion of E
(1)
ρ (v). To begin with,

for any v in H
1

2 (ΓR), we consider the following problem

(see (19)):

⎧

⎪

⎨

⎪

⎩

−∆wρ + wρ = 0 in C(R, ρ),

wρ = v on ΓR,

∂nwρ = 0 on Γρ.

(A1)

The Steklov-Poincaré operator Aρ is defined in the fol-
lowing way:

Aρ :

{

H
1

2 (ΓR) → H− 1

2 (ΓR),

v → ∂nwρ.
(A2)

Since v ∈ H
1

2 (ΓR), we can write v in the form of the
Fourier series, with (r, φ) being the polar coordinates at
the origin,

v(φ) =
1

2
a0 +

∞
∑

k=1

(ak sin(kφ) + bk cos(kφ)).

The coefficients satisfy

∞
∑

k=1

√

1 + k2(a2
k + b2

k) ≤ M,

where M is a constant depending only on R. This implies
two important properties:

∞
∑

k=1

(a2
k + b2

k) ≤ M,
∞
∑

k=1

k(a2
k + b2

k) ≤ M. (A3)

The following result gives the asymptotic expansion
of the energy term:

E(1)
ρ (v) =

∫

C(R,ρ)

(

|∇wρ|2 + w2
ρ

)

dx (A4)

where wρ = wρ(v) is the solution to (A1).

Theorem 2. The energy E
(1)
ρ (v) admits the expansion

E(1)
ρ (v) = E(1)(v) −

(

π(a2
1 + b2

1)

2I1(R)2
+

πa2
0

4I0(R)2

)

ρ2

+ R(v),

with E(1)(v) = E
(1)
0 (v) and R(v) = o(ρ2) uniformly on

bounded subsets of H1(ΩR). The Bessel functions I0 and

I1 are defined in (A11).

Proof. Since every compact set can be covered by a fi-
nite number of balls, it is enough to prove the lemma for a
fixed ball in H1(ΩR). Thus we can assume that (A3) oc-
curs. The proof consists in obtaining explicit formulas for
w and wρ in series. Then we can calculate energies explic-
itly and obtain an upper bound for the remainder R(v).
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We look for the solution wρ of (A1) in C(R, ρ) of the
form

wρ(r, φ)

=
1

2
a0c0,ρ(r) +

∞
∑

k=1

ck,ρ(r)(ak sin(kφ)

+ bk cos(kφ)). (A5)

The Laplacian in polar coordinates is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂φ2
.

Inserting (A5) in −∆wρ + wρ = 0, for k ≥ 1, we obtain

c′′k,ρ(r) +
1

r
c′k,ρ(r) − (

k2

r2
+ 1)ck,ρ(r) = 0, (A6)

and

c′′0,ρ(r) +
1

r
c′0,ρ(r) − c0,ρ(r) = 0. (A7)

Multiplying (A6) and (A7) by r2, for k ≥ 1, we get

r2c′′k,ρ(r) + rc′k,ρ(r) − (k2 + r2)ck,ρ(r) = 0 (A8)

and
r2c′′0,ρ(r) + rc′0,ρ(r) − r2c0,ρ(r) = 0. (A9)

According to (Watson, 1944), the solutions to (A8)
and (A9) are given by

ck,ρ(r) = AkIk(r) + BkKk(r), k ≥ 0, (A10)

where Ak,Bk ∈ R and with Ik and Kk being Bessel func-
tions defined by

Ik(r) =

∞
∑

m=0

( r
2 )k+2m

m!(k + m)!
, k ≥ 0, (A11)

and, for k ≥ 1,

Kk(r) =
1

2

k−1
∑

m=0

(−1)m(k − m − 1)!

m!( r
2 )k−2m

+

∞
∑

m=0

(−1)k+1( r
2 )k+2m

m!(k + m)!
K̃m(r) (A12)

with

K̃m(r) =

[

ln
( r

2

)

− 1

2
ψ(m + 1) − 1

2
ψ(k + m + 1)

]

,

and ψ as the logarithmic derivative of function Γ, i.e.,

ψ(x) =
∂

∂h
ln Γ(x + h). (A13)

Finally, for k = 0,

K0(r) = − ln
( r

2

)

I0(r)+

∞
∑

m=0

( r
2 )2m

m!2
ψ(m+1). (A14)

The boundary conditions on ΓR and Γρ allow us to
obtain the following systems for k ≥ 0:

AkIk(R) + BkKk(R) = 1,

AkI ′k(ρ) + BkK ′
k(ρ) = 0.

We deduce the expression of ck,ρ(r) for k ≥ 0 in a
form suited for the asymptotic expansion when ρ → 0:

ck,ρ(r) =
Ik(r)

Ik(R)
+ ċk,ρ(r) (A15)

with

ċk,ρ(r) = −
I′

k(ρ)
K′

k
(ρ)

Ik(R)
Kk(R) −

I′

k
(ρ)

K′

k
(ρ)

[

Kk(r)

Kk(R)
− Ik(r)

Ik(R)

]

.

For k ≥ 1, from (A11) and (A12) we deduce that

I ′k(ρ) =
ρk−1

2k(k − 1)!
+ O(ρk+1), (A16)

K ′
k(ρ) = −k!2k−1

ρk+1
+ o(ρ−k−1), (A17)

so that

I ′k(ρ)

K ′
k(ρ)

− ρ2k

k!(k − 1)!22k−1
+ o(ρ2k), k ≥ 1. (A18)

In particular, we get

I ′1(ρ)

K ′
1(ρ)

= −ρ2

2
+ o(ρ2). (A19)

For k = 0, from (A11) and (A14) we deduce that

I ′0(ρ) =
ρ

2
+ O(ρ3), K ′

0(ρ) = −1

ρ
+ o(ρ). (A20)

Thus we have

I ′0(ρ)

K ′
0(ρ)

= −ρ2

2
+ o(ρ2). (A21)

The function wρ can be extended as

wρ = w + zρ, (A22)

where w is the solution to the problem (A1) for ρ = 0
given by

w(r, φ) =
1

2
a0

I0(r)

I0(R)
+

∞
∑

k=1

Ik(r)

Ik(R)
(ak sin(kφ)

+ bk cos(kφ)), (A23)

and

zρ(r, φ) =
a0

2
ċ0,ρ(r) +

∞
∑

k=1

ċk,ρ(r)(ak sin(kφ)

+ bk cos(kφ)). (A24)
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Using (A22) in (A4), we get

E(1)
ρ (v) =

∫

C(R,ρ)

(

|∇w + ∇zρ|2 + (w + zρ)
2
)

dx

(A25)
and then

E(1)
ρ (v) = E(1)(v) + I1 + I2 + I3 (A26)

with

I1 =

∫

C(R,ρ)

(

(∂rzρ)
2 +

1

r2
(∂φzρ)

2 + z2
ρ

)

dx, (A27)

I2 = 2

∫

C(R,ρ)

(∂rw ∂rzρ

+
1

r2
∂φw ∂φzρ + wzρ

)

dx, (A28)

I3 = −
∫

B(ρ)

(

|∇w|2 + w2
)

dx. (A29)

We first deal with the integral term I2. We have

I2 = 2

∫

C(R,ρ)

(〈∇w,∇zρ〉 + wzρ) dx. (A30)

The function w satisfies −∆w+w = 0 in C(R, ρ). More-
over, according to (A22) and (A1), we have that zρ = 0
on ΓR and ∂nw = −∂nzρ on Γρ. Then we obtain

I2 = −2

∫

Γρ

zρ∂nzρ dσ. (A31)

Since n is the outer normal vector to C(R, ρ), we
have ∂nzρ = −∂rzρ on Γρ. Thus, from (A24), and in
view of expansions (A16), (A17) and (A20), we can show
that the main term in I2 is given by

2πρ(a2
1 + b2

1)
dċ1,ρ

dr
(ρ)ċ1,ρ(ρ)

= −2π(a2
1 + b2

1)

4I1(R)2
ρ2 + o(ρ2).

Thus we obtain

I2 = −2π(a2
1 + b2

1)

4I1(R)2
ρ2 + o(ρ2). (A32)

Now we turn to the integral I3. We have

I3 = −
∫

B(ρ)

(

|∇w|2 + w2
)

dx = −
∫

Γρ

w∂rw dσ.

Then it can be shown that

I3 = −
(

πa2
0

4I0(R)2
+

π(a2
1 + b2

1)

4I1(R)2

)

ρ2 + o(ρ2). (A33)

Before calculating I1, we will make some remarks.
First of all, from (A12), for k ≥ 1 we have

R
∫

ρ

rK ′
k(r)2 dr = O(ρ−2k), (A34)

and for k = 0 we get

R
∫

ρ

rK ′
0(r)

2 dr = O(ln ρ), (A35)

Then from (A11), for k ≥ 0

R
∫

ρ

rI ′k(r)2 dr = O(1). (A36)

We now split I1 into two parts I1 = I11 + I12 with

I11 =

∫

C(R,ρ)

(

(∂rzρ)
2 +

1

r2
(∂φzρ)

2

)

dx,

I12 =

∫

C(R,ρ)

z2
ρ dx.

As a consequence, since I ′k(ρ)/K ′
k(ρ) = O(ρ2k) for

k ≥ 1 and since I ′0(ρ)/K ′
0(ρ) = O(ρ2), the main terms in

I11 coming from (∂rzρ)
2 and 1

r2 (∂φzρ)
2 are respectively

given by

2π
∫

0

R
∫

ρ

(

dċ1,ρ

dr
(r)

)2

(a2
1 sin2(kφ) + b2

1 cos2(kφ)r dr dθ

and

2π
∫

0

R
∫

ρ

1

r2
ċk,ρ(r)

2(a2
1 cos2(kφ) + b2

1 sin2(kφ))r dr dθ.

The computation of these two terms leads to

I11 =
π(a2

1 + b2
1)

4I1(R)2
ρ2 + o(ρ2). (A37)

We also show easily that

I12 = o(ρ2). (A38)

Now with (A37), (A38), (A32) and (A33) we can con-
clude that

E(1)
ρ (u) = E(1)(v) −

(

π(a2
1 + b2

1)

2I1(R)2
+

πa2
0

4I0(R)2

)

ρ2

+ o(ρ2). (A39)

The proof is thus complete.
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A2. Asymptotic Expansion of E
(2)
ρ (f). We consider

the problem (see (20))

⎧

⎪

⎨

⎪

⎩

−∆yρ + yρ = f|C(R,ρ) in C(R, ρ),

yρ = 0 on ΓR,

∂nyρ = 0 on Γρ,

(A40)

with f ∈ C∞(R2). We shall study the following function:

f|C(R,ρ) →
∂yρ

∂n

∣

∣

∣

ΓR

= gρ.

We would like to obtain an expansion of gρ with respect
to ρ. We have the following Fourier expansion for f :

f(r, φ) =
1

2
ã0(r)+

∞
∑

k=1

(ãk(r) sin(kφ)+ b̃k(r) cos(kφ)).

Theorem 3. The function gρ admits the expansion

gρ = g0 −
(

ha
0(R) − ã0(0)

4RI0(R)

)

ρ2

−
(

ha
1(R)

2RI1(R)
sinφ +

hb
1(R)

2RI1(R)
cosφ

)

ρ2

+ o(ρ2), (A41)

where ha
0(R) and ha

1(R) are defined in (A54) and hb
1(R)

is obtained from ha
1(R) by substituting b̃1(t) to ã1(t)

in (A54).

Proof. We look for the solution yρ of the problem (A40)
in the form

yρ =
1

2
c0,ρ(r) +

∞
∑

k=1

ck,ρ(r) sin(kφ) + dk,ρ(r) cos(kφ).

(A42)
Inserting (A42) into −∆yρ + yρ = f|C(R,ρ), we obtain,
for k ≥ 0,

r2c′′k,ρ(r) + rc′k,ρ(r) − (k2 + r2)ck,ρ(r) = −r2ãk(r),
(A43)

and, for ≥ 1,

r2d′′k,ρ(r) + rd′k,ρ(r) − (k2 + r2)dk,ρ(r) = −r2b̃k(r).
(A44)

Let us deal first with the coefficients ck,ρ. We
solve (A43) to get (see (Laurain, 2006) for details), for
k ≥ 0,

ck,ρ(r) = Ak(r, ρ)Ik(r) + Bk(r, ρ)Kk(r) (A45)

with

Ak(r, ρ) = LA(r, k) + αk(ρ), (A46)

Bk(r, ρ) = LB(r, k) + βk(ρ), (A47)

and

LA(r, k) = −
r

∫

R

tãk(t)Kk(t) dt, (A48)

LB(r, k) =

r
∫

R

tãk(t)Ik(t) dt. (A49)

The boundary conditions for ck,ρ are now

ck,ρ(R) = 0, c′k,ρ(ρ) = 0.

This leads to the following expression for αk and βk:

αk(ρ) =
LA(ρ, k)

I′

k(ρ)
K′

k
(ρ) + LB(ρ, k)

Ik(R)
Kk(R) −

I′

k
(ρ)

K′

k
(ρ)

, (A50)

βk(ρ) = −αk(ρ)
Ik(R)

Kk(R)
. (A51)

For k ≥ 2, the expansions of αk(ρ) and βk(ρ) provide
terms of orders greater than ρ2. Accordingly, we only
have to deal with the case k = 1 and k = 0.

From (A50) and expansions (A19) and (A21), we get
for i = 0, 1

αi(ρ) =
Ki(R)

Ii(R)

(

LA(ρ, i)
I ′i(ρ)

K ′
i(ρ)

+ LB(ρ, i)

)

×
(

1 +
Ki(R)

Ii(R)

I ′i(ρ)

K ′
i(ρ)

+ O

(

I ′i(ρ)2

K ′
i(ρ)2

))

,

and

αi(ρ) = αi(0) − Ki(R)ha
i (R)

2Ii(R)
ρ2

+
Ki(R)

Ii(R)

ρ
∫

0

tãi(t)Ii(t) dt + o(ρ2), (A52)

with

αi(0) = −Ki(R)

Ii(R)

R
∫

0

tãi(t)Ii(t) dt, (A53)

and

ha
i (R) = −Ki(R)

Ii(R)

R
∫

0

tãi(t)Ii(t) dt +

R
∫

0

tãi(t)Ki(t) dt.

(A54)
Owing to (A51) we also have the expansion

βi(ρ) = βi(0) +
ha

i (R)

2
ρ2 −

ρ
∫

0

tãi(t)Ii(t) dt + o(ρ2),
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with

βi(0) =

R
∫

0

tãi(t)Ii(t) dt. (A55)

Here βk(ρ) gives us terms of order strictly greater than ρ2.
In (A52), the term

∫ ρ

0
tãi(t)Ii(t) dt gives, for i = 0,

ρ
∫

0

tã0(t)I0(t)dt =
ã0(0)

2
ρ2 + O(ρ3). (A56)

On the contrary, for i = 1, we get due to (A11)

ρ
∫

0

tã1(t)I1(t)dt = O(ρ3). (A57)

Thus we have

α0(ρ) = α0(0) − K0(R)(ha
0(R) − ã0(0))

2I0(R)
ρ2 + o(ρ2),

(A58)
and

α1(ρ) = α1(0) − K1(R)ha
1(R)

2I1(R)
ρ2 + o(ρ2). (A59)

Now we can write the expansion of c′k,ρ(R) with re-
spect to the small parameter ρ. We have

c′k,ρ(R) = αk(ρ)I ′k(R) + βk(ρ)K ′
k(R).

Thus we obtain the expansions

c′0,ρ(R) = c′0,0(R) − ha
0(R) − ã0(0)

2

×
(

K0(R)

I0(R)
I ′0(R) − K ′

0(R)

)

ρ2 + o(ρ2),

c′1,ρ(R) = c′1,0(R)

− ha
1(R)

2

(

K1(R)

I1(R)
I ′1(R) − K ′

1(R)

)

ρ2

+ o(ρ2),

and for k ≥ 2

c′k,ρ(R) = c′k,0(R) + o(ρ2). (A60)

Finally, we obtain

c′0,ρ(R) = c′0,0(R)−
(

ha
0(R) − ã0(0)

2RI0(R)

)

ρ2+o(ρ2),

(A61)

c′1,ρ(R) = c′1,0(R)− ha
1(R)

2RI1(R)
ρ2+o(ρ2). (A62)

As regards the expansion of d′k,ρ(R), we obtain ex-
actly the same results by putting the coefficients ãk(r) in

place of the coefficients b̃k(r) in (A61) and (A62). Deriv-
ing the Fourier series, we obtain the following expansion:

∂yρ

∂n

∣

∣

∣

ΓR

1

2
c′0,ρ(R)

+

∞
∑

k=1

c′k,ρ(R) sin(kφ) + d′k,ρ(R) cos(kφ). (A63)

Inserting in (A63) the obtained expansions for c′0,ρ(R),
c′k,ρ(R) and d′k,ρ(R), we get

gρ = g0 −
(

ha
0(R) − ã0(0)

4RI0(R)

)

ρ2

−
(

ha
1(R)

2RI1(R)
sin φ +

hb
1(R)

2RI1(R)
cosφ

)

ρ2

+ o(ρ2). (A64)

The expansion (A41) is then proved.
We are now in a position to compute the expansion

for the energy term

E(2)
ρ (f) = −

∫

C(R,ρ)

(

|∇yρ|2 + y2
ρ

)

dx.

Theorem 4. The energy E
(2)
ρ (f) has the expansion

E(2)
ρ (f)

= E(2)(f) − πha
0(R)2

4
ρ2

−π(ha
1(R)2 + hb

1(R)2)

2
ρ2 + o(ρ2).

Proof. Owing to the previous asymptotic expansions, we
obtain

c0,ρ(r) = c0,0(r) −
ha

0(R) − ã0(0)

2I0(R)
M0(r)ρ

2

+ o(ρ2), (A65)

c1,ρ(r) = c1,0(r) −
ha

1(R)

2I1(R)
M1(r)ρ

2 + o(ρ2), (A66)

where for i = 0, 1, ha
i (R) is given by (A54) and

c0,0(r) = K0(r)

r
∫

0

tã0(t)I0(t) dt

− I0(r)

r
∫

R

tã0(t)K0(t) dt

− K0(R)I0(r)

I0(R)

R
∫

0

tã0(t)I0(t) dt,

Mi(r) = Ki(R)Ii(r) − Ki(r)Ii(R).
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For k ≥ 2, we clearly have

ck,ρ(r) = ck,0(r) + o(ρ2), (A67)

dk,ρ(r) = dk,0(r) + o(ρ2). (A68)

We are able now to give the expansion of the energy.
Using the Green formula, we obtain

E(2)
ρ (f) = −

∫

C(R,ρ)

fyρ dx. (A69)

Then we replace yρ with its expansion in the Fourier se-
ries (A42) and we get

E(2)
ρ (f)

= −1

2

∫

C(R,ρ)

fc0,ρ dx

−
∞
∑

k=1

∫

C(R,ρ)

(fck,ρ sin(kφ) + fdk,ρ cos(kφ)) dx.

(A70)

From (A65) and substituting f with its expansion in
the Fourier series, we have

∫

C(R,ρ)

fc0,ρ dx = π

R
∫

ρ

rã0(r)c0,ρ(r) dr

= π

R
∫

ρ

rã0(r)c0,0(r) dr

+
π(ha

0(R)2 − ã0(0)ha
0(R))

2
ρ2 + o(ρ2)

= π

R
∫

0

rã0(r)c0,0(r) dr

+
π(ha

0(R)2 − 2ã0(0)ha
0(R))

2
ρ2 + o(ρ2).

We also have
∫

C(R,ρ)

fc1,ρ sin φdr

= π

R
∫

ρ

rã1(r)c1,ρ(r) dr

= π

R
∫

ρ

rã1(r)c1,0(r) dr +
πha

1(R)2

2
ρ2 + o(ρ2)

= π

R
∫

0

rã1(r)c1,0(r) dr +
π(ha

1(R)2 + ã1(0)ha
1(R))

2
ρ2

+ o(ρ2).

From the expansion in the Fourier series of f , we clearly
have ã1(0) = 0. Now owing to (A67) and (A68) we can
conclude that

E(2)
ρ (f) = E(2)(f)

− π(ha
0(R)2 − 2ã0(0)ha

0(R))

4
ρ2

− π(ha
1(R)2 + hb

1(R)2)

2
ρ2 + o(ρ2).

The proof is thus complete.

A3. Asymptotic Expansion of E(Ωρ, uρ). The energy
term Eρ = E(Ωρ, uρ) is given by (see (23))

Eρ = −1

2

∫

ΩR

(

|∇uR
ρ |2 + (uR

ρ )2
)

dx

− 1

2
E(1)

ρ (uR
ρ ) +

1

2
E(2)

ρ (f).

Using Theorems 2 and 4, we obtain

Eρ − E0

=

∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ

− π(ha
0(R)2 − 2ã0(0)ha

0(R))

8
ρ2

− π(ha
1(R)2 + hb

1(R)2)

4
ρ2

+

(

π(a2
1 + b2

1)

4I1(R)2
+

πa2
0

8I0(R)2

)

ρ2

+

∫

ΓR

uR
0 ∂n(yρ − y0) dσ + o(ρ2).

From (A23) and (A24) we have

∫

ΓR

Aρ(u
R
ρ )uR

0 dσ −
∫

ΓR

A0(u
R
ρ )uR

0 dσ

=

∫

ΓR

(Aρ − A0)(u
R
0 )uR

0 dσ + o
(

ρ2
)

=

∫

ΓR

w(uR
0 )∂nzρ(u

R
0 ) dσ + o

(

ρ2
)

= − πa2
0

4I0(R)2
ρ2 − π(a2

1 + b2
1)

2I1(R)2
ρ2 + o(ρ2).

In the previous calculation, we have used the expan-
sion (27).
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Finally, thanks to (A64), we obtain
∫

ΓR

uR
0 ∂n(yρ − y0) dσ

=

∫

ΓR

uR
0 (gρ − g0) dσ

= −π

(

a0(R)ha
0(R) − ã0(0)a0(R)

4I0(R)
+

a1h
a
1(R)

2I1(R)

)

ρ2

−π

(

b1h
b
1(R)

2I1(R)

)

ρ2 + o(ρ2).

Finally, with the previous expansions and noticing that
ã0(0) = 2f(0), we obtain the following result:

Theorem 5. The energy E(Ωρ, uρ) admits the following

expansion:

E(Ωρ, uρ)

= E(Ω, u)

−
[

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)

]

πρ2

−
[

a1(R)2 + b1(R)2

4I1(R)2

]

πρ2

−
[

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)

]

πρ2

−
[

ha
1(R)2

4
+

hb
1(R)2

4

]

πρ2

+

[

f(0)a0(R)

2I0(R)
+

f(0)ha
0(R)

2

]

piρ
2 + o(ρ2).

(A71)
The coefficients a0, a1 and b1 are given by

a0(R) =
1

π

2π
∫

0

u(R, φ) dφ,

a1(R) =
1

π

2π
∫

0

u(R, φ) sinφdφ,

b1(R) =
1

π

2π
∫

0

u(R, φ) cosφdφ.

The functions ha
i (R), i = 0, 1 are defined in (A54).

The quantities between brackets in (A71) do not de-
pend on R, and we can easily show that

u(0) =
a0(R)

2I0(R)
+

ha
0(R)

2
,

and therefore

u(0)2

2
=

a0(R)2

8I0(R)2
+

ha
0(R)2

8
+

a0(R)ha
0(R)

4I0(R)
.

Moreover,

|∇u(0)|2

=
a1(R)2 + b1(R)2

4I1(R)2
+

a1(R)ha
1(R)

2I1(R)
+

b1(R)hb
1(R)

2I1(R)

+
ha

1(R)2

4
+

hb
1(R)2

4
.

We then deduce a different expression of the previous
asymptotic expansion, which actually leads to the usual
expression for the topological derivative

E(Ωρ, uρ) = E(Ω, u)

+

[

−u(0)2

2
− |∇u(0)|2 + f(0)u(0)

]

πρ2

+ o(ρ2).

Let us mention that for i = 0, 1

lim
R→0

ha
i (R) = 0,

lim
R→0

hb
1(R) = 0,

and, therefore, (A71) gives an approximation of the topo-
logical derivative that can be calculated on the curve ΓR,
which can be interesting from a numerical point of view.
In particular, it is possible to compute a1(R) and b1(R)
without computing the gradient of the solution u.


