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A LÉVY INSURANCE RISK PROCESS WITH TAXHANSJÖRG ALBRECHER, JEAN-FRANÇOIS RENAUD, AND XIAOWEN ZHOUAbstrat. Using �utuation theory, we identify the ruin probabilityof a general spetrally negative Lévy risk proess with tax payments ofloss arry forward type. We study arbitrary moments of the disountedtotal amount of tax payments and determine the surplus level to starttaxation whih maximizes the expeted disounted aggregate inomefor the tax authority in this model. The results onsiderably generalizethose for the Cramér-Lundberg risk model with tax.1. IntrodutionThe lassial risk model desribes the surplus proess of an insurane om-pany by a stohasti proess U0 = (U0(t))t≥0 with
U0(t) = u+ ct− S(t),where S(t) is a ompound Poisson proess with jump intensity θ and jumpdistribution F (representing the aggregate laim payments up to time t),

u > 0 denotes the initial surplus and c > 0 is a onstant premium intensity.Usually it is assumed that the net pro�t ondition
c > θµholds, where µ denotes the expeted value of the single laim size distribution

F . This ondition ensures that ruin will not our almost surely. As a Lévyproess, U0 has a harateristi exponent given by
Ψ(λ) = − ln E

[

eiλU0(1)
]

= −icλ−
∫ 0

−∞
(eiλz − 1) θF (dz)for λ ∈ R.One way to generalize the lassial risk proess is to onsider an arbitraryspetrally negative Lévy proess, i.e. a proess X = (X(t))t≥0 with inde-pendent and stationary inrements and with harateristi exponent givenby

Ψ(λ) = −icλ+
1

2
σ2λ2 −

∫ 0

−∞
(eiλz − 1 − izI{z>−1})Π(dz),Date: November 29, 2007.2000 Mathematis Subjet Classi�ation. 60G51, 91B30.Key words and phrases. Lévy proess, �utuation theory, sale funtions, insuranerisk theory, ruin probability, tax payments. 1



2 ALBRECHER, RENAUD, AND ZHOUfor λ ∈ R, σ ≥ 0 and where Π is a measure on (−∞, 0) suh that
∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.Here, c > 0 again represents the onstant premium density. The net pro�tondition for this Lévy insurane risk proess now reads
E[X(1)] > 0,whih is equivalent to limt→∞X(t) = ∞ almost surely.An interpretation of suh Lévy risk proesses for the surplus modelling oflarge insurane ompanies is for instane given in Klüppelberg and Kypri-anou [12℄ and Kyprianou and Palmowski [15℄. This model has reently at-trated a lot of researh interest, see e.g. also Furrer [8℄, Yang and Zhang[18℄, Huzak et al. [11℄, Klüppelberg et al. [13℄, Chiu and Yin [6℄ and Garridoand Morales [9℄.In a reent paper, Albreher and Hipp [1℄ investigated how tax payments(aording to a loss arry forward system) a�et the behaviour of a Cramér-Lundberg surplus proess. In their model, taxes are paid at a �xed propor-tional rate γ whenever the ompany is in a pro�table situation, de�ned asbeing at a running maximum of the surplus proess. It turned out that inthis model there is a strikingly simple relationship between ruin probabili-ties with and without tax and one an also get an expliit formula for theexpeted disounted sum of tax payments over the lifetime of the risk proess.In this paper we will embed this tax model into a general Lévy framework.Utilizing exursion theory and exploiting the struture of the model, we willestablish the simple relation between ruin probabilities with and without taxin this more general lass of models. Furthermore, expressions for arbitrarymoments of disounted tax payments until ruin will be derived. It turns outthat lose onnetions of the distribution of tax payments to the distributionof dividend payments aording to a horizontal barrier strategy, that wereobserved in the Cramér-Lundberg model, arry over to the Lévy setup.The paper is organized as follows. In Setion 2, we will review some pre-liminaries on spetrally negative Lévy proesses that will be needed lateron. Setion 3 introdues the tax model under onsideration and derives theruin probability as well as moments of disounted tax payments until ruin.Finally, in Setion 4 the problem of an optimal hoie of a threshold surpluslevel for starting taxation to maximize the expeted tax inome will be ad-dressed.



A LÉVY INSURANCE RISK PROCESS WITH TAX 32. Preliminaries on spetrally negative Lévy proessesLet X = (X(t))t≥0 be a spetrally negative Lévy proess or, in other words,a Lévy proess with no positive jumps (to avoid trivialities, we exlude thease where X is a negative subordinator or a deterministi drift). The lawof X suh that X(0) = u ≥ 0 will be denoted by Pu and the orrespondingexpetation by Eu (for a general introdution to Lévy proesses we refer toBertoin [3℄ or Kyprianou [14℄).As the Lévy proess X has no positive jumps, its Laplae transform is givenby
E0

[

eλX(t)
]

= etψ(λ)for λ ≥ 0 and t ≥ 0, where ψ(λ) = −Ψ(iλ). In this ase, the Laplaeexponent ψ is stritly onvex and limλ→∞ ψ(λ) = ∞. Thus, there exists afuntion Φ: [0,∞) → [0,∞) suh that
ψ(Φ(λ)) = λ, λ ≥ 0.We now de�ne the so-alled sale funtions {Wq; q ≥ 0} of the proess Xas in Bertoin [4℄. For eah q, Wq : [0,∞) → [0,∞) is the unique, stritlyinreasing and ontinuous funtion with Laplae transform

∫ ∞

0
e−λzWq(z) dz =

1

ψ(λ) − q
,for λ > Φ(q).2.1. Two-sided exit problem. Sale funtions arise naturally when on-sidering two-sided exit problems for spetrally negative Lévy proesses. In-deed, let a be a positive real number and de�ne

T(0,a) = inf {t ≥ 0 | X(t) /∈ (0, a)} .When the proess X starts within the interval (i.e. X(0) = u ∈ (0, a)), therandom time T(0,a) is the �rst exit time of X from this interval. Sine X hasno positive jumps, it will hit the point a when exiting above, but it mightjump below zero when exiting below. Its Laplae transform on the eventwhere the proess X leaves the interval at the upper boundary is given by(1) Eu

[

e−qT(0,a) ;X(T(0,a)) = a
]

=
Wq(u)

Wq(a)
, q ≥ 0.Consequently, when q = 0,(2) Pu

{

X(T(0,a)) = a
}

=
W0(u)

W0(a)
.If X has a positive mean, we have that(3) Pu

{

inf
t≥0

X(t) ≥ 0

}

= ψ′(0+)W0(u).This result is of ourse related to the ruin and survival probabilities in in-surane risk theory.



4 ALBRECHER, RENAUD, AND ZHOU2.2. Smoothness of the sale funtions. At several plaes in this paper,di�erentiability of the sale funtions will be required. If the sample paths of
X are of unbounded variation, then the sale funtions Wq are ontinuouslydi�erentiable. When the sample paths of X are of bounded variation, thenthe sale funtions are ontinuously di�erentiable if and only if Π has noatoms, or in other words if {x < 0 | Π({x}) > 0} = ∅. Note that if X hasa Gaussian omponent, then its sample paths are of unbounded variationand, moreover, its sale funtions are even twie ontinuously di�erentiable.Further, if the Lévy measure Π has a density, then the sale funtions arealways di�erentiable (see Doney [7℄ or Chan and Kyprianou [5℄ for moredetails). 3. The modelLet X be the underlying Lévy risk proess with di�erentiable sale fun-tions. Let SX = (SX(t))t≥0 denote the running maximum ofX, i.e. SX(t) =
max0≤s≤tX(s). This proess is ontinuous and, of ourse, inreasing. Clearly,
SX(0) = u as X(0) = u. For 0 ≤ γ ≤ 1, de�ne a proess Uγ = (Uγ(t))t≥0 by

Uγ(t) = X(t) − γ(SX(t) −X(0)).One an think of Uγ as the surplus proess of an insurane ompany thatpays out taxes at a �xed rate γ whenever it is in a pro�table situation (or, inother words, whenever the surplus is at a running maximum). When γ = 1,this amounts to the situation where the ompany pays out as dividends anyapital above its initial value.3.1. A �utuation identity. The following theorem generalizes both The-orem VII.8 in Bertoin [3℄ and Equation (1).Theorem 3.1. For any 0 < u < a, let τ+
a = inf{t > 0: Uγ(t) > a} and

τ−0 = inf{t > 0: Uγ(t) < 0} with the onvention inf ∅ = ∞. If γ < 1, then(4) Eu

[

e−qτ
+
a I{τ+

a <τ
−

0 }

]

=

(

Wq(u)

Wq(a)

)1/1−γ

.Proof. We only have to onsider the ase when X drifts to in�nity (indeed,if X has no drift, then, akin to the proof of Theorem VII.8 in Bertoin [3℄,we an use an approximation by adding a small positive drift and if X hasnegative drift, then we an introdue a new probability measure under whih
X has a positive drift).It is well-known that SX is a loal time at 0 for SX − X. Then, let ǫbe the exursion proess of SX − X away from 0, let ǭ be the exursionheight proess, and let n be the exursion measure. If X drifts to in�nity,then ǫ is a Poisson point proess and ǭ is also a Poisson point proess withharateristi measure ν given by ν(x,∞) = W ′

0(x)/W0(x). By the de�nitionof an exursion, the event {τ+
a < τ−0 } is the same as

{ǭs < u+ (1 − γ)s,∀ 0 ≤ s ≤ (a− u)/(1 − γ)}.



A LÉVY INSURANCE RISK PROCESS WITH TAX 5Then, by the de�nition of a Poisson point proess, we have that
Pu{τ+

a < τ−0 } = P{N = 0}

= exp

{

−
∫ a−u

1−γ

0

W ′
0(u+ (1 − γ)s)

W0(u+ (1 − γ)s)
ds

}

= exp

{

− 1

1 − γ

∫ a−u

0

W ′
0(u+ s)

W0(u+ s)
ds

}

=

(

W0(u)

W0(a)

)1/1−γ

.where N is a Poisson distributed random variable with parameter
∫ a−u

1−γ

0
n (ǭs ≥ u+ (1 − γ)s) dsthat ounts the number of Poisson points (s, ǭs) in

{(x, y) ∈ R
2 | 0 ≤ x ≤ (a− u)/(1 − γ), u+ (1 − γ)x ≤ y}.When q > 0, we an de�ne the measure P

Φ(q)
u on Fτ+

a
with Radon-Nikodymderivative

dP
Φ(q)
u

dP
= eΦ(q)(X(τ+

a )−u)−qτ+
a ,where (Ft)t≥0 denotes the �ltration generated by X. Under P

Φ(q)
u , X is still aspetrally negative Lévy proess, but now with WΦ(q)

0 as its sale funtions,whih are given by eΦ(q)xW
Φ(q)
0 (x) = Wq(x); see Chapter 8 of Kyprianou[14℄ for details.Observe that X(τ+

a ) = SX(τ+
a ) for τ+

a <∞. Sine
a = Uγ(τ

+
a ) = X(τ+

a ) − γ(SX(τ+
a ) − u)for τ+

a <∞, we have
X(τ+

a )I{τ+
a <∞} =

a− γu

1 − γ
I{τ+

a <∞}.We then further get that
Eu

[

e−qτ
+
a I{τ+

a <τ
−

0 }

]

= P
Φ(q)
u

{

τ+
a < τ−0

}

exp

{

−Φ(q)

(

a− γu

1 − γ
− u

)}

=

(

W
Φ(q)
0 (u)

W
Φ(q)
0 (a)

)1/1−γ

exp

{

−Φ(q)(a− u)

1 − γ

}

=

(

e−Φ(q)uWq(u)

e−Φ(q)aWq(a)

)1/1−γ

exp

{

−Φ(q)(a− u)

1 − γ

}

.Therefore, the desired result follows readily. �



6 ALBRECHER, RENAUD, AND ZHOU3.2. The survival probability. Let
φγ(u) = Pu

{

inf
t≥0

Uγ(t) ≥ 0

}denote the survival probability in the risk model with tax rate γ and initialsurplus u. Hene, φ0(u) is the survival probability in the risk model withouttax. For the ompound Poisson risk model, Albreher and Hipp [1℄ estab-lished a simple relation between the survival probability of a risk model withand without tax. We will now utilize Theorem 3.1 to generalize this resultto spetrally negative Lévy risk proesses.Corollary 3.1. If γ < 1, then
φγ(u) = (φ0(u))

1/1−γ .Proof. From Theorem 3.1, we have that
φγ(u) =

(

ψ′(0+)W0(u)
)1/1−γ

,sine lima→∞W0(a) = (ψ′(0+))−1. The result follows from Equation (3).
�Note that φγ(u) > 0 if and only if φ0(u) = ψ′(0+) > 0, whih is the aseunder the net pro�t ondition E0[X(1)] > 0. However, the expetation neednot be �nite.3.3. The disounted tax payments. Let us from now on assume that thenet pro�t ondition is ful�lled, i.e. Eu[X(1)] > 0.Let τγ be the time of ruin of the risk proess with tax, i.e.

τγ = inf {t ≥ 0 | Uγ(t) < 0} .Let further
T (γ) = γ

∫ τγ

0
e−δt dD(t),denote the present value of all tax payments until the time of ruin τγ , where

D(t) = SX(t) −X(0) and δ ≥ 0 an be interpreted as the fore of interest.Reall from Zhou [19℄ that(5) V1(u, u) =
Wδ(u)

W ′
δ(u)

,where V1(u, u) is the expetation of the present value of all dividends paiduntil ruin when a horizontal barrier is at level u. Utilizing a methodologyfrom Zhou [19℄ for horizontal barrier models, we will now ompute v(γ)
1 (u) =

E(T (γ)).Note that v(1)
1 (u) = V1(u, u) (so that the ase γ = 1 is settled).



A LÉVY INSURANCE RISK PROCESS WITH TAX 7Theorem 3.2. If γ < 1 and δ > 0, then the expeted disounted sum of taxpayments until ruin is given by(6) v
(γ)
1 (u) =

γ

1 − γ

∫ ∞

u

(

Wδ(u)

Wδ(s)

)1/(1−γ)

ds.Proof. For eah n ≥ 1, de�ne an exit time Tn by
Tn = inf {t ≥ 0 | X(t) /∈ (γ/n, u+ 1/n)} .As X has no positive jumps, we have
v
(γ)
1 (u) ≥ Eu [T (γ);X(Tn) = u+ 1/n] .

Tn is stritly less than τγ on the event {X(Tn) = u+ 1/n}, using the inte-gration by parts formula and the strong Markov property at time Tn, weget
Eu [T (γ);X(Tn) = u+ 1/n] ≥ (γ/n)Eu

[

e−δTn ;X(Tn) = u+ 1/n
]

+ v
(γ)
1 (u+ (1 − γ)/n)Eu

[

e−δTn ;X(Tn) = u+ 1/n
]

.Hene,
v
(γ)
1 (u) ≥ γ

Wδ(u− γ/n)

nWδ(u+ (1 − γ)/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)
.In fat, one an show that

v
(γ)
1 (u) =

γ
Wδ(u− γ/n)

nWδ(u+ (1 − γ)/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)
+ o(1/n),when n goes to in�nity. Indeed, introduing, for eah n ≥ 1, the exit time

T ′
n de�ned by

T ′
n = inf {t ≥ 0 | X(t) /∈ (0, u+ 1/n)} ,we get that

v
(γ)
1 (u) = Eu

[

T (γ);X(T ′
n) ≤ 0

]

+ Eu

[

T (γ);X(T ′
n) = u+ 1/n

]

≤ Eu

[

γ

∫ T ′

n

0
e−δt dD(t);X(T ′

n) ≤ 0

]

+ Eu

[

γ

∫ T ′

n

0
e−δt dD(t);X(T ′

n) = u+ 1/n

]

+ Eu

[

γ

∫ τγ∨T ′

n

T ′

n

e−δt dD(t);X(T ′
n) = u+ 1/n

]

≤ γ
Wδ(u)

nWδ(u+ 1/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u)

Wδ(u+ 1/n)
+ o(1/n),



8 ALBRECHER, RENAUD, AND ZHOUwhere we have again used the integration by parts formula, the strongMarkov property and the following two fats (f. Zhou [19℄):
Eu

[

∫ T ′

n

0
e−δt dD(t);X(T ′

n) ≤ 0

]

= o(1/n);

Eu

[

∫ T ′

n

0
e−δtD(t) dt;X(T ′

n) = u+ 1/n

]

= o(1/n),when n goes to in�nity.Consequently, using the ontinuity and the di�erentiability of the sale fun-tions, we get that
v
(γ)
1 (u) lim

n→∞

1 − Wδ(u−γ/n)
Wδ(u+(1−γ)/n)

γ/n
− lim
n→∞

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)

=
1 − γ

γ
lim
n→∞

v
(γ)
1 (u+ (1 − γ)/n) − v

(γ)
1 (u)

(1 − γ)/n

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)and further(7) (v
(γ)
1 )′(u) =

γ

1 − γ

(

W ′
δ(u)

γWδ(u)
v
(γ)
1 (u) − 1

)

.This is the analogue of Equation (14) in the Proof of Theorem 2 in Albreherand Hipp [1℄. Using the integrating fator tehnique for ordinary di�erentialequations, we get that its solution is given by
v
(γ)
1 (u) =

(

C − γ

1 − γ
U2(u)

)

eU1(u)/(1−γ),for some onstant C, where
U1(u) =

∫ u

0

W ′
δ(s)

Wδ(s)
ds , U2(u) =

∫ u

0
e−U1(s)/(1−γ) ds.We have that W ′

δ(s)/Wδ(s) ≥ 0 and
lim
s→∞

W ′
δ(s)

Wδ(s)
= Φ(δ).The latter result an be found in Avram et al. [2℄ or in Zhou [20℄. Hene,

U1 is unbounded beause Φ(δ) > 0 for δ > 0. Also, sine τγ → ∞ as u→ ∞(for any γ), with (5) we have that limu→∞ v
(γ)
1 (u) <∞. Thus,

lim
u→∞

U2(u) =
1 − γ

γ
Cand then(8) v

(γ)
1 (u) =

γ

1 − γ
e
(1−γ)−1

R u
0

W ′

δ(s)

Wδ(s)
ds
∫ ∞

u
e
−(1−γ)−1

R s
0

W ′

δ(t)

Wδ(t)
dt
ds.The statement follows from algebrai manipulations. �



A LÉVY INSURANCE RISK PROCESS WITH TAX 9Remark 3.1. If X has a negative drift (i.e. Eu[X(1)] < 0), then (6) alsoholds for δ = 0.Remark 3.2. Using Equation (8), we an also write(9) v
(γ)
1 (u) =

γ

1 − γ
e(1−γ)

−1
R u
0 (V1(s,s))−1 ds

∫ ∞

u
e−(1−γ)−1

R s
0 (V1(t,t))−1 dt ds,reovering Theorem 2 of Albreher and Hipp [1℄ in our more general Lévysetting.Remark 3.3. Using L'H�pital's rule, we reover the following interestingrelation:(10) lim

u→∞
v
(γ)
1 (u) = γ lim

u→∞
V1(u, u).A diret probabilisti reasoning to obtain this identity goes as follows: inthe absene of ruin, the only di�erene for the alulation of v(γ)

1 (u) and
V1(u, u) is that, whenever tax (dividend) payments start and last until thenext deviation from the running maximum, in the tax ase only the proportion
γ of the inome is paid whereas in the horizontal barrier ase all the inomeis paid. The only further di�erene is then that the surplus level at the nextpayment stream is di�erent, but the latter does not matter if the distane tothe ruin boundary does not matter, whih in the limit u → ∞ is the ase.Hene we immediately arrive at (10).3.4. Higher moments. We will now investigate higher moments of T (γ).Let v(γ)

k (u) be the k-th moment of T (γ) when the initial surplus is equal to u.Reall from Renaud and Zhou [17℄, and also from Kyprianou and Palmowski[15℄, that(11) Vk(u, u) = k!

k
∏

i=1

Wiδ(u)

W ′
iδ(u)

,where Vk(u, u) is the k-th moment of the present value of all dividends paiduntil ruin when the horizontal barrier is at level u. Note that v(1)
k (u) =

Vk(u, u). So we only need to address the ase γ < 1:Theorem 3.3. If γ < 1 and δ > 0, then the k-th moment of the presentvalue of tax payments until ruin is related to the (k − 1)-th moment by(12) v
(γ)
k (u) =

kγ

1 − γ

∫ ∞

u
v
(γ)
k−1(s)

(

Wkδ(u)

Wkδ(s)

)1/(1−γ)

ds.Proof. First, proeeding as in the proof for Theorem 3.2 and using estimatesfrom the proof of Proposition 1 in Renaud and Zhou [17℄, we have that
v
(γ)
k (u) = kv

(γ)
k−1

(

u+ (1 − γ)/n
)γ

n

Wkδ(u− γ/n)

Wkδ(u+ (1 − γ)/n)

+ v
(γ)
k (u+ (1 − γ)/n)

Wkδ(u− γ/n)

Wkδ(u+ (1 − γ)/n)
+ o(1/n).



10 ALBRECHER, RENAUD, AND ZHOUFurther, we get that
(v

(γ)
k )′(u) =

γ

1 − γ

(

W ′
δ(u)

γWδ(u)
v
(γ)
k (u) − kv

(γ)
k−1(u)

)

.Solving this ordinary di�erential equation leads to
v
(γ)
k (u) =

kγ

1 − γ
e
(1−γ)−1

R u

0

W ′

kδ(s)

Wkδ(s)
ds
∫ ∞

u
v
(γ)
k−1(s) e

−(1−γ)−1
R s

0

W ′

kδ(t)

Wkδ(t)
dt
ds.Now the statement follows from simple algebrai manipulations. �Remark 3.4. From (12), we get by L'H�pital's rule

lim
u→∞

v
(γ)
k (u) = kγ lim

u→∞
v
(γ)
k−1(u)

Wkδ(u)

W ′
kδ(u)

.With (11) we an hene generalize the asymptoti relation (10) to arbitrarymoments of tax and dividend payments, respetively:(13) lim
u→∞

v
(γ)
k (u) = γk lim

u→∞
Vk(u, u).The alternative probabilisti argument from Remark (3.3) also arries overto explain formula (13).3.5. Examples.3.5.1. Cramér-Lundberg proess with exponential laims. IfX is a ompoundPoisson proess with exponential jumps (with Poisson parameter λ and ex-ponential parameter α), then the sale funtions are given by

Wδ(x) =
(α+ ρ)eρx(1 − η(x))

c(ρ− r)(see e.g. Kyprianou & Palmowski [15℄), where
η(x) =

α+ r

α+ ρ
e(r−ρ)x,and ρ and r are the positive and negative, respetively, solution of the equa-tion

cR2 + (cα − λ− δ)R − αδ = 0.Plugging this expression into formula (6), we eventually arrive at the expliitformula
v
(γ)
1 (u) =

γ

ρ
(1 − η(u))1/1−γ

× 2F1

(

1

1 − γ
,

ρ

(ρ− r)(1 − γ)
,

ρ

(ρ− r)(1 − γ)
+ 1; η(u)

)

,whih was already derived in Albreher and Hipp [1℄. Here
2F1(a, b, c; z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dtwith c > b > 0 denotes the Gauss hypergeometri series.



A LÉVY INSURANCE RISK PROCESS WITH TAX 113.5.2. Brownian motion with drift. Let X(t) = mt + σB(t) be a Brownianmotion with drift (with m 6= 0 and σ > 0). As in this ase ψ(λ) = mλ +
(1/2)σ2λ2 and Φ(α) = −ω + θα, one an verify that

Wδ(x) =
1

σ2θδ

(

e(−ω+θδ)x − e−(ω+θδ)x
)

,where θδ =
√
m2 + 2δσ2/σ2 and ω = m/σ2 (see also Avram et al. [2℄). Inpartiular, we have

W0(x) =
1

m

(

1 − e−
2m

σ2 x
)

.Thus,
v
(1)
1 (u) = V1(u, u) =

σ2

2m

(

e
2m

σ2 u − 1
)

,whih reovers Equation (2.20) in Gerber and Shiu [10℄.Also, if γ < 1 and if δ > 0, then one obtains
v
(γ)
1 (u) =

γ

1 − γ

[

e(θδ−ω)u(1 − e−2θδu)
]1/1−γ

×
∫ ∞

u

[

e(θδ−ω)s(1 − e−2θδs)
]−1/1−γ

ds.Sine θδ > ω when σ > 0 and δ > 0, letting r = e−2θδs

e−2θδu in the integral andsimplifying yields
v
(γ)
1 (u) =

γ

1 − γ

[

(1 − e−2θδu)1/1−γ

θδ − ω

]

× 2F1

(

(1 − γ)−1,
θδ − ω

2θδ
,
3θδ − ω

2θδ
; e−2θδu

)

.4. Optimality of the tax barrierAs tax payments stop at ruin, it is natural to ask whether the expeteddisounted tax payments over the lifetime of the proess an be optimizedwhen tax payments are only started after the surplus has reahed a ertainlevelM (see Albreher and Hipp [1℄ for a orresponding study in the Cramér-Lundberg framework). Due to the strong Markov property we learly have(14) v
(γ)
1,M (u) =

Wδ(u)

Wδ(M)
v
(γ)
1 (M)for u < M and v(γ)

1,M (u) = v
(γ)
1 (u) for u ≥ M (as then tax payments startright away). Hene the goal is to maximize (14) with respet to M .Assumption 4.1. In what follows, we assume that eah sale funtion isthree times di�erentiable and that its �rst derivative is a stritly onvex fun-tion (so that W ′′

δ (u) hanges its sign from negative to positive at most one).



12 ALBRECHER, RENAUD, AND ZHOUAssumption 4.1 is for instane ful�lled if the Lévy measure has a ompletelymonotone density (see Loe�en [16℄ for the strit onvexity of W ′
δ and Chanand Kyprianou [5℄ for in�nite di�erentiability). Among partiular exam-ples ful�lling Assumption 4.1 are Gamma proess and the inverse Gaussianproess (for more examples, see Loe�en [16℄).Di�erentiating Equation (14) with respet to M , one �nds that M0 is aritial point of M 7→ v

(γ)
1,M(u) if(15) v

(γ)
1 (M0) = V1(M0,M0) or equivalently (v

(γ)
1 )′(M0) = 1,where (7) was used for the latter equivalene. To speify the nature of thisritial point, we use the seond derivative:(16) ∂2v

(γ)
1,M (u)

∂M2

∣

∣

∣

∣

M=M0

=
γ

1 − γ

Wδ(u)

(Wδ(M0))2
v
(γ)
1 (M0)W

′′
δ (M0).Clearly, sine limM→∞ v

(γ)
1,M(u) = 0 for any u, there is a point M⋆ ∈ [0,∞)where the funtion M 7→ v

(γ)
1,M (u) reahes its global maximum.Remark 4.1. Note that M 7→ v

(γ)
1,M(u) an not have a loal minimum in

[0,∞). Indeed, if there existed a loal minimum, then by virtue of limM→∞ v
(γ)
1,M (u) =

0, there would have to exist a loal maximum for a larger value M . But inview of (16) and the strit onvexity of W ′
δ, this an not our.Similarly, we dedue that after a potential saddlepoint there an not be aloal maximum.Reall that

V ′
1(s, s) = 1 − Wδ(s)W

′′
δ (s)

(W ′
δ(s))

2and from Remark 3.3 that(17) lim
u→∞

v
(γ)
1 (u) < lim

u→∞
V1(u, u).Remark 4.2. From the above, it follows thatM 7→ v

(γ)
1,M (u) also an not havea saddlepoint M0 in [0,∞). Indeed, otherwise from v

(γ)
1 (M0) = V1(M0,M0)and W ′′

δ (M0) = 0, one an observe that
V ′′

1 (M0,M0) =
−Wδ(M0)W

′′′
δ (M0)

(W ′
δ(M0))2and (v

(γ)
1 )′′(M0) = 0. Hene, the funtion s 7→ v

(γ)
1 (s) − V1(s, s) reahes aloal minimum value of 0 at this point M0 (as W ′′′
δ (M0) > 0), implying that

v
(γ)
1 is greater than V1 in a neighbourhood of M0, so that this saddlepointwould have to be followed by a maximum or another saddlepoint, whih itselfis exluded by the onvexity of W ′

δ(u).



A LÉVY INSURANCE RISK PROCESS WITH TAX 13As a onsequene, Equation (15) has at most one positive solution M0. If
V1(0, 0) ≤ v

(γ)
1 (0), then due to (17) suh a solution M0 > 0 exists and is thepoint of global maximum, i.e. M⋆ = M0.If V1(0, 0) > v

(γ)
1 (0), then M⋆ = 0 (i.e. tax payments start immediately), asa solution of (15), by (17), would have to be aompanied by a seond one,whih an not be the ase.Note that M⋆ is independent of the initial surplus u.From the above disussion, we get the following �nal result whih extendsTheorem 3 in Albreher and Hipp [1℄.Theorem 4.1. Suppose that the sale funtions of X are three times dif-ferentiable and that their �rst derivatives are stritly onvex funtions. If

V1(0, 0) > v
(γ)
1 (0), then the optimal height M⋆ is equal to 0. If V1(0, 0) ≤

v
(γ)
1 (0), then the optimal height M⋆ is the unique positive solution of Equa-tion (15). The maximum value is thus given by(18) v

(γ)
1,M⋆(u) =

{

V1(u,M
⋆), if u < M⋆;

v
(γ)
1 (u), if u ≥M⋆.Proof. If u < M⋆, then

v
(γ)
1,M⋆(u) =

Wδ(u)

Wδ(M⋆)
v
(γ)
1 (M⋆) =

V1(u,M
⋆)

V1(M⋆,M⋆)
v
(γ)
1 (M⋆) = V1(u,M

⋆).Otherwise, we start to pay taxes right away and v(γ)
1,M⋆(u) = v

(γ)
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