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A LÉVY INSURANCE RISK PROCESS WITH TAXHANSJÖRG ALBRECHER, JEAN-FRANÇOIS RENAUD, AND XIAOWEN ZHOUAbstra
t. Using �u
tuation theory, we identify the ruin probabilityof a general spe
trally negative Lévy risk pro
ess with tax payments ofloss 
arry forward type. We study arbitrary moments of the dis
ountedtotal amount of tax payments and determine the surplus level to starttaxation whi
h maximizes the expe
ted dis
ounted aggregate in
omefor the tax authority in this model. The results 
onsiderably generalizethose for the Cramér-Lundberg risk model with tax.1. Introdu
tionThe 
lassi
al risk model des
ribes the surplus pro
ess of an insuran
e 
om-pany by a sto
hasti
 pro
ess U0 = (U0(t))t≥0 with
U0(t) = u+ ct− S(t),where S(t) is a 
ompound Poisson pro
ess with jump intensity θ and jumpdistribution F (representing the aggregate 
laim payments up to time t),

u > 0 denotes the initial surplus and c > 0 is a 
onstant premium intensity.Usually it is assumed that the net pro�t 
ondition
c > θµholds, where µ denotes the expe
ted value of the single 
laim size distribution

F . This 
ondition ensures that ruin will not o

ur almost surely. As a Lévypro
ess, U0 has a 
hara
teristi
 exponent given by
Ψ(λ) = − ln E

[

eiλU0(1)
]

= −icλ−
∫ 0

−∞
(eiλz − 1) θF (dz)for λ ∈ R.One way to generalize the 
lassi
al risk pro
ess is to 
onsider an arbitraryspe
trally negative Lévy pro
ess, i.e. a pro
ess X = (X(t))t≥0 with inde-pendent and stationary in
rements and with 
hara
teristi
 exponent givenby

Ψ(λ) = −icλ+
1

2
σ2λ2 −

∫ 0

−∞
(eiλz − 1 − izI{z>−1})Π(dz),Date: November 29, 2007.2000 Mathemati
s Subje
t Classi�
ation. 60G51, 91B30.Key words and phrases. Lévy pro
ess, �u
tuation theory, s
ale fun
tions, insuran
erisk theory, ruin probability, tax payments. 1



2 ALBRECHER, RENAUD, AND ZHOUfor λ ∈ R, σ ≥ 0 and where Π is a measure on (−∞, 0) su
h that
∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.Here, c > 0 again represents the 
onstant premium density. The net pro�t
ondition for this Lévy insuran
e risk pro
ess now reads
E[X(1)] > 0,whi
h is equivalent to limt→∞X(t) = ∞ almost surely.An interpretation of su
h Lévy risk pro
esses for the surplus modelling oflarge insuran
e 
ompanies is for instan
e given in Klüppelberg and Kypri-anou [12℄ and Kyprianou and Palmowski [15℄. This model has re
ently at-tra
ted a lot of resear
h interest, see e.g. also Furrer [8℄, Yang and Zhang[18℄, Huzak et al. [11℄, Klüppelberg et al. [13℄, Chiu and Yin [6℄ and Garridoand Morales [9℄.In a re
ent paper, Albre
her and Hipp [1℄ investigated how tax payments(a

ording to a loss 
arry forward system) a�e
t the behaviour of a Cramér-Lundberg surplus pro
ess. In their model, taxes are paid at a �xed propor-tional rate γ whenever the 
ompany is in a pro�table situation, de�ned asbeing at a running maximum of the surplus pro
ess. It turned out that inthis model there is a strikingly simple relationship between ruin probabili-ties with and without tax and one 
an also get an expli
it formula for theexpe
ted dis
ounted sum of tax payments over the lifetime of the risk pro
ess.In this paper we will embed this tax model into a general Lévy framework.Utilizing ex
ursion theory and exploiting the stru
ture of the model, we willestablish the simple relation between ruin probabilities with and without taxin this more general 
lass of models. Furthermore, expressions for arbitrarymoments of dis
ounted tax payments until ruin will be derived. It turns outthat 
lose 
onne
tions of the distribution of tax payments to the distributionof dividend payments a

ording to a horizontal barrier strategy, that wereobserved in the Cramér-Lundberg model, 
arry over to the Lévy setup.The paper is organized as follows. In Se
tion 2, we will review some pre-liminaries on spe
trally negative Lévy pro
esses that will be needed lateron. Se
tion 3 introdu
es the tax model under 
onsideration and derives theruin probability as well as moments of dis
ounted tax payments until ruin.Finally, in Se
tion 4 the problem of an optimal 
hoi
e of a threshold surpluslevel for starting taxation to maximize the expe
ted tax in
ome will be ad-dressed.



A LÉVY INSURANCE RISK PROCESS WITH TAX 32. Preliminaries on spe
trally negative Lévy pro
essesLet X = (X(t))t≥0 be a spe
trally negative Lévy pro
ess or, in other words,a Lévy pro
ess with no positive jumps (to avoid trivialities, we ex
lude the
ase where X is a negative subordinator or a deterministi
 drift). The lawof X su
h that X(0) = u ≥ 0 will be denoted by Pu and the 
orrespondingexpe
tation by Eu (for a general introdu
tion to Lévy pro
esses we refer toBertoin [3℄ or Kyprianou [14℄).As the Lévy pro
ess X has no positive jumps, its Lapla
e transform is givenby
E0

[

eλX(t)
]

= etψ(λ)for λ ≥ 0 and t ≥ 0, where ψ(λ) = −Ψ(iλ). In this 
ase, the Lapla
eexponent ψ is stri
tly 
onvex and limλ→∞ ψ(λ) = ∞. Thus, there exists afun
tion Φ: [0,∞) → [0,∞) su
h that
ψ(Φ(λ)) = λ, λ ≥ 0.We now de�ne the so-
alled s
ale fun
tions {Wq; q ≥ 0} of the pro
ess Xas in Bertoin [4℄. For ea
h q, Wq : [0,∞) → [0,∞) is the unique, stri
tlyin
reasing and 
ontinuous fun
tion with Lapla
e transform

∫ ∞

0
e−λzWq(z) dz =

1

ψ(λ) − q
,for λ > Φ(q).2.1. Two-sided exit problem. S
ale fun
tions arise naturally when 
on-sidering two-sided exit problems for spe
trally negative Lévy pro
esses. In-deed, let a be a positive real number and de�ne

T(0,a) = inf {t ≥ 0 | X(t) /∈ (0, a)} .When the pro
ess X starts within the interval (i.e. X(0) = u ∈ (0, a)), therandom time T(0,a) is the �rst exit time of X from this interval. Sin
e X hasno positive jumps, it will hit the point a when exiting above, but it mightjump below zero when exiting below. Its Lapla
e transform on the eventwhere the pro
ess X leaves the interval at the upper boundary is given by(1) Eu

[

e−qT(0,a) ;X(T(0,a)) = a
]

=
Wq(u)

Wq(a)
, q ≥ 0.Consequently, when q = 0,(2) Pu

{

X(T(0,a)) = a
}

=
W0(u)

W0(a)
.If X has a positive mean, we have that(3) Pu

{

inf
t≥0

X(t) ≥ 0

}

= ψ′(0+)W0(u).This result is of 
ourse related to the ruin and survival probabilities in in-suran
e risk theory.



4 ALBRECHER, RENAUD, AND ZHOU2.2. Smoothness of the s
ale fun
tions. At several pla
es in this paper,di�erentiability of the s
ale fun
tions will be required. If the sample paths of
X are of unbounded variation, then the s
ale fun
tions Wq are 
ontinuouslydi�erentiable. When the sample paths of X are of bounded variation, thenthe s
ale fun
tions are 
ontinuously di�erentiable if and only if Π has noatoms, or in other words if {x < 0 | Π({x}) > 0} = ∅. Note that if X hasa Gaussian 
omponent, then its sample paths are of unbounded variationand, moreover, its s
ale fun
tions are even twi
e 
ontinuously di�erentiable.Further, if the Lévy measure Π has a density, then the s
ale fun
tions arealways di�erentiable (see Doney [7℄ or Chan and Kyprianou [5℄ for moredetails). 3. The modelLet X be the underlying Lévy risk pro
ess with di�erentiable s
ale fun
-tions. Let SX = (SX(t))t≥0 denote the running maximum ofX, i.e. SX(t) =
max0≤s≤tX(s). This pro
ess is 
ontinuous and, of 
ourse, in
reasing. Clearly,
SX(0) = u as X(0) = u. For 0 ≤ γ ≤ 1, de�ne a pro
ess Uγ = (Uγ(t))t≥0 by

Uγ(t) = X(t) − γ(SX(t) −X(0)).One 
an think of Uγ as the surplus pro
ess of an insuran
e 
ompany thatpays out taxes at a �xed rate γ whenever it is in a pro�table situation (or, inother words, whenever the surplus is at a running maximum). When γ = 1,this amounts to the situation where the 
ompany pays out as dividends any
apital above its initial value.3.1. A �u
tuation identity. The following theorem generalizes both The-orem VII.8 in Bertoin [3℄ and Equation (1).Theorem 3.1. For any 0 < u < a, let τ+
a = inf{t > 0: Uγ(t) > a} and

τ−0 = inf{t > 0: Uγ(t) < 0} with the 
onvention inf ∅ = ∞. If γ < 1, then(4) Eu

[

e−qτ
+
a I{τ+

a <τ
−

0 }

]

=

(

Wq(u)

Wq(a)

)1/1−γ

.Proof. We only have to 
onsider the 
ase when X drifts to in�nity (indeed,if X has no drift, then, akin to the proof of Theorem VII.8 in Bertoin [3℄,we 
an use an approximation by adding a small positive drift and if X hasnegative drift, then we 
an introdu
e a new probability measure under whi
h
X has a positive drift).It is well-known that SX is a lo
al time at 0 for SX − X. Then, let ǫbe the ex
ursion pro
ess of SX − X away from 0, let ǭ be the ex
ursionheight pro
ess, and let n be the ex
ursion measure. If X drifts to in�nity,then ǫ is a Poisson point pro
ess and ǭ is also a Poisson point pro
ess with
hara
teristi
 measure ν given by ν(x,∞) = W ′

0(x)/W0(x). By the de�nitionof an ex
ursion, the event {τ+
a < τ−0 } is the same as

{ǭs < u+ (1 − γ)s,∀ 0 ≤ s ≤ (a− u)/(1 − γ)}.



A LÉVY INSURANCE RISK PROCESS WITH TAX 5Then, by the de�nition of a Poisson point pro
ess, we have that
Pu{τ+

a < τ−0 } = P{N = 0}

= exp

{

−
∫ a−u

1−γ

0

W ′
0(u+ (1 − γ)s)

W0(u+ (1 − γ)s)
ds

}

= exp

{

− 1

1 − γ

∫ a−u

0

W ′
0(u+ s)

W0(u+ s)
ds

}

=

(

W0(u)

W0(a)

)1/1−γ

.where N is a Poisson distributed random variable with parameter
∫ a−u

1−γ

0
n (ǭs ≥ u+ (1 − γ)s) dsthat 
ounts the number of Poisson points (s, ǭs) in

{(x, y) ∈ R
2 | 0 ≤ x ≤ (a− u)/(1 − γ), u+ (1 − γ)x ≤ y}.When q > 0, we 
an de�ne the measure P

Φ(q)
u on Fτ+

a
with Radon-Nikodymderivative

dP
Φ(q)
u

dP
= eΦ(q)(X(τ+

a )−u)−qτ+
a ,where (Ft)t≥0 denotes the �ltration generated by X. Under P

Φ(q)
u , X is still aspe
trally negative Lévy pro
ess, but now with WΦ(q)

0 as its s
ale fun
tions,whi
h are given by eΦ(q)xW
Φ(q)
0 (x) = Wq(x); see Chapter 8 of Kyprianou[14℄ for details.Observe that X(τ+

a ) = SX(τ+
a ) for τ+

a <∞. Sin
e
a = Uγ(τ

+
a ) = X(τ+

a ) − γ(SX(τ+
a ) − u)for τ+

a <∞, we have
X(τ+

a )I{τ+
a <∞} =

a− γu

1 − γ
I{τ+

a <∞}.We then further get that
Eu

[

e−qτ
+
a I{τ+

a <τ
−

0 }

]

= P
Φ(q)
u

{

τ+
a < τ−0

}

exp

{

−Φ(q)

(

a− γu

1 − γ
− u

)}

=

(

W
Φ(q)
0 (u)

W
Φ(q)
0 (a)

)1/1−γ

exp

{

−Φ(q)(a− u)

1 − γ

}

=

(

e−Φ(q)uWq(u)

e−Φ(q)aWq(a)

)1/1−γ

exp

{

−Φ(q)(a− u)

1 − γ

}

.Therefore, the desired result follows readily. �



6 ALBRECHER, RENAUD, AND ZHOU3.2. The survival probability. Let
φγ(u) = Pu

{

inf
t≥0

Uγ(t) ≥ 0

}denote the survival probability in the risk model with tax rate γ and initialsurplus u. Hen
e, φ0(u) is the survival probability in the risk model withouttax. For the 
ompound Poisson risk model, Albre
her and Hipp [1℄ estab-lished a simple relation between the survival probability of a risk model withand without tax. We will now utilize Theorem 3.1 to generalize this resultto spe
trally negative Lévy risk pro
esses.Corollary 3.1. If γ < 1, then
φγ(u) = (φ0(u))

1/1−γ .Proof. From Theorem 3.1, we have that
φγ(u) =

(

ψ′(0+)W0(u)
)1/1−γ

,sin
e lima→∞W0(a) = (ψ′(0+))−1. The result follows from Equation (3).
�Note that φγ(u) > 0 if and only if φ0(u) = ψ′(0+) > 0, whi
h is the 
aseunder the net pro�t 
ondition E0[X(1)] > 0. However, the expe
tation neednot be �nite.3.3. The dis
ounted tax payments. Let us from now on assume that thenet pro�t 
ondition is ful�lled, i.e. Eu[X(1)] > 0.Let τγ be the time of ruin of the risk pro
ess with tax, i.e.

τγ = inf {t ≥ 0 | Uγ(t) < 0} .Let further
T (γ) = γ

∫ τγ

0
e−δt dD(t),denote the present value of all tax payments until the time of ruin τγ , where

D(t) = SX(t) −X(0) and δ ≥ 0 
an be interpreted as the for
e of interest.Re
all from Zhou [19℄ that(5) V1(u, u) =
Wδ(u)

W ′
δ(u)

,where V1(u, u) is the expe
tation of the present value of all dividends paiduntil ruin when a horizontal barrier is at level u. Utilizing a methodologyfrom Zhou [19℄ for horizontal barrier models, we will now 
ompute v(γ)
1 (u) =

E(T (γ)).Note that v(1)
1 (u) = V1(u, u) (so that the 
ase γ = 1 is settled).



A LÉVY INSURANCE RISK PROCESS WITH TAX 7Theorem 3.2. If γ < 1 and δ > 0, then the expe
ted dis
ounted sum of taxpayments until ruin is given by(6) v
(γ)
1 (u) =

γ

1 − γ

∫ ∞

u

(

Wδ(u)

Wδ(s)

)1/(1−γ)

ds.Proof. For ea
h n ≥ 1, de�ne an exit time Tn by
Tn = inf {t ≥ 0 | X(t) /∈ (γ/n, u+ 1/n)} .As X has no positive jumps, we have
v
(γ)
1 (u) ≥ Eu [T (γ);X(Tn) = u+ 1/n] .

Tn is stri
tly less than τγ on the event {X(Tn) = u+ 1/n}, using the inte-gration by parts formula and the strong Markov property at time Tn, weget
Eu [T (γ);X(Tn) = u+ 1/n] ≥ (γ/n)Eu

[

e−δTn ;X(Tn) = u+ 1/n
]

+ v
(γ)
1 (u+ (1 − γ)/n)Eu

[

e−δTn ;X(Tn) = u+ 1/n
]

.Hen
e,
v
(γ)
1 (u) ≥ γ

Wδ(u− γ/n)

nWδ(u+ (1 − γ)/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)
.In fa
t, one 
an show that

v
(γ)
1 (u) =

γ
Wδ(u− γ/n)

nWδ(u+ (1 − γ)/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)
+ o(1/n),when n goes to in�nity. Indeed, introdu
ing, for ea
h n ≥ 1, the exit time

T ′
n de�ned by

T ′
n = inf {t ≥ 0 | X(t) /∈ (0, u+ 1/n)} ,we get that

v
(γ)
1 (u) = Eu

[

T (γ);X(T ′
n) ≤ 0

]

+ Eu

[

T (γ);X(T ′
n) = u+ 1/n

]

≤ Eu

[

γ

∫ T ′

n

0
e−δt dD(t);X(T ′

n) ≤ 0

]

+ Eu

[

γ

∫ T ′

n

0
e−δt dD(t);X(T ′

n) = u+ 1/n

]

+ Eu

[

γ

∫ τγ∨T ′

n

T ′

n

e−δt dD(t);X(T ′
n) = u+ 1/n

]

≤ γ
Wδ(u)

nWδ(u+ 1/n)
+ v

(γ)
1 (u+ (1 − γ)/n)

Wδ(u)

Wδ(u+ 1/n)
+ o(1/n),



8 ALBRECHER, RENAUD, AND ZHOUwhere we have again used the integration by parts formula, the strongMarkov property and the following two fa
ts (
f. Zhou [19℄):
Eu

[

∫ T ′

n

0
e−δt dD(t);X(T ′

n) ≤ 0

]

= o(1/n);

Eu

[

∫ T ′

n

0
e−δtD(t) dt;X(T ′

n) = u+ 1/n

]

= o(1/n),when n goes to in�nity.Consequently, using the 
ontinuity and the di�erentiability of the s
ale fun
-tions, we get that
v
(γ)
1 (u) lim

n→∞

1 − Wδ(u−γ/n)
Wδ(u+(1−γ)/n)

γ/n
− lim
n→∞

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)

=
1 − γ

γ
lim
n→∞

v
(γ)
1 (u+ (1 − γ)/n) − v

(γ)
1 (u)

(1 − γ)/n

Wδ(u− γ/n)

Wδ(u+ (1 − γ)/n)and further(7) (v
(γ)
1 )′(u) =

γ

1 − γ

(

W ′
δ(u)

γWδ(u)
v
(γ)
1 (u) − 1

)

.This is the analogue of Equation (14) in the Proof of Theorem 2 in Albre
herand Hipp [1℄. Using the integrating fa
tor te
hnique for ordinary di�erentialequations, we get that its solution is given by
v
(γ)
1 (u) =

(

C − γ

1 − γ
U2(u)

)

eU1(u)/(1−γ),for some 
onstant C, where
U1(u) =

∫ u

0

W ′
δ(s)

Wδ(s)
ds , U2(u) =

∫ u

0
e−U1(s)/(1−γ) ds.We have that W ′

δ(s)/Wδ(s) ≥ 0 and
lim
s→∞

W ′
δ(s)

Wδ(s)
= Φ(δ).The latter result 
an be found in Avram et al. [2℄ or in Zhou [20℄. Hen
e,

U1 is unbounded be
ause Φ(δ) > 0 for δ > 0. Also, sin
e τγ → ∞ as u→ ∞(for any γ), with (5) we have that limu→∞ v
(γ)
1 (u) <∞. Thus,

lim
u→∞

U2(u) =
1 − γ

γ
Cand then(8) v

(γ)
1 (u) =

γ

1 − γ
e
(1−γ)−1

R u
0

W ′

δ(s)

Wδ(s)
ds
∫ ∞

u
e
−(1−γ)−1

R s
0

W ′

δ(t)

Wδ(t)
dt
ds.The statement follows from algebrai
 manipulations. �



A LÉVY INSURANCE RISK PROCESS WITH TAX 9Remark 3.1. If X has a negative drift (i.e. Eu[X(1)] < 0), then (6) alsoholds for δ = 0.Remark 3.2. Using Equation (8), we 
an also write(9) v
(γ)
1 (u) =

γ

1 − γ
e(1−γ)

−1
R u
0 (V1(s,s))−1 ds

∫ ∞

u
e−(1−γ)−1

R s
0 (V1(t,t))−1 dt ds,re
overing Theorem 2 of Albre
her and Hipp [1℄ in our more general Lévysetting.Remark 3.3. Using L'H�pital's rule, we re
over the following interestingrelation:(10) lim

u→∞
v
(γ)
1 (u) = γ lim

u→∞
V1(u, u).A dire
t probabilisti
 reasoning to obtain this identity goes as follows: inthe absen
e of ruin, the only di�eren
e for the 
al
ulation of v(γ)

1 (u) and
V1(u, u) is that, whenever tax (dividend) payments start and last until thenext deviation from the running maximum, in the tax 
ase only the proportion
γ of the in
ome is paid whereas in the horizontal barrier 
ase all the in
omeis paid. The only further di�eren
e is then that the surplus level at the nextpayment stream is di�erent, but the latter does not matter if the distan
e tothe ruin boundary does not matter, whi
h in the limit u → ∞ is the 
ase.Hen
e we immediately arrive at (10).3.4. Higher moments. We will now investigate higher moments of T (γ).Let v(γ)

k (u) be the k-th moment of T (γ) when the initial surplus is equal to u.Re
all from Renaud and Zhou [17℄, and also from Kyprianou and Palmowski[15℄, that(11) Vk(u, u) = k!

k
∏

i=1

Wiδ(u)

W ′
iδ(u)

,where Vk(u, u) is the k-th moment of the present value of all dividends paiduntil ruin when the horizontal barrier is at level u. Note that v(1)
k (u) =

Vk(u, u). So we only need to address the 
ase γ < 1:Theorem 3.3. If γ < 1 and δ > 0, then the k-th moment of the presentvalue of tax payments until ruin is related to the (k − 1)-th moment by(12) v
(γ)
k (u) =

kγ

1 − γ

∫ ∞

u
v
(γ)
k−1(s)

(

Wkδ(u)

Wkδ(s)

)1/(1−γ)

ds.Proof. First, pro
eeding as in the proof for Theorem 3.2 and using estimatesfrom the proof of Proposition 1 in Renaud and Zhou [17℄, we have that
v
(γ)
k (u) = kv

(γ)
k−1

(

u+ (1 − γ)/n
)γ

n

Wkδ(u− γ/n)

Wkδ(u+ (1 − γ)/n)

+ v
(γ)
k (u+ (1 − γ)/n)

Wkδ(u− γ/n)

Wkδ(u+ (1 − γ)/n)
+ o(1/n).



10 ALBRECHER, RENAUD, AND ZHOUFurther, we get that
(v

(γ)
k )′(u) =

γ

1 − γ

(

W ′
δ(u)

γWδ(u)
v
(γ)
k (u) − kv

(γ)
k−1(u)

)

.Solving this ordinary di�erential equation leads to
v
(γ)
k (u) =

kγ

1 − γ
e
(1−γ)−1

R u

0

W ′

kδ(s)

Wkδ(s)
ds
∫ ∞

u
v
(γ)
k−1(s) e

−(1−γ)−1
R s

0

W ′

kδ(t)

Wkδ(t)
dt
ds.Now the statement follows from simple algebrai
 manipulations. �Remark 3.4. From (12), we get by L'H�pital's rule

lim
u→∞

v
(γ)
k (u) = kγ lim

u→∞
v
(γ)
k−1(u)

Wkδ(u)

W ′
kδ(u)

.With (11) we 
an hen
e generalize the asymptoti
 relation (10) to arbitrarymoments of tax and dividend payments, respe
tively:(13) lim
u→∞

v
(γ)
k (u) = γk lim

u→∞
Vk(u, u).The alternative probabilisti
 argument from Remark (3.3) also 
arries overto explain formula (13).3.5. Examples.3.5.1. Cramér-Lundberg pro
ess with exponential 
laims. IfX is a 
ompoundPoisson pro
ess with exponential jumps (with Poisson parameter λ and ex-ponential parameter α), then the s
ale fun
tions are given by

Wδ(x) =
(α+ ρ)eρx(1 − η(x))

c(ρ− r)(see e.g. Kyprianou & Palmowski [15℄), where
η(x) =

α+ r

α+ ρ
e(r−ρ)x,and ρ and r are the positive and negative, respe
tively, solution of the equa-tion

cR2 + (cα − λ− δ)R − αδ = 0.Plugging this expression into formula (6), we eventually arrive at the expli
itformula
v
(γ)
1 (u) =

γ

ρ
(1 − η(u))1/1−γ

× 2F1

(

1

1 − γ
,

ρ

(ρ− r)(1 − γ)
,

ρ

(ρ− r)(1 − γ)
+ 1; η(u)

)

,whi
h was already derived in Albre
her and Hipp [1℄. Here
2F1(a, b, c; z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dtwith c > b > 0 denotes the Gauss hypergeometri
 series.



A LÉVY INSURANCE RISK PROCESS WITH TAX 113.5.2. Brownian motion with drift. Let X(t) = mt + σB(t) be a Brownianmotion with drift (with m 6= 0 and σ > 0). As in this 
ase ψ(λ) = mλ +
(1/2)σ2λ2 and Φ(α) = −ω + θα, one 
an verify that

Wδ(x) =
1

σ2θδ

(

e(−ω+θδ)x − e−(ω+θδ)x
)

,where θδ =
√
m2 + 2δσ2/σ2 and ω = m/σ2 (see also Avram et al. [2℄). Inparti
ular, we have

W0(x) =
1

m

(

1 − e−
2m

σ2 x
)

.Thus,
v
(1)
1 (u) = V1(u, u) =

σ2

2m

(

e
2m

σ2 u − 1
)

,whi
h re
overs Equation (2.20) in Gerber and Shiu [10℄.Also, if γ < 1 and if δ > 0, then one obtains
v
(γ)
1 (u) =

γ

1 − γ

[

e(θδ−ω)u(1 − e−2θδu)
]1/1−γ

×
∫ ∞

u

[

e(θδ−ω)s(1 − e−2θδs)
]−1/1−γ

ds.Sin
e θδ > ω when σ > 0 and δ > 0, letting r = e−2θδs

e−2θδu in the integral andsimplifying yields
v
(γ)
1 (u) =

γ

1 − γ

[

(1 − e−2θδu)1/1−γ

θδ − ω

]

× 2F1

(

(1 − γ)−1,
θδ − ω

2θδ
,
3θδ − ω

2θδ
; e−2θδu

)

.4. Optimality of the tax barrierAs tax payments stop at ruin, it is natural to ask whether the expe
teddis
ounted tax payments over the lifetime of the pro
ess 
an be optimizedwhen tax payments are only started after the surplus has rea
hed a 
ertainlevelM (see Albre
her and Hipp [1℄ for a 
orresponding study in the Cramér-Lundberg framework). Due to the strong Markov property we 
learly have(14) v
(γ)
1,M (u) =

Wδ(u)

Wδ(M)
v
(γ)
1 (M)for u < M and v(γ)

1,M (u) = v
(γ)
1 (u) for u ≥ M (as then tax payments startright away). Hen
e the goal is to maximize (14) with respe
t to M .Assumption 4.1. In what follows, we assume that ea
h s
ale fun
tion isthree times di�erentiable and that its �rst derivative is a stri
tly 
onvex fun
-tion (so that W ′′

δ (u) 
hanges its sign from negative to positive at most on
e).



12 ALBRECHER, RENAUD, AND ZHOUAssumption 4.1 is for instan
e ful�lled if the Lévy measure has a 
ompletelymonotone density (see Loe�en [16℄ for the stri
t 
onvexity of W ′
δ and Chanand Kyprianou [5℄ for in�nite di�erentiability). Among parti
ular exam-ples ful�lling Assumption 4.1 are Gamma pro
ess and the inverse Gaussianpro
ess (for more examples, see Loe�en [16℄).Di�erentiating Equation (14) with respe
t to M , one �nds that M0 is a
riti
al point of M 7→ v

(γ)
1,M(u) if(15) v

(γ)
1 (M0) = V1(M0,M0) or equivalently (v

(γ)
1 )′(M0) = 1,where (7) was used for the latter equivalen
e. To spe
ify the nature of this
riti
al point, we use the se
ond derivative:(16) ∂2v

(γ)
1,M (u)

∂M2

∣

∣

∣

∣

M=M0

=
γ

1 − γ

Wδ(u)

(Wδ(M0))2
v
(γ)
1 (M0)W

′′
δ (M0).Clearly, sin
e limM→∞ v

(γ)
1,M(u) = 0 for any u, there is a point M⋆ ∈ [0,∞)where the fun
tion M 7→ v

(γ)
1,M (u) rea
hes its global maximum.Remark 4.1. Note that M 7→ v

(γ)
1,M(u) 
an not have a lo
al minimum in

[0,∞). Indeed, if there existed a lo
al minimum, then by virtue of limM→∞ v
(γ)
1,M (u) =

0, there would have to exist a lo
al maximum for a larger value M . But inview of (16) and the stri
t 
onvexity of W ′
δ, this 
an not o

ur.Similarly, we dedu
e that after a potential saddlepoint there 
an not be alo
al maximum.Re
all that

V ′
1(s, s) = 1 − Wδ(s)W

′′
δ (s)

(W ′
δ(s))

2and from Remark 3.3 that(17) lim
u→∞

v
(γ)
1 (u) < lim

u→∞
V1(u, u).Remark 4.2. From the above, it follows thatM 7→ v

(γ)
1,M (u) also 
an not havea saddlepoint M0 in [0,∞). Indeed, otherwise from v

(γ)
1 (M0) = V1(M0,M0)and W ′′

δ (M0) = 0, one 
an observe that
V ′′

1 (M0,M0) =
−Wδ(M0)W

′′′
δ (M0)

(W ′
δ(M0))2and (v

(γ)
1 )′′(M0) = 0. Hen
e, the fun
tion s 7→ v

(γ)
1 (s) − V1(s, s) rea
hes alo
al minimum value of 0 at this point M0 (as W ′′′
δ (M0) > 0), implying that

v
(γ)
1 is greater than V1 in a neighbourhood of M0, so that this saddlepointwould have to be followed by a maximum or another saddlepoint, whi
h itselfis ex
luded by the 
onvexity of W ′

δ(u).
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onsequen
e, Equation (15) has at most one positive solution M0. If
V1(0, 0) ≤ v

(γ)
1 (0), then due to (17) su
h a solution M0 > 0 exists and is thepoint of global maximum, i.e. M⋆ = M0.If V1(0, 0) > v

(γ)
1 (0), then M⋆ = 0 (i.e. tax payments start immediately), asa solution of (15), by (17), would have to be a

ompanied by a se
ond one,whi
h 
an not be the 
ase.Note that M⋆ is independent of the initial surplus u.From the above dis
ussion, we get the following �nal result whi
h extendsTheorem 3 in Albre
her and Hipp [1℄.Theorem 4.1. Suppose that the s
ale fun
tions of X are three times dif-ferentiable and that their �rst derivatives are stri
tly 
onvex fun
tions. If

V1(0, 0) > v
(γ)
1 (0), then the optimal height M⋆ is equal to 0. If V1(0, 0) ≤

v
(γ)
1 (0), then the optimal height M⋆ is the unique positive solution of Equa-tion (15). The maximum value is thus given by(18) v

(γ)
1,M⋆(u) =

{

V1(u,M
⋆), if u < M⋆;

v
(γ)
1 (u), if u ≥M⋆.Proof. If u < M⋆, then

v
(γ)
1,M⋆(u) =

Wδ(u)

Wδ(M⋆)
v
(γ)
1 (M⋆) =

V1(u,M
⋆)

V1(M⋆,M⋆)
v
(γ)
1 (M⋆) = V1(u,M

⋆).Otherwise, we start to pay taxes right away and v(γ)
1,M⋆(u) = v

(γ)
1 (u). �Referen
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