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Abstract
Many recent multiprocessor systems are realized with a non-
uniform memory architecture (NUMA) and accesses to remote
memory locations take more time than local memory accesses.
Optimizing NUMA memory system performance is difficult and
costly for three principal reasons: (1) today’s programming lan-
guages/libraries have no explicit support for NUMA systems, (2)
NUMA optimizations are not portable, and (3) optimizations are
not composable (i.e., they can become ineffective or worsen perfor-
mance in environments that support composable parallel software).

This paper presents TBB-NUMA, a parallel programming li-
brary based on Intel Threading Building Blocks (TBB) that sup-
ports portable and composable NUMA-aware programming. TBB-
NUMA provides a model of task affinity that captures a program-
mer’s insights on mapping tasks to resources. NUMA-awareness
affects all layers of the library (i.e., resource management, task
scheduling, and high-level parallel algorithm templates) and re-
quires close coupling between all these layers. Optimizations im-
plemented with TBB-NUMA (for a set of standard benchmark pro-
grams) result in up to 44% performance improvement over standard
TBB, but more important, optimized programs are portable across
different NUMA architectures and preserve data locality also when
composed with other parallel computations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; C.4
[Performance of Systems]: Performance attributes, Measurement
techniques

Keywords NUMA, scheduling, data placement

1. Introduction
Recent parallel systems are often realized with a non-uniform
memory architecture (NUMA). In NUMA systems the latency
and the bandwidth of memory accesses to last-level caches and
to DRAM memory varies depending on the target of the memory
access: local memory accesses (accesses that remain within the
boundaries of a processor) have much lower memory access la-
tency than remote memory accesses (accesses that are transferred
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between processors). E.g., on an Intel Nehalem, local accesses to
the last-level cache (DRAM) take 38 (190) cycles, whereas remote
accesses take 186 (310) cycles. Similar slowdowns (4.9x for cache
accesses, 1.6x for DRAM) can also be observed on comparable
AMD systems [15].

Due to the large performance penalty of cross-chip memory ac-
cesses, performance optimizations for NUMA systems typically
target improving data locality, i.e., the reduction (or even elimi-
nation) of remote memory accesses [5, 6, 8, 21, 24, 25, 28, 32–34].
Optimizations are often automatic, that is, the runtime system (e.g.,
the OS, the VM, or the compiler) profiles the memory accesses of
programs and then, based on the profiles, it automatically adjusts
the distribution of data and/or the scheduling of computations.

Automatic optimizations for NUMA systems can be highly ef-
fective; however, for some programs (e.g., programs with com-
plex memory access patterns) profiles do not convey enough in-
formation to enable the runtime system to carry out optimiza-
tions successfully. In these cases high-level information about pro-
grams (e.g., program data dependences) is needed. As this type
of information is likely to be available to the programmer, sev-
eral projects consider making the development toolchain NUMA-
aware. E.g., recent profilers like MemProf [18], Memphis [22],
HPCToolkit [19], and DProf [27] present information about a pro-
gram’s memory behavior to the developer, who can then change the
code to improve performance.

Profilers pinpoint code locations with inefficient usage of the
memory system. In practice, however, programs are rarely opti-
mized for NUMA systems as commonly used parallel languages
and libraries like OpenMP or Intel Threading Building Blocks
(TBB) are geared towards exploiting the lower levels of the mem-
ory system (i.e., L1 and L2 caches), if at all, and have no support for
NUMA systems. More specifically, existing parallel programming
frameworks have three main limitations.

First, existing frameworks usually require memory-system-
aware code to consider many details of the memory hierarchy’s
layout, thus optimized programs are not portable. Second, NUMA-
aware code is not composable. Mapping data and computations de-
pends on the hardware resources (i.e., cores/processors) available
to the program. However, in frameworks with support for compos-
able parallel software (i.e., parallel software composed of multiple,
concurrently executing parallel computations [26]) the amount of
resources available to a computation can change over time, and
therefore memory-system-aware programs are required to adapt
the mapping at runtime. Existing frameworks provide the program-
mer little information about the program’s runtime configuration,
thus optimizations often simply assume that all hardware resources
(i.e., all cores/processors) are continuously available. As a result,
the advantages of memory system optimizations are annulled as
soon as the optimized computation is composed with other parallel
computations. Finally, existing parallel programming frameworks
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Figure 1. Computation optimized for data locality.
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Figure 2. Shared threads: Unfortunate mapping.
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Figure 3. Shared threads: Appropriate mapping.

have no support for explicit mapping of data and computations, i.e.,
the programmer is required to be aware of runtime/compiler/library
internals to be able to set up a mapping. As a result of these limi-
tations, even if a programmer conceptually knows how to optimize
a program, implementing optimizations is difficult with existing
frameworks.

2. Motivation and Goals
These limitations impact the toolchains for NUMA systems:
source-level optimizations for NUMA systems are rare in prac-
tice, and the performance potential of NUMA systems is often
unexploited. To fill in the gap in the development toolchain for
NUMA systems, this paper presents TBB-NUMA, a parallel pro-
gramming library for programming NUMA systems, to demon-
strate how portable and composable data locality optimizations can
be supported for NUMA systems. We present the library as an ex-
tension to TBB to demonstrate that these ideas can be exploited in
the context of a widely used platform, but the concepts and ideas
are not limited to this software platform.

2.1 Principles of Data Locality Optimizations
Data locality optimizations for NUMA systems have traditionally
targeted the co-location of data and computations. To understand

the principles of these optimizations, let us consider an example
multithreaded program that is parallelized for a 2-processor 8-core
NUMA system (the system in Figure 1). The program consists of a
set of concurrently executing computations (tasks) C0, C1, . . . , C7;
each computation accesses a subset D0, D1, . . . , D7 of the total
data used by the program.

To achieve good data locality, the programmer must go through
a series of steps. First, the programmer must parallelize the algo-
rithm (i.e., define the computations Ci) so that the data subsets
Di overlap as little as possible. Second, the programmer must dis-
tribute data subsets among processors. The final step is to schedule
computations so that each computation Ci executes at the same
processor as where its data Di is placed at.

Figure 1 shows the mapping of the example program onto the
2-processor 8-core NUMA system. In the figure each computation
executes at the processor where its data is allocated. If data sub-
sets do not overlap (small adjustments often suffice to adjust over-
lap in multi-threaded computations [35]), this mapping is beneficial
for both caching and DRAM performance: (1) The cache capacity
available to the computation is maximized (data subsets are dis-
joint; as a result, each piece of data is present in only one cache); (2)
the bandwidth available to the program is increased (and the con-
tention on the memory interfaces is reduced) as all paths to memory
are utilized when data is placed at all DRAM modules, and (3) as
each computation accesses locally placed data, the program does
not encounter any remote memory accesses.

2.2 Enforcing Data Locality in Practice
Data locality optimizations are simple in theory but difficult to im-
plement in practice. Although data distribution is well supported in
recent OSs (e.g., Linux supports per-processor memory allocation
through the libnuma library and memory migration through the
move pages() system call), scheduling computations at appropri-
ate processors is problematic in today’s parallel languages and li-
braries. In commonly used parallel frameworks the scheduling of
computations at processors depends on two components. First, as
most parallel frameworks operate with thread pools, computations
(tasks) must be first mapped to threads in the pool (we thus use the
term setting task-to-thread affinities for mapping tasks to threads).
Second, threads from the pool must be pinned to processors of the
system to ensure that computations execute where intended. If both
mappings are set up appropriately, the system guarantees data lo-
cality. In the following we discuss problems related to both compo-
nents.

2.2.1 Component 1: Setting Task-to-Thread Affinities
Commonly used parallel frameworks operate with implicit task-
to-thread affinities, i.e., with these frameworks the programmer
has no direct control on how to map computations to threads.
OpenMP static loop partitioning is an example of implicit com-
putation scheduling. For statically partitioned parallel loops the
OpenMP runtime assigns a well-defined chunk of the iteration
space to each thread. If programmers are aware of the internals of
static partitioning and know which pieces of data are touched by
each loop iteration, they can distribute data among processors so
that each thread accesses data locally. With other OpenMP work-
division schemes (e.g., dynamic partitioning), however, the distri-
bution of loop iterations between threads is not deterministic [1],
thus the programmer cannot assume much about the data accesses
of the program and, as a result, data locality is not controllable.

Setting up task-to-thread affinities is not easy in case of systems
based on task parallelism either. E.g., in Intel TBB each task can be
assigned a special value; the value defines the affinity of that task
to a thread in the pool. The TBB Reference Manual [2] states the
following about the values of a task’s affinity:



“A value of 0 indicates no affinity. Other values represent
affinity to a particular thread. Do not assume anything about
non-zero values. The mapping of non-zero values to threads
is internal to the Intel TBB implementation.”

Such hints would require the programmers to reverse-engineer the
TBB implementation if they wanted to set up a mapping between
tasks and threads. Due to this obstacle, it is difficult to implement
NUMA data locality optimizations in TBB.

Finally, defining task-to-thread affinities depends on the num-
ber of threads available to the program (a value that can change at
runtime) but the distribution of data is expressed depending on the
number of processors in the system. To ensure data locality on any
system and in any runtime configuration the programmer must con-
sider both parameters, an impediment that makes writing NUMA-
aware programs with current systems even more cumbersome.

2.2.2 Component 2: Pinning Threads to Processors
The second component of mapping computations to processors is
pinning threads to processors. Unless threads are pinned, the OS
scheduler may freely move threads around in the system. OS re-
schedules can result in remote memory accesses (or costly data
migrations if data follows the computations using it, e.g., in systems
with automatic data migration [5]; this paper assumes a standard
OS without automatic data migration).

Some OpenMP implementations allow (although not required
by the OpenMP standard [1]) pinning thread pool threads to proces-
sors. Pinning threads requires understanding the memory system
for every new machine the program is to be run on. If threads are
pinned to processors, and the programmer has distributed data and
has also set up task-to-thread affinities (e.g., by relying on the prop-
erties of static loop partitioning, as discussed before), each piece of
data will be accessed at a well-defined processor and the program
has thereby good data locality.

Pinning threads to processors works well only as long as only
one parallel computation uses a thread pool at a time. Modern
runtime systems, however, support composable parallel software,
i.e., programs that contain nested parallelism, programs that reuse
functionality from parallelized libraries, or programs that are par-
allelized using different parallel languages/libraries [26]. For these
programs the thread pool of the runtime is shared by multiple par-
allel computations and the runtime distributes threads between all
computations that are registered with it.

To illustrate the problems composability causes for programs
optimized for NUMA systems, Figure 2 shows an example where
two parallel computations, CA and CB , execute in parallel on the
example 2-processor 8-core system. Computation CA is composed
of subcomputations CA0 . . . CA3 ; each subcomputation CAi ac-
cesses a different data subset DAi . Similarly, each subcomputa-
tion CBi of CB accesses a distinct data subset DBi . The program-
mer optimized both computations for NUMA, thus data used by
the computations is distributed across processors (according to the
principles discussed in Section 2.1). The programmer has set up
task-to-thread affinities as well, but as the runtime is not aware of
the programmer’s intentions, it can allocate threads to computations
in several ways. Figure 2 shows an unfortunate allocation that can-
cels the optimization intended by the programmer: CA is mapped
to threads executing at Processor 0 and CB is mapped to threads
executing at Processor 1. Thus, both computations access some of
their data remotely (DA2 , DA3 , DB0 , DB1 ). Figure 3 shows an ap-
propriate assignment of threads to computations: In this case each
computation is assigned threads from both processors so that each
computation can access data locally and exploits all caches of the
system.

Threads	  

T1	   T2	   …	   TN	  

Parallel	  
algorithm	  
templates	  

Task	  scheduler	  

User	  program	  

RML	  

(a) TBB layers.

Threads	  

T1	   T2	   …	   TN	  

.	  

.	  

.	  

TS	  

User	  program	  

RML	  

TS	  OMP	  

.	  

.	  

.	  

.	  

.	  

.	  

(b) Composed program.

Figure 4. TBB architecture.

2.3 A Practical Solution
An approach to programming NUMAs that aims to support perfor-
mance, portability, and composability must address three concerns:

Explicit mapping The programmer can define the distribution of
data among processors and, in addition, can also express the
preferred schedule of computations (e.g., in the form of hints to
a work-stealing scheduler) without being required to understand
runtime system internals. The scheduler honors these hints un-
less there are idle resources; in this case a task may be moved
by the scheduler to a different processor in an attempt to bal-
ance the load (as in current systems incurring the overhead of
remote execution is preferable to idling processing resources).

Portability Programmers are not required to have information
about the exact hardware layout but should target a generic
NUMA system with P processors. The parallel programming
framework must automatically determine the remaining details
of pinning threads to appropriate processors so that the opti-
mized programs are portable.

Composability The framework manages its thread pool so that the
advantages of data locality optimizations are preserved even
if only a fraction of all system resources are available for an
optimized computation. This setup allows optimized programs
to be included as part of libraries (or reuse functionalities from
libraries already parallelized) and to utilize the memory system
appropriately at the same time.

This paper describes TBB-NUMA, a parallel library for NUMA
systems. We describe TBB-NUMA as an extension to Intel TBB
so that we can leverage prior work. To describe the innovation
of TBB-NUMA (i.e., defining the semantics of task affinities so
that portable and composable parallel programs can be written)
we start with the architecture of standard TBB (Section 3) and
then (Section 4) highlight the differences between standard TBB
and TBB-NUMA in terms of locality-aware programming. Finally,
Section 5 presents an evaluation of the performance, composabil-
ity, and portability of data locality optimizations implemented with
TBB and TBB-NUMA for a set of well-known benchmark pro-
grams.

3. Anatomy of TBB
Standard TBB has a layered architecture (shown in Figure 4(a)1).
This section describes the layers top-down, that is, the discussion
starts with the layer closest to the programmer and ends with the
farthest layer (the layer closest to the hardware).

1 TBB has an additional layer, the task arena, below the task scheduler layer.
Threads are registered with the task arena, the task scheduler implements
only scheduling. To simplify the discussion we refer to the task scheduler
and task arena layers as one layer (task scheduler), see [2] for exact details.



3.1 User Programs
There are two ways to implement parallelism with standard TBB:
programmers can either use the library’s Cilk-style work-stealing
scheduler [12] directly, or they can reuse parallel algorithm tem-
plates from a set of templates defined by the library. Templates
hide the complexity of the work-stealing scheduler from the pro-
grammer, but they still use the work-stealing scheduler internally.

3.2 Parallel Algorithm Templates
TBB supports loop parallelism through the parallel for algo-
rithm template (and also variations of it, e.g., parallel reduce,
parallel do). TBB also supports pipeline-parallelism (through
the pipeline template). In this paper we concentrate on two al-
gorithm templates, parallel for and pipeline, because they
are widely used and they represent two significantly different
ways of approaching parallelism. In standard TBB both tem-
plates are optimized for better utilizing L1 and L2 caches. The
parallel for template preserves cache locality if it is given an
affinity partitioner object as a parameter. We briefly discuss
this optimization in Section 3.6 (see [3] and [30] for details about
the principles and implementation of this optimization, respec-
tively). Parallel pipelines are optimized for better L1 and L2 cache
locality through the way they generate the task tree corresponding
to a pipeline computation (see Section 4.4.3 for details).

3.3 Task Scheduler
Similar to Cilk [12], the TBB task scheduler interface exposes
library functions to spawn and join tasks (implemented in TBB
by the spawn() and wait for all() methods and variations of
them). TBB allows but does not guarantee parallelism, thus the
task scheduler can have multiple threads (but must have at least
one thread) at any given point of time. Each thread has a local
deque where spawned tasks are inserted. A thread removes tasks
for execution from its local deque in LIFO order and, if the local
deque is empty, steals tasks from other threads’ deques in FIFO
order.

The task scheduler has a set of mailboxes. Each thread in the
task scheduler is connected to a (different) mailbox. A task can be
assigned a special value that specifies the affinity of that task to
a mailbox. Thus, the definition of task affinities provided by the
TBB Reference Manual (see Section 2.2.1 and [2]) is misleading.
According to the manual, a task affinity implies that a task is associ-
ated with a particular thread, yet an affinity value associates a tasks
only with a mailbox. During the lifetime of a program, possibly
different threads (but only one thread at a time) can be connected
to a mailbox. Therefore, affinity values provided by the standard
TBB implementation guarantee only that a task is associated with a
mailbox, but not with any particular thread. We further discuss the
implications of task-to-mailbox affinities in Section 3.6.

An affinitized task (a task with a non-zero affinity value) is sent
to the thread currently connected to the mailbox. Sending is real-
ized by inserting the task into the mailbox. The thread connected
to the mailbox receives the task by removing it from the mailbox.
Furthermore, an affinitized task is inserted not only into the mail-
box it is sent to, but also into the local deque of the thread that
created it. Lastly, task affinities are by definition internal to TBB’s
implementation and only an affinity partitioner uses them
(internally).

TBB supports asynchronous operations through the enqueue()
call. Tasks to be executed asynchronously are inserted into a FIFO
queue shared between all threads (but are not inserted into any
thread’s local deque). Due to the multiple types of queues in the
task scheduler, TBB defines a set of rules (Figure 5) that specify
from where a thread is supposed to fetch the next task to be exe-

1. The task returned by the current task t.

2. The successor of t (if all predecessors of t have completed).

3. The task removed from the thread’s own deque (LIFO).

4. The task removed from the mailbox this thread is currently
connected to.

5. The task removed from the task scheduler’s shared queue.

6. The task removed from another (randomly chosen) thread’s
deque (FIFO) (steals).

Figure 5. Standard TBB: Rules to fetch next task.

cuted. The rules are listed in order of decreasing priority. If a high
priority rule is unsuccessful, the scheduler tries the next rule.

3.4 Resource Management Layer
The number of threads in a task scheduler is determined by the Re-
source Management Layer (RML). (To avoid excessive OS sched-
uler overhead, the RML limits the number of threads available.)
TBB is interoperable with other parallel frameworks (e.g., Intel
OpenMP): If a program is composed of multiple computations (par-
allelized with possibly different parallel frameworks), all computa-
tions register with the same RML instance that assigns a subset of
the available threads to each computation. Moreover, if the number
of computations registered with an RML changes, threads are redis-
tributed between computations. As a result, the number of threads
assigned to a computation can vary over time.

Figure 4(b) shows a program composed of two TBB task
scheduler-based computations (TS) and one OpenMP-based (OMP)
computation (all are registered with the same RML that has N
threads). (The example omits higher-level details about the pro-
gram, e.g., the parallel algorithm templates it uses.) Upcoming
examples consider only TBB task schedulers (but not OpenMP
runtimes) to be registered with an RML. This simplifies the dis-
cussion but is not a real restriction of either standard TBB nor
TBB-NUMA.

3.5 Threads
In addition to task schedulers, threads are registered and managed
by the RML as well. The RML manages two types of threads: (1)
The RML automatically creates N − 1 worker threads (N is the
number of cores of the system); (2) master threads are created by
the user program with a suitable system library (e.g., pthreads)
and are registered the first time they use a parallel construct.

3.6 NUMA Issues in Standard TBB
In standard TBB, each task scheduler has a set of mailboxes, the
number of mailboxes is usually set to the number of cores of the
machine. When the RML assigns a thread to a task scheduler, the
thread connects to a randomly chosen mailbox.

Figure 6(b) shows a task scheduler that is configured with four
mailboxes (M1 . . .M4); the task scheduler is allocated four threads
by the RML (T1 . . . T4). During its lifetime, a task scheduler can be
allocated different numbers of threads. Moreover, even if the same
set of threads is allocated to a task scheduler, each thread can be
connected to a different mailbox during the lifetime of the task
scheduler (e.g., if a thread leaves and then re-joins a scheduler,
the thread can be assigned to a randomly chosen mailbox, and
thus possibly not to the same mailbox it was connected to before
it left the task scheduler). We refer to the combination of the
number of threads in a task scheduler and the mailboxes used
by these threads as a task scheduler configuration. Figure 6(b)
shows the task scheduler in a fully populated configuration where
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Figure 6. Mailboxing (standard TBB).

a thread is connected to each mailbox; in this configuration each
thread Ti is connected to mailbox Mi. In contrast, Figure 6(c)
shows the task scheduler in a partially populated configuration in
which only mailboxes M1 and M3 are used (by threads T1 and T3,
respectively).

If a thread creates a task tree and then submits it to the task
scheduler for execution, and tasks in the tree have affinities to
mailboxes, then these tasks are inserted into the creator thread’s
local deque as well as into the mailbox corresponding to the task’s
affinity value. Threads in the task scheduler attempt to obtain tasks
to execute. First, a thread tries to receive a task from the mailbox
the thread is connected to (Rule 4 in Figure 5). If the mailbox is
empty, the thread falls back trying to remove a task from the shared
queue (Rule 5) or to randomly stealing a task (Rule 6).

Figure 6(a) shows a task tree with three levels; tasks in the tree
have affinities specified for the task scheduler configuration shown
in Figure 6(b). The example corresponds to a possible partition-
ing of an iteration space of 1000 iterations (as done, e.g., by the
parallel for pattern). If the task tree is repeatedly executed with
the same set of affinities and with the same task scheduler config-
uration, the same subset of the iteration space is sent to the same
mailbox. Thus, each thread processes the same subset of the itera-
tion space. As a result, the computation has good cache locality. In
standard TBB the parallel for algorithm template is based on
this principle: If used with an affinity partitioner object, the
parallel for template stores task affinities into the partitioner
object and reuses them on future executions.

In standard TBB affinities are only a hint on the preferred place
of a task’s execution, that is, the task scheduler is allowed to ignore
task affinities to better balance the load. More specifically, tasks
are not executed by the thread specified by affinities for three
main reasons: (1) steals, (2) revokes, and (3) changes in the task
scheduler configuration. First, affinitized tasks are also inserted
into the local deque of the thread that creates them, thus they can
be stolen before they are received at the mailbox they have affinity
to. Second, if the thread that created tasks executes Rule 3, it can
revoke tasks from mailboxes and execute them locally itself. Third,
the task scheduler configuration changes at runtime; Figure 6(c)
shows the task scheduler partially populated with only two threads.
For this scheduler configuration the affinities of the task tree do not
make sense (because there is no thread connected to mailboxes M2

and M4), thus all tasks of the tree (including tasks with affinity to
threads T2 or T4) will be executed by either thread T1 or thread T3.

Programmers cannot foresee dynamically changing runtime
conditions, thus TBB does not encourage programmers to specify
affinities for tasks. Instead, TBB keeps task affinities internal to the

library’s implementation. The only case where TBB uses affinities
(only internally) is the parallel for template used in combina-
tion with an affinity partitioner object. The parallel for
algorithm template automatically and internally adapts the affini-
ties of task trees to match the effective place of execution. E.g.,
let us assume a task tree generated by a parallel for partitioned
with an affinity partitioner. Let us furthermore assume that,
when unfolding the task tree, the partitioner sets the affinity value
of a task A in the tree to value 1 (indicating that A is preferably exe-
cuted by the thread connected to mailbox M1). If task A is executed
by a thread connected to a different mailbox Mi (because of any
of the previously mentioned three reasons), the runtime overwrites
the partitioner’s record about the task’s affinity; after the update
the task has its affinity value set to i and this value is used when
the task is re-executed. This strategy is beneficial assuming that the
affinities specified by the partitioner match the configuration of the
task scheduler for some time in the future. However, updating task
affinities is not acceptable in NUMA systems: In NUMA systems
task affinities must stay constant because each task must execute at
the processor where its data is located.

4. Reconciling TBB and NUMA
Implementing support for NUMA-aware programming involves all
layers of TBB’s architecture, and, in some cases, it requires tight
coupling between the layers. The discussion in this section follows
the layers bottom to top. This section focuses on aspects specific to
TBB-NUMA, contrasting it to standard TBB where interesting.

4.1 Threads
Previous parallel frameworks (e.g., Intel OpenMP) allow the user
to pin thread to cores, i.e., each thread is allowed to execute only
at one specific core. TBB-NUMA automatically pins each thread
to a specific processor. If a thread is pinned to a processor, the
thread is allowed to execute at any core of this specific processor,
but not at cores of any other processor. Threads are pinned to
processors when they are created by the RML (worker threads)
or when they register with the RML (master threads). Threads are
distributed round-robin across the processors of a system (the first
thread registered/created is pinned to Processor 1, the second to
Processor 2, and so on); we assume all processors are identical
with regard to number and capabilities of cores, thus the RML
guarantees that there is an approximately equal number of threads
pinned to each processor at any given point of time. TBB-NUMA
is aware of the memory system’s layout and threads are pinned to
processors without user intervention.

The OS scheduler has fewer constraints with per-processor pin-
ning than with per-core pinning, thus it can possibly balance load
better if there are external (non-TBB) threads running on the sys-
tem. If threads are not pinned, the TBB-NUMA runtime cannot
give any guarantees to the layers above the threading layer, hence
per-processor pinning is the minimal constraint that must be im-
posed on the OS scheduler to support NUMA-awareness.

4.2 Resource Management Layer
Similar to the RML in standard TBB, the TBB-NUMA RML dis-
tributes threads between all registered task schedulers. In addition
to the standard TBB, the TBB-NUMA RML is aware of which pro-
cessor each registered thread is pinned to and it distributes threads
so that in each registered task scheduler there is an approximately
equal number of threads from each processor. Let us assume an ex-
ample program with two task schedulers running on a 2-processor
8-core system; there are 8 threads registered with the RML. In this
case the RML assigns four threads to each task scheduler, with two
threads pinned to Processor 1 and with two threads pinned to Pro-
cessor 2. Distributing threads this way guarantees that each task



4′ The task removed from mailbox Mi, where the current thread
is pinned to Processor i.

5′ The task removed from the task scheduler’s shared queue i,
where the current thread is pinned to Processor i.

5′′ The task removed from the task scheduler’s shared queue 0
(queue w/o affinity for any processor).

5′′′ The task removed from the task scheduler’s shared queue k,
where the current thread is pinned to Processor i and i 6= k.

Figure 7. Rules substituted by TBB-NUMA to fetch next task
(relative to standard TBB).

Level	  3	  

Level	  2	  

Level	  1	  

1	  
[1-‐250]	  

2	  
[751-‐1000]	  

2	  
[501-‐751]	  

1	  
[251-‐500]	  

1	  
[1-‐500]	  

2	  
[501-‐1000]	  

1	  
[1-‐1000]	  

(a) Task tree with task-to-processor affinities (top) and partitioning (bottom).

Task	  scheduler	  

T1	   T2	  

M1	  

T4	  T3	  

M2	  

Processor	  1	   Processor	  2	  

(b) TS fully populated.

Task	  scheduler	  

T1	   ?	  

M1	  

?	  T3	  

M2	  

Processor	  1	   Processor	  2	  

(c) TS partially populated.

Figure 8. Mailboxing (TBB-NUMA).

scheduler has access to all memory system resources (i.e., last-level
caches, memory controllers, and cross-chip interconnects) and un-
fortunate assignments like that in Figure 2 are avoided.

4.3 TBB-NUMA Task Scheduler
Unlike in standard TBB, in TBB-NUMA the programmer can spec-
ify task affinities explicitly. Task affinities are hints in TBB-NUMA
as well, but, unlike in standard TBB, affinities are sticky in TBB-
NUMA. That is, the TBB-NUMA runtime is not allowed to modify
a task’s affinity when the task is executed on a different proces-
sor (i.e., a processor not originally intended by the programmer).
To help the TBB-NUMA task scheduler still honor affinities (and
balance load at the same time), the TBB-NUMA runtime imple-
ments a set of optimizations in addition to standard TBB. We first
define the semantics of task affinities in TBB-NUMA, then we de-
scribe the optimizations to handle scheduler configuration changes,
steals, and revokes (the reasons mentioned in Section 3.6 due to
which the scheduler can ignore affinities).

4.4 Task-to-Processor Affinities
In TBB-NUMA tasks have affinity to a processor (instead of a mail-
box as in standard TBB). That is, a task with an affinity value equal
to i is not meant to be executed by the single thread connected to
mailbox Mi as in TBB but by any thread running at Processor i.
Thus, TBB-NUMA replaces Rule 4 of standard TBB (Figure 5) by
Rule 4’ (Figure 7). Because affinity values have a clear meaning
backed by the TBB-NUMA runtime system, the programmer is al-
lowed to use them (either directly via the task scheduler interface
or indirectly by reusing parallel algorithm templates). To support
per-processor task affinities, the number of mailboxes of a TBB-
NUMA task scheduler is equal to the number of processors of the

1 vo id s e t i d l e ( a f f i n i t y id , boo l f l a g ) {
2 mai lbox [ i d ] . c oun t e r += f l a g ? 1 : −1;
3 }
4 boo l i s i d l e ( a f f i n i t y i d ) {
5 boo l t h r e a d s e x p e c t e d =
6 num th r e ad s a c t i v e [ i d ]
7 < n um t h r e a d s a l l o t t e d [ i d ] ;
8 r e t u r n mai lbox [ i d ] . c oun t e r > 0
9 | | t h r e a d s e x p e c t e d ;

10 }

Figure 9. Indicating idleness (TBB-NUMA).

machine (i.e., on a P -processor system there are P mailboxes). A
task with an affinity value of i is inserted into mailbox Mi and, as
the RML allows only threads pinned to Processor i to use this mail-
box, the task is slated to be executed at the appropriate processor.
Figure 8(b) shows the layout of a task scheduler populated with 4
threads (on a 2-processor system); two threads are pinned to each
processor.

Figure 8(a) shows a NUMA-aware affinitization of a task tree
(also for a 2-processor system). In the example the first half of the
iteration space (iterations [1-500]) is mapped to Processor 1, the
second half (iterations [501-1000]) is mapped to Processor 2. If
data accessed by iterations [1-500] ([501-1000]) is allocated at
Processor 1 (Processor 2), the computation has good data locality
and thus good performance with TBB-NUMA.

4.4.1 Handling Configuration Changes (Reason 1)
TBB-NUMA handles the problem of changing task scheduler con-
figurations by hardware-aware resource management. The TBB-
NUMA RML allocates threads to task schedulers so that each
scheduler has an approximately equal number of threads pinned
to each processor. As a result, in every task scheduler the number
of threads using each per-processor mailbox is approximately the
same. Thus, every task scheduler has approximately the same share
of each processor’s computational and memory system resources.
Figure 8(c) shows a task scheduler populated with two threads (two
threads less than in Figure 8(b)). Each mailbox is served by one
thread pinned to each processor and the affinitized task tree will
execute with good data locality, just as when the task scheduler is
fully populated (Figure 8(b)).

In some scenarios (when the number of thread schedulers reg-
istered with the RML is close to or is larger than the total number
of threads registered with the RML) threads cannot be allocated to
schedulers so that each mailbox is served by an equal number of
threads. But as long as the number of registered schedulers is low
(which is frequently the case in practice), it is possible to evenly
distribute threads between task schedulers.

4.4.2 Handling Steals (Reason 2)
An affinitized task is present in two places: in the local deque of the
thread that created it and in the mailbox it is sent to. Affinitization
is successful if the task is removed from the mailbox by the thread
connected to the mailbox. Affinitization is unsuccessful if the task
is stolen by a thread that has no work to do and it has fallen back
to random stealing (Rule 6) (the stealing thread has fallen through
Rules 1–5 and obtains work according to Rule 6).

Standard TBB prevents a stealing thread from obtaining an
affinitized task if there is a good chance that the task is going to
be removed from the destination mailbox soon. Before stealing an
affinitized task, each thread checks if the destination mailbox of the
task is idle. If the mailbox is idle, the stealing thread bypasses the
mailbox and tries to obtain a task from some other thread.

A mailbox is marked as idle in two cases: (1) when a thread
falls through dequeuing from its local deque (Rule 3), but has not
yet peeked at its mailbox yet (Rule 4), or (2) the thread connected



to the mailbox has left the task scheduler. In the first case bypassing
is well-justified because the task will be received in a short time by
the thread connected to the mailbox. The second case needs more
explanation. A thread leaves the task scheduler when there is no
work available for it. Alternatively, the RML can revoke the thread
from the current task scheduler and then assign it to some other task
scheduler. If the thread is associated with the current task scheduler
again, it will empty its mailbox and the task will be executed at the
intended location. But if the thread is permanently assigned to some
other task scheduler, the task will be revoked (executed locally) by
the thread spawning it and the task’s affinity will be updated (which
conforms with the TBB principle of non-constant task affinities).

In TBB-NUMA task affinities are immutable (by design), thus
the idling mechanism of standard TBB must be revised. If a task
is executed repeatedly, due to the constant affinities, a task with
affinity value i will be submitted to the same mailbox Mi over
and over again. If there are no threads connected to mailbox Mi,
other threads in the scheduler will bypass mailbox Mi (assuming
the idling mechanism of standard TBB). Bypasses reject work
thus they can result in a high performance penalty. The idling
mechanism of standard TBB must be updated also because TBB-
NUMA allows multiple threads attached to a single mailbox.

TBB-NUMA uses an idling mechanism that is tightly coupled
with resource management. The idling mechanism of TBB-NUMA
(implemented by the set idle() function in Figure 9) is based
on incrementing/decrementing a counter. A thread increments the
counter before receiving from its mailbox and decrements it after it
has received a task. Unlike with standard TBB, with TBB-NUMA a
thread does not indicate idleness when it leaves the task scheduler.
To allow stealing those tasks that are not likely to be picked up at
their destination mailbox and thus provide good load balance, the
is idle() function inspects both the counter and the number of
threads allocated/active in the destination’s mailbox, which avoids
unnecessary bypasses.

4.4.3 Handling Revokes (Reason 3)
Affinitized tasks are inserted into the local deque of the thread that
creates them. An affinitized task is revoked if the creator thread
retrieves it (Rule 3) before it can be received at the destination pro-
cessor. Unlike Rule 6, Rule 3 does not bypass affinitized tasks (to
guarantee that each task is eventually executed before the program
terminates). TBB-NUMA attempts to avoid revokes in two ways:
by controlling task submission order via reflection (in case of wide
task trees) and by detaching subtrees (for shallow trees).

Controlling task submission order In wide task trees each task
(except leaves) has at least two children tasks. When unfolding
wide trees, it is beneficial to submit tasks affinitized for the cur-
rent processor last (the processor where the thread unfolding the
tree executes). As Rule 3 retrieves tasks in LIFO order, tasks en-
queued earlier have a chance to be picked up for execution at their
destination thread before the creator thread revokes them.

E.g., when unfolding level 2 of the task tree shown in Fig-
ure 8(a), the parallel for template spawns the right subtree and
continues executing the left subtree if the current processor is Pro-
cessor 1; otherwise it spawns the left subtree and continues execut-
ing the right subtree (assuming a 2-processor system). To control
task submission order the creator thread must determine its cur-
rent processor. The library supports this kind of reflection through
the task scheduler init::get current cpu() call. This call
is used internally by the parallel for template. Code using the
task scheduler directly can also rely on this reflection-based capa-
bility to control submission order.

Detaching subtrees Figure 10 shows a shallow task tree. E.g.,
the pipeline algorithm template of TBB generates shallow subtrees:

Stage	  3:	  
2	  

Stage	  3:	  
2	  

Stage	  1:	  
0	  

Stage	  1:	  
0	  

Root	  

Stage	  3:	  
2	  

Stage	  3:	  
2	  

Stage	  1:	  
0	  

Stage	  1:	  
0	  

Task	  spawned	  

Task	  enqueued	  
(at	  Processor	  2)	  

Processor	  2	  

Stage	  2:	  
1	  

Stage	  2:	  
1	  

Stage	  2:	  
1	  

Stage	  2:	  
1	  

Processor	  1	  

Figure 10. Shallow tree: 2-stage pipeline with affinities.

The pipeline template generates a distinct subtree for each input el-
ement processed by the pipeline; each task in a subtree corresponds
to a different pipeline stage. The task tree shown in Figure 10 cor-
responds to a 3-stage pipeline computation.

In a shallow task tree each task (except the root task) has only
one child task that is executed next by the task scheduler (according
to Rule 3). If the memory accesses of a pipeline computation are
dominated by accesses to input elements, shallow task trees can
be beneficial for L1/L2 cache locality, because tree shallowness
guarantees that each input element is processed by the same thread
(thus the input element is in the cache used by this thread). In some
cases, however, a child task predominantly accesses data other than
the input element it processes. Moreover, in some cases the child
task’s accesses do not hit in the L1/L2 cache and are served by last-
level caches (or even by DRAM). In these cases it can be beneficial
to schedule the child tasks at threads executing at well-defined
processors to achieve good last-level cache/DRAM data locality.

E.g., in the pipeline computation in Figure 10, Stage 1 of the
pipeline is not associated with any processor (its task-to-processor
affinity is 0), but Stage 2 accesses data associated with Processor 1
and Stage 3 accesses data associated with Processor 2 (Stage 2
and Stage 3 have a task-to-processor affinity value of 1 and 2,
respectively). Spawning affinitized tasks and sending them to the
mailbox of the appropriate thread does not help in this case because
the affinitized task will be revoked (Rule 3 has priority over Rule 4).
To allow a child task to execute at the processor it is associated
with, the child task must be detached from its parent task, that is,
it must be sent to the destination processor without inserting it into
the local queue.

Standard TBB facilitates detaching tasks through the enqueue()
call. Enqueued tasks are inserted into a queue shared by all threads
in a task scheduler, threads receive enqueued tasks according to
Rule 5. In standard TBB enqueued tasks are not allowed to have
affinities to threads. TBB-NUMA extends standard TBB by allow-
ing enqueued tasks to have affinities as well: the TBB-NUMA task
scheduler has P + 1 shared queues Qi (assuming a P -processor
system), tasks with affinity for Processor i are enqueued at Qi,
1 ≤ i ≤ P , tasks with no task-to-processor affinity defined are
enqueued at Q0, thus Rule 5 of TBB is replaced by a set of rules in
TBB-NUMA (Rule 5′-Rule 5′′′ in Figure 7).

To illustrate how enqueuing handles revokes, let us consider the
3-stage pipeline example again (Figure 10). Let us assume that the
root task runs at Processor 1 (as shown in the figure). Stage 1 has
no task-to-processor affinity, thus the root task unfolds Stage 1
tasks using spawns. Let us assume that Stage 1 tasks are then
also executed at Processor 1. The next stage (Stage 2) has affinity
for Processor 1, but as all Stage 1 tasks are already running at
Processor 1, Stage 2 tasks do not have to be detached (thus they are
spawned). When, however, the task tree is unfolded further (i.e.,
Stage 3 tasks are created), these tasks have affinity for Processor 2



1 i n t s i z e = l a s t r ow − f i r s t r o w + 1 ; ;
2 d a t a d i s t r i b u t i o n dd ( s i z e ) ;
3 a f f i n i t y p a r t i t i o n e r ap ;
4 boo l UseNUMA;
5
6 // Performance−c r i t i c a l computat ion
7 c l a s s Loop3 {
8 pub l i c :
9 vo id ope ra to r ( ) ( b l o cked range<i n t>& r ) {

10 double sum ;
11 f o r ( i n t j = r . beg i n ( ) ; j < r . end ( ) ; j++) {
12 sum = 0 . 0 ;
13 f o r ( i n t k = rows t r [ j ] ; k < r ow s t r [ j + 1 ] ; k++)
14 sum = sum + a [ k ] ∗ p [ c o l i d x [ k ] ] ;
15 w[ j ] = sum ;
16 }
17 }
18 } ;
19
20 vo id c on j g r a d ( ) {
21 // . . .
22 f o r ( c g i t = 1 ; c g i t <= cgi tmax ; c g i t++) {
23 // . . .
24 p a r a l l e l f o r ( b l o cked range<i n t >(1 , s i z e + 1) ,
25 Loop3 ( ) ,
26 UseNUMA ? dd : ap ) ;
27 // . . .
28 }
29 }
30
31 i n t main ( ) {
32 i f (UseNUMA) {
33 dd . e n f o r c e ( a ) ;
34 dd . e n f o r c e ( c o l i d x ) ;
35 }
36 f o r ( i n t i t = 1 ; i t <= NITER ; i t++) {
37 c on j g r a d ( ) ;
38 // . . .
39 }
40 }

Figure 11. Example of using TBB-NUMA: cg.

(a processor different from the current processor), thus Stage 3
tasks are not spawned but enqueued (with affinity for Processor 2).
Threads at Processor 2 will then dequeue these tasks (Rule 5′) and
each stage is executed where the programmer originally intended.
Threads at Processor 1 (the threads that originally unfolded the
upper levels of the task tree) in the meantime unfold new subtrees
to process any remaining input elements.

The decision whether to spawn or to enqueue tasks when un-
folding a task tree depends on the processor the current thread is
pinned to. The TBB-NUMA pipeline template uses reflection to
determine the current thread’s processor. E.g., if the root task of
the example in Figure 10 executes at Processor 2 instead of Proces-
sor 1, enqueuing is used already when unfolding Stage 2. Finally,
similar to the affinity of mailboxed tasks, the affinity of enqueued
tasks is a hint on the preferred place of execution, that is, if a thread
cannot get a task from the shared queue associated with its proces-
sor (i.e., Rule 5′ fails), the thread tries all other queues in the task
scheduler (i.e., it falls back to Rules 5′′ and 5′′′).

4.5 Programming with TBB-NUMA
TBB-NUMA extends TBB, that is, the programmer can define
which rules the task scheduler uses, the rules of standard TBB
or rules specific to TBB-NUMA. If TBB-NUMA is enabled, the
parallel for algorithm template can be used with an additional
parameter, a data distribution object that specifies the distribution of
data for the iteration space processed by the loop. Figure 4.5 shows
an example program, cg, in which the parallel for template is
used with a data distribution object (see Section 5.1 for more details
about benchmark programs). TBB-NUMA includes a set of prede-

1 d a t a d i s t r i b u t i o n dd ( image da tabase . s i z e ( ) ) ;
2 boo l UseNUMA;
3
4 c l a s s Query Index : pub l i c f i l t e r {
5 a f f i n i t y i d a f f i n i t y ;
6 pub l i c :
7 Query Index ( a f f i n i t y i d a f f i n i t y )
8 : a f f i n i t y ( a f f i n i t y ) {} ;
9

10 vo id∗ ope ra to r ( vo id∗ v i tem ) {
11 i f ( a f f i n i t y != NO AFFINITY)
12 // query e n t i r e image database
13 image da tabase . que ry ( ) ;
14 e l s e
15 // query p a r t i t i o n o f image
16 image da tabase . q u e r y p a r t i t i o n ( a f f i n i t y ) ;
17 }
18 } ;
19
20 i n t main ( ) {
21 i f (UseNUMA)
22 dd . e n f o r c e ( image da tabase ) ;
23 // . . .
24 i f ( !UseNUMA)
25 p i p e l i n e . a d d f i l t e r (new Query Index (NO AFFINITY ) ) ;
26 e l s e
27 f o r ( i n t i = 1 ; i <= get num cpus ( ) ; i++)
28 p i p e l i n e . a d d f i l t e r (new Query Index ( i ) ) ;
29 // . . .
30 p i p e l i n e . run ( ) ;
31 }

Figure 12. Example of using TBB-NUMA: ferret.

fined data distributions (e.g., the block-cyclic distribution shown
in Figure 8(a) for a 2-processor system). If needed, the program-
mer can define custom data distributions: The parallel for tem-
plate interfaces with data distributions through a single method; this
method is used to determine the affinity of a subrange of the iter-
ation space when the task tree corresponding to the iteration space
is unfolded. The pipeline template allows specifying the per-
processor affinity of pipeline stages (see example usage in case of
the ferret benchmark in Figure 4.5). Finally, with TBB-NUMA
the semantics of task affinities is clearly defined (task-to-processor
affinity), thus the programmer can use task affinities directly with
the task scheduler interface (see example in Figure 4.5).

In addition to specifying hints on the schedule of computations,
TBB-NUMA defines helper functions to enforce data distributions
on memory regions as well. Data distributions are enforced through
memory migrations (e.g., through the move pages() system call in
Linux). Both data distributions and computation schedules depend
on the actual hardware configuration. TBB-NUMA determines the
number of processors at runtime and passes on this information
to user programs. As a result, programs can be parametrized for a
generic NUMA system and are thus portable.

5. Evaluation
The evaluation presented in this section attempts to answer three
questions: (1) do optimizations improve data locality and per-
formance (Section 5.2), (2) are optimizations composable (Sec-
tion 5.3), and (3) are optimizations portable (Section 5.4).

5.1 Experimental Setup
Three NUMA systems are used to run experiments (see Table 1).
We did a detailed performance evaluation on how remote mem-
ory accesses affect the performance of programs from the NAS
and PARSEC benchmark suites on these systems. For the paper,
we select five programs for which remote memory accesses cause
significant performance degradation. We include in the selection
programs that use different forms of parallelism: two programs



1 d a t a d i s t r i b u t i o n dd ( g r i d . s i z e ( ) ) ;
2 boo l UseNUMA;
3
4 template<c l a s s WorkerType>
5 c l a s s Gr idLaunche r : pub l i c t a s k {
6 pub l i c :
7 t a s k∗ ex e cu t e ( ) {
8 t a s k l i s t l i s t ;
9 a f f i n i t y i d a f f i n i t y ;

10 f o r ( i n t i = 0 ; i < g r i d . n um pa r t i t i o n s ( ) ; i++) {
11 WorkerLauncher<WorkerType> &c =
12 ∗new ( t a s k : : a l l o c a t e c h i l d ( ) )
13 WorkerLauncher<WorkerType>( i ) ;
14 i f (UseNUMA)
15 c . s e t a f f i n i t y ( g r i d . a f f i n i t y f o r p a r t i t i o n ( i ) ) ;
16 l i s t . push back ( c ) ;
17 }
18 spawn ( l i s t ) ;
19 }
20 } ;
21
22 vo id AdvanceFrame ( ) {
23 Gr idLauncher<C l e a rPa r t i c l e sWo r k e r>& cp =
24 ∗new ( t a s k : : a l l o c a t e r o o t ( ) )
25 Gr idLauncher<C l e a rPa r t i c l e sWo r k e r >() ;
26 t a s k : : s p awn roo t and wa i t ( cp ) ;
27
28 // c r e a t e g r i d f o r o t h e r worker t yp e s
29 }
30
31 i n t main ( ) {
32 i f (UseNUMA)
33 dd . e n f o r c e ( g r i d ) ;
34 f o r ( i n t i = 0 ; i < frameNum ; i++)
35 AdvanceFrame ( ) ;
36 }

Figure 13. Example of using TBB-NUMA: fluidanimate.

are loop-parallel, two programs use the task scheduler interface di-
rectly, one program is based on pipeline parallelism (see Table 2).
For some benchmarks, small modifications are needed to make
benchmarks amenable for NUMA optimizations. These modifica-
tions are described in detail in [20]. For the ferret benchmark we
use the TBB-port described in [29].

Table 1. Hardware configuration.
Intel E7-4830 Intel E5520 AMD 6212

Microarchitecture Westmere Nehalem Bulldozer
# of processors/cores 4/32 2/8 4/16
Main memory 4x16 GB 2x24 GB 4x32 GB
Cross-chip interconnect QPI QPI HT
Last-level cache 4x24 MB 2x8 MB 4x8 MB

Table 2. Benchmark programs from PARSEC (P) and NAS (N).
Par. algorithm

Program Input Suite template used
cg input size C N parallel for
mg input size C N parallel for
streamcluster 10M input points P none
fluidanimate 500K particles/500 frames P none
ferret database (700M images)/ P pipeline

3500 input images

5.2 Data Locality Optimizations
Performance in NUMA systems depends on two aspects: the data
distribution policy used and the policy used to schedule computa-
tions. We evaluate performance for a series of different execution
scenarios; an execution scenario is defined by the pair (data dis-
tribution policy, computation schedule policy) used. Two scenar-
ios consecutively listed in the evaluation differ in only one aspect,

that is, they differ either in the data distribution policy used or the
computation schedule policy used, but not both. Optimizations for
loop-parallel programs are evaluated in five scenarios:

(noap, FT) Default version of the program that does not use task
affinitization and uses the first-touch page placement policy
(default in many OSs incl. Linux).

(noap, INTL) Default version of the program with the interleaved
page placement policy in place. The interleaved page placement
policy distributes pages across processors in a round-robin fash-
ion. Interleaved page placement is recommended for source-
level optimizations by [18] and is used in automatic systems as
well [8]. Interleaved page placement improves performance by
reducing contention on memory interfaces, but it does not re-
duce the number of remote memory accesses. In many systems
(incl. those in Table 1) interleaved placement is equivalent to
disabling NUMA in the BIOS.

(ap, INTL) The loops of the program are affinitized with the TBB-
standard affinity partitioner [30]; pages are placed in-
terleaved, as in the previous configuration. The affinity
partitioner is designed to improve cache performance. This
configuration shows the benefits of using this partitioner.

(NACS, INTL) The previous configurations can be obtained with
standard TBB, this configuration is achievable only with TBB-
NUMA. This configuration uses NUMA-Aware Computation
Scheduling (NACS), that is, the task scheduler is given hints
about the distribution of data in memory. Normally, NACS
effects both caching and DRAM data locality. However, to
assess how NACS effects caching only, data distribution is not
enforced in this configuration. Instead, interleaved placement is
used, thus this configuration differs only in one parameter (the
schedule of computations) from the previous configuration.

(NACS, NADD) NUMA-Aware Data Distribution is enforced (in
addition to NACS in the previous configuration). The results
in this configuration show the benefits due to both cache and
DRAM data locality.

The evaluation in this section uses the 4-processor 32-core
Westmere system (see Section 5.4 for evaluation on the other sys-
tems). Figure 14(a) and 14(b) show the relative execution time of
cg and mg in all five configurations. Execution time is relative to
the (noap, FT) configuration, which has a relative execution time
of 1. Lower relative execution time means better performance.

Relative to the best-performing configuration achievable with
standard TBB, (ap, INTL), cg improves 18% (relative execution
time of 0.34 with (NACS,NADD) vs. relative execution time of 0.4
with (ap, INTL). The computation time of mg improves around
12%, but its overall performance is slightly worse than the best
configuration achievable with standard TBB because the cost of
data migration (distributing data) cancels the improvement in com-
putation time.

To show that performance optimizations improve both cache-
and DRAM locality, we measure the number of uncore transfers
a program generates in each of the five examined configurations.
There are four types of uncore accesses: local cache/DRAM ac-
cesses and remote cache/DRAM accesses. Figures 15(a) and 15(b)
show the uncore traffic breakdown of cg and mg, respectively. In the
(NACS, NADD) configuration almost all remote memory accesses
are eliminated (relative to both the baseline (noap, FT) and the
(ap, INTL) configuration).

Figures 14(c)–14(e) show the performance of the remaining
three, non–loop-based programs. Only loop-based programs can
use the affinity partitioner, thus the (ap, FT) and (ap,
INTL) configurations are invalid for non–loop-based programs. As
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Figure 14. Performance (end-to-end execution time) w/o contention (Westmere).
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Figure 15. Uncore raffic w/o contention (Westmere).
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Figure 16. Performance (end-to-end execution time) w/ contention (Westmere).
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Figure 17. Uncore traffic w/ contention (Westmere).
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Figure 18. Performance (end-to-end execution time) w/o contention (Nehalem and Bulldozer).



a result, non-loop-based programs are evaluated in four instead
of five configurations: the invalid configurations are replaced by
the (noap, INTL) configuration (version of the program with no
affinities specified, interleaved page placement policy). The prin-
ciple that two subsequently listed configurations change only in a
single parameter still holds after this change. Similar to loop-based
programs, the two last configuration scenarios shown in the figures
can be realized only with TBB-NUMA. For the non–loop-based
programs NUMA-aware memory system optimizations result in
performance improvements between 16–44% over the best pos-
sible configuration achievable with standard TBB (e.g., in case
of streamcluster relative execution time of 0.38 with (NACS,
NADD) vs. relative execution time of 0.55 with (noap, INTL),
the best configuration that can be realized with standard TBB).
Figures 15(c)–15(e) show the breakdown of uncore traffic for all
three programs in all configurations. Memory system optimizations
reduce the number of remote accesses for these programs, too.

We use the benchmark programs with large data sets. The re-
sults in Figure 15 show: (1) For some of the programs cache lo-
cality does not matter much as data sets do not fit even into the
large L3 caches of the system (i.e., almost all uncore transfers are
from local/remote DRAM); (2) for some programs TBB-NUMA
increases L3 cache locality (i.e., the fraction of L3 transfers); (3)
using the affinity partitioner from standard TBB (where
available) does not increase L1/L2 cache locality (equivalent to
reducing the amount of uncore transfers). For smaller data sets,
the affinity partitioner improves performance by increasing
L1/L2 cache locality, as reported by [21], but for large data sets,
TBB-NUMA results in better performance than TBB.

5.3 Composability
This section evaluates how the properties of memory system opti-
mizations are preserved when only a part of the hardware is avail-
able for executing an optimized computation (a scenario that occurs
when an optimized computation is combined with other computa-
tions to form a larger application). Each benchmark is executed
concurrently with a contender computation. The contender compu-
tation is parallelized and demands all threads from the RML (just
like the benchmark program it is co-run with). As a result, the con-
tender computation and the benchmark program contend for RML
threads and the RML divides threads between the benchmark pro-
gram and the contender program. This setup is similar to the sce-
nario shown in Figure 4(b), with the difference that only two task
schedulers (TS) but no OpenMP runtime (OMP) use the RML.

The contender computation is floating-point intensive and its
working set fits into the private L1/L2 caches of the cores. As a
result, uncore transfers measured are predominantly caused by the
benchmark program (and not by the contender computation).

Figures 16(a)–16(e), show the performance of all benchmark
programs in all relevant configurations, Figures 17(a)–17(e) show
the breakdown of uncore traffic corresponding to each program/-
configuration. Performance is reported as execution time relative
to the (noap, FT) configuration with enabled contender. For each
program/configuration performance results and the breakdown of
uncore traffic is similar to the corresponding case with no con-
tention. We record minor differences in relative performance num-
bers and uncore traffic because with contention there is a differ-
ent amount of per thread cache capacity available to programs than
without contention. In conclusion, the TBB-NUMA runtime pre-
serves the properties of memory system optimizations even if only
a part of the hardware is available.

The experiments described in this section characterize the per-
formance of optimized computations when there is contention for
the RML (due to both the benchmark program and the contender
computation requesting threads from the RML at the same time).

Co-executing computations can contend for memory system re-
sources (e.g., for cache capacity and main memory bandwidth)
as well [9], but in the experiments we describe they do not, as
the floating-point intensive contender computation generates an in-
significant amount of memory system traffic. Runtime systems are
in a good position to mitigate contention for memory system re-
sources, as shown by Dey et al. [10]. This paper, however, focuses
only on preserving the properties of NUMA-optimized code when
there is contention on the threadpool.

An interesting aspect is that using the affinity partitioner
with cg causes a slowdown under contention (Figure 16(a)). The
RML is shared with the contender computation and threads fre-
quently “migrate” between the two computations (i.e., threads pre-
viously assigned to the task scheduler running cg are frequently re-
assigned to the task scheduler running the contender computation
and vice versa). When a thread leaves a task scheduler (because
the RML assigned the thread to an different task scheduler), the
mailbox of the thread (i.e., the mailbox in the task scheduler the
thread was previously connected to) is marked as idle. Affinitized
tasks present in a mailbox that is marked idle are not removed by
stealing threads (i.e., treads looking for work; see Section 4.4.2 for
further details). Instead, the tasks are kept in the mailbox until the
thread that created them can process them.

In summary, if threads frequently migrate between task sched-
ulers, stealing threads often reject work (i.e., reject to execute tasks)
by bypassing mailboxes in which work (i.e., affinitized tasks) is
present. As a result, processor cores are often idle, which results
in a slowdown in the case of the cg benchmark. The TBB-NUMA
task scheduler is coupled with resource allocation that reduces the
number of (unnecessary) bypasses.

5.4 Portability
To show that memory system optimizations are portable, we run the
same set of programs on two additional systems. As memory sys-
tem optimizations are implemented for a generic NUMA system,
the programs are executed on these systems without modification.
Performance results are shown in Figures 18(a)–18(e); the varia-
tion of the measurement readings is negligible. On the Nehalem,
optimizations result in 3–18% performance improvement over the
best configuration that can be realized with standard TBB. On the
Bulldozer we measure 6–18% improvement (and no improvement
(fluidanimate) or a 3% slowdown (mg)).

6. Related Work
TBB-NUMA uses the concurrent queue of standard TBB to
implement per-processor mailboxes in the task scheduler. Recent
work proposes NUMA-aware queuing and locking techniques [11,
13, 23], and wait-free queues have also been developed [17]. Al-
though the TBB concurrent queue is highly optimized, it is nei-
ther NUMA-aware, nor wait-free, thus TBB-NUMA could profit
from the previously mentioned techniques by using them to en-
queue/dequeue tasks more efficiently. The goal of TBB-NUMA
(and the focus of this paper) is, however, to optimize the memory
system performance of the tasks executed by the work-stealing sys-
tem and not the queuing itself, therefore we leave the investigation
of using NUMA-aware queues with TBB-NUMA to future work.

Previous work on NUMA memory system optimizations [6, 8,
18, 34] relies on three mechanisms: profile-based data migration,
interleaved page placement, and data replication. In TBB-NUMA
data distributions are set up by programmer-controlled data migra-
tion that achieves good data locality without profiling overhead. In
Section 5 we compare the performance of TBB-NUMA-based op-
timizations to interleaved page placement. Data replication has sev-
eral disadvantages, the most important of them is that replicas must
be kept consistent, which causes overhead. To limit the overhead,



state-of-the-art systems disable page replication after a small num-
ber of detected writes [8]. Most benchmarks used for evaluation in
this paper frequently read-write performance-critical memory re-
gions, thus we do not include data migration in the evaluation.

Several runtime systems (e.g., Lithe [26], Microsoft’s ConcRT,
and Poli-C [4]), support composable parallel software, but none of
these systems is designed to preserve the data locality of NUMA-
optimized code. The Callisto resource management layer [16] re-
duces scheduler-related interference between multiple, indepen-
dent parallel runtime systems co-executed on a single machine, but
it does not consider interference on the memory system level (incl.
NUMA-related aspects). There are several approaches to improve
the locality of work stealing [7, 14], but [7] focuses only on im-
proving cache utilization and not on reducing the number of re-
mote memory accesses; [14] supports data locality optimizations,
but balances load individually within the scope of each processor
(and not between all processors of a system, as TBB-NUMA does).
Space-bounded schedulers are known [31] to give better data local-
ity than work-stealing schedulers (with the cost of higher schedul-
ing overheads). TBB-NUMA keeps scheduling overhead low while
favoring locality.

7. Conclusions
TBB-NUMA supports portable and composable software for
NUMA systems by defining the semantics of thread affinity. TBB-
NUMA is based on Intel TBB to demonstrate the practicality of
this approach (and to allow a programmer to decide when to use
NUMA-specific functionalities). TBB-NUMA provides a unified
interface to the runtime system and allows memory-system-aware
resource management.

There exist several tools to provide information about NUMA
performance bottlenecks, but programmers so far lack a unified
way to control the execution of parallel programs on NUMA
systems. TBB-NUMA allows the programmer to pass directives
(based on insights and/or performance monitoring information)
about computation and data placement to the runtime system. With
NUMA systems increasing in size we expect the gap between local
and remote memory accesses to increase as well, thus we expect
data locality optimizations to be even more important in the future.
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