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Abstract— This paper presents a sensorial-cooperative archi-
tecture to detect, track and classify entities in semi-structured
outdoor scenarios for intelligent vehicles. In order to accomplish
this task, information provided by a Lidar and a monocular
camera is used in the here proposed system. The detection
and tracking phases are performed in the laser space, and
the object classification methods work both in laser space
(using a Gaussian Mixture Model classifier) and in vision
spaces (AdaBoost classifier). A Bayesian sum decision rule is
used in order to combine the results of both classification
techniques, and hence a more reliable object classification is
achieved. Experiments confirm the effectiveness of the proposed
architecture.

I. INTRODUCTION

INTELLIGENT vehicles may have its perception capa-
bilities improved if multi-sensor systems are combined

in such a way that more relevant information is available
as the result of a proper combination of individual sensor’s
measurements. This paper describes a multi-module archi-
tecture with the purpose of timely processing the sensory
information, provided by a laserscanner and a camera, for a
collision avoidance system operating in low-speed vehicles
moving in Cybercars scenarios [2] . Examples of typical
applications in this context are: pedestrian protection, traffic
assistant system, pre-crashing warning, etc.

In the proposed architecture, two different classifiers,
working in distinct sensor spaces, are combined by means of
a practical Bayesian approach in order to provide a higher
level inference and meaningful information to achieve a more
reliable object classification. A cooperation strategy was also
used to establish the coordinate correspondence between a
Lidar and a monocular vision camera in order to facilitate
the segmentation process and the object detection.

The architecture of the proposed system is subdivided in
four subsystems: lidar-based, vision-based, coordinate trans-
formation and tracking-classification subsystems. The lidar-
based system detects the entities (objects) in the laser space,
estimates its position, size, and gives the class probability
for each detected object. The position of the objects is then
converted to the camera coordinate system in order to define
a region of interest (ROI) in the image space. The vision-
based system receives the information from the coordinate
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Fig. 1. Multi-module architecture using laser and vision information for
object detection, tracking and classification.

transformation module, extracts a window from each de-
tected object and performs an AdaBoost classification. The
tracking and the final classification modules process the
information from the others subsystems and output the class
of the objects and its dynamic behavior (see Fig. 1).

Two different classifiers are used to distinguish two ob-
ject categories: vehicles and pedestrians. A GMM classifier
(GMMC) [3] is used to deal with the information provided
by the Lidar, and an AdaBoost classifier, using Haar-Like
features, is applied to classify the detected objects in the
image frames. In order to combine the classifiers results,
a sum decision rule is used based on the a posteriori
probability provided by each classifier.

II. RELATED WORK

Several works have been carried out using Lidar in mul-
tiple target tracking and object classification. In order to
classify objects, a variety of approaches have been pro-
posed such as: i) voting schemes [4], ii) methods based on
“heuristic” rules, and iii) multi-hypotheses [5]. The first two
methods have the disadvantage of not having a self-consistent
mathematical framework in order to support its stability and
consistency; nevertheless the results presented by the authors
show its feasibility. The multi-hypotheses method presented
in [5] is based on feature tracking by means of a stochastic
Filter, whose main drawback is its high computational cost
and the complexity associated to the management of many
hypothesis.

Vision systems are widely used for object detection [6]
and constitute a feasible option to be implemented separately
or along with Lidar [7]. Most of the object detection and
tracking systems apply a simple segmentation procedure like



background subtraction or temporal difference to detect ob-
jects [8]. But these approaches have a weakness related to the
background changes due to the camera motion. Many authors
have dedicated their research to the pedestrians/obstacles
detection [9],[10],[11],[12]. Papageorgiou [13] introduced a
trainable object detection architecture based on a novel idea
of the wavelet template that defines the shape of an object
in terms of a subset of the wavelet coefficients of the image.
Motivated in part by this last architecture, Viola et. al. [14]
presented a machine learning approach for object detection,
which is suitable for real-time operation while achieving high
detection rates, using Haar-like features and an AdaBoost
classifier. The vision-based object detection system described
in this paper follows the Viola’s approach.

III. LIDAR-BASED SYSTEM

In this section, the lidar-based system components: detec-
tion, tracking and classification are described (see Fig. 2).

A. Detection and Tracking Objects in Laser Space

To detect the entities, the surrounding is segmented using
range information provided by the Laserscanner. Among
several possible segmentation methods to be used on 2D
laser range images [15], a linear KF-based method has been
used to perform the segmentation stage. Within the extracted
segments, tracking and data association techniques are per-
formed in the laser referential system, where the objects
under tracking are considered to evolve in time according
to a stochastic dynamic model driven by process noises.
The state and measurement noises are considered zero-mean,
mutually independent and white Gaussian sequences with
known covariances matrices. Object tracking using a multi-
independent KF strategy is performed in the Cartesian space.

The segments/clusters witch define an object are basi-
cally a cloud of range-points. The centroid of each cluster
is calculated and used as the characteristic-point i.e., the
kinematic behavior of the object is described in respect
to its centroid. Intrinsically connected with tracking, data
association is performed considering two situations:

1) Segment to segment: the process of associating de-
tected segments with other segments (non-classified
objects) in the current scan;

2) Segment to object-tracker: the maintenance process,
i.e. the association of observed segments with existing
objects.

The first situation occurs when one, or more, current seg-
ments are “probably” related with a segment under tracking.
Therefore, a decision has to be made in order to merge or not
the valid segments. To deal with this situation, a combination
of rectangular gate and feature-matching technique are used
[16]. The second data association problem, i.e., observation-
to-tracker association, is solved in a specific manner which
accounts for the result of object classification. Hence, when
a segment is finally classified, the data association technique
is adjusted in accordance with the size and the dynamic be-
havior of the class into which the object has been classified.
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Fig. 2. Sequencial diagram illustrating the laser-based detection and
tracking module.

B. Feature Extraction

Within the segments under tracking, probable objects of
interest, a feature vector is extracted in order to perform the
classification stage. This feature vector, used in the GMMC,
has the following components:

f1) Segment centroid: or gravitational center;
f2) Normalized Cartesian dimension: this feature corre-

sponds to the root mean square of the width (∆X) and the
length (∆Y ) dimensions:

f 2 =
√

∆X2 +∆Y 2 (1)

f3) Internal std: denotes the standard deviation of the
range-points with respect to the Segment centroid:

f 3 =

√
1

n−1 ∑
j
‖rn− x̄‖ (2)

f4) Radius: it is the radius of a circle extracted to the
segment points. The circle fitting method used is based on
[GUIV];

f5) Mean average deviation from median: it is given by:
where x̃ is the median, defined as:

x̃ =
{

X(k+1)/2 if K is odd
1
2 (Xk/2 +X(k/2)+1) if K is even

(3)

Initially the GMMC was implemented with three feature
components and the estimated velocity [IROS2006], however
the actual GMMC version was augmented with features f 4
and f 5. The utilization of the later two feature components
were inspired in [Arras].

C. Lidar-Based Classifier

This section describes the GMMC, which was imple-
mented based on data from the Lidar. Each object category
is modeled by a finite-GMM distribution whose parameters
were estimated during a supervised training. A Maximum
A Posteriori (MAP) decision rule is used to calculate the a
posteriori probability of each object to belong to the classes
of interest.



The object classes are modeled by a weighted combina-
tion of Gaussian probability density functions (PDF) which
are referred to in this context as Gaussian components
of the mixture model describing a class (object category).
In a GMM model, the probability distribution of a multi-
dimensional random vector x is a mixture of M Gaussian
probability density function (GPDF) (4), defined as follows:

p(x|Θ) =
M

∑
m=1

αm p(x|θm) (4)

where θ1, . . . ,θM are the parameters of the Gaussian distri-
butions and α = [α1, . . . ,αM] is the weighted vector, such
that ∑

M
m=1 αm = 1. The complete set of parameters that

specify the mixture model is Θ = (α;θ1, . . . ,θM), with each
parameter θm = (µm,Σm) consisting of a mean vector µ and
a covariance matrix Σ. Considering a d-dimensional feature-
vector X , the likelihood of each class (qi) are described as
linear combinations of Gaussian mixture probability density
functions:

p(X |qi,Θ
i) =

M

∑
m=1

α
i
m p(X |θ i

m) (5)

where each GPDF component is given by

p(X |θ i
m) =

1√
(2π)d |Σi

m|
exp[−1

2
(X−µ

i
m)

T
(Σi

m)−1(X−µ
i
m)]

(6)
The GMM parameters1 for each object class were es-

timated using the expectation-maximization (EM) algo-
rithm, i.e., for a set of N labeled feature-vectors (X N =
X1,X2, . . . ,XN) the EM algorithm [17][18] calculates M
Gaussian parameters-vector that maximizes the joint likeli-
hood (7) among the GPDF-components:

p(X N |qi,Θ
i) =

N

∏
j=1

p(X j|qi,Θ
i) (7)

To select which of the categories (qi), modelled by the
GMM parameters Θi, fits the current observation feature-
vector X(k), i.e at current time interval k, a practical maxi-
mum a posteriori decision rule based on the likelihood (5)
and on the prior probability P(qi|Θi) is used. Considering the
attributes equiprobable, the posterior probability P(qi|X ,Θi)
for all categories is calculated as:

P(qi|X ,Θi) =
p(X |qi,Θ

i)P(qi|Θi)
P(X)

(8)

where P(X) is the marginal likelihood (normalized factor).
By knowing the initial prior probability for each class,
our classification method outputs the maximum a posteriori
probability for each observed vector. To decide which is the
most “likely” class qi, the MAP decision rule is used as
follows:

1To avoid singularities and facilitate the EM convergence, the number of
Gaussian components was restrict to 1, 3 and 5.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Falsos positivos (FP)

Ta
xa

 d
e 

ve
rd

ad
ei

ro
 p

os
iti

vo
 (T

V
P

)

PER
CAR

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CARs
PERs

Total number of False positives (FP)

H
it 

R
at

e 
(H

R
)

Fig. 3. ROC curve of the GMM classifier based on Lidar data to detect
pedestrians and Vehicles.

Ob ject ∈ qi i f P(qi|X(k),Θi) = max(P(qu|X(k),Θu)) (9)

where u = 1,2, . . . ,NC , and NC is the total number of
classes. The key idea of our algorithm is that the current a
priori probability, after initialization, is set with the value of
the past a posteriori probability, as shown in the Algorithm
1.

Algorithm 1 GMMC using a MAP decision rule
Input: X(k): observed feature vector;
Output: MAP for each detected object (segment).

1: k: time frame;
2: i=1,2,...,Nc: class index;
3: Θi: trained model for each class;
4: P(Θi

k=0): initial prior probability;
5: while k do
6: NS: number of current detected segments;
7: j = 1,2, ...,NS: segment index (S j);
8: X j(k): feature-vector for each segment;
9: for j = 1 : NS do

10: P(Θi
k) j = P(Θi|X j(k−1)) j;

11: for i = 1 : Nc do
12: P(Θi|X j(k)) j = P(X j(k)|Θi) jP(Θi

k) j
P(X)

13: end for
14: MAPj = maxi P(Θi|X j(k)) j
15: end for
16: end while

IV. VISION-BASED SYSTEM
This system uses a set of Haar-Like features (see Fig.

4) to extract the information from the given image. The
detection of the objects is performed using these features as
an input to an AdaBoost classifier. The AdaBoost classifier
is then trained to perform the detection of the objects on
the environment. The main goal of this learning algorithm is
to find a small set of Haar-Like features that best classifies
the object class, rejecting most of the background objects,
and to construct a robust classifier function. To support this



Fig. 4. Subset of the Haar-like features prototypes used in the object
detection. a, b, c and d are the line features, e and f the edge features and
g is the center-surround feature.

purpose, a weak learning algorithm is designed to select the
single feature which best separates the positive and negative
examples. For each feature, the weak learner determines
the optimal threshold classification function, so that the
minimum number of examples are misclassified. A weak
classifier (10) h j(x) consists of a feature f j, a threshold θ j
and a parity p j indicating the direction of the inequality sign.
The value 1 represents the detection of the object class and 0
represents a non-object. Each of these classifiers per si is not
able to detect the object category. Rather, it reacts to some
simple feature in the image that may be related to the object.
The final classifier is constructed with the weighted sum of
the weak classifiers and is represented by the Equation 11.

h j(x) =
{

1 if p j fi(x) < p jθ j
0 otherwise (10)

H(x) =

 1 if
T

∑
t=1

αtht(x)≥
1
2

T

∑
t=1

αt

0 otherwise
(11)

The detection of the objects is done by sliding a search
window through each sub-image and checking whether an
image region at a certain location is classified as the object
class. Initially, the detection window is of the same size of
the classifier (15×37 for pedestrians and 30×30 for cars),
then the window’s size is increased by β until the size of
the window is equal to the sub-image size (β = 1.05). This
process is repeated for each of the object class trained. A
classifier is constructed for each of the objects that we want
to classify (pedestrians and cars).

To obtain the a posteriori probability of the AdaBoost
classifier it was used the formulation called Logistic Cor-
rection [19]. Initially, in AdaBoost, each of the examples in
a training set (xi,yi) have the same weight. At each step i a
weak learner hi is trained on the weighted training set. The
error of hi determines the model weight αi and the future
weight of each training example. Assuming yi ∈ {−1,1} and
hi ∈ {−1,1}, the output of the boosted model is given by
(12), where T is the number of weak classifiers.

F(x) =
T

∑
i=1

αihi(x) (12)

It is shown that AdaBoost builds an additive logistic
regression model for minimizing E(exp(−yF(x))). They
show that E(exp(−yF(x))) is minimized by:

F(x) =
1
2

log
P(y = 1|x)

P(y =−1|x)
(13)

0.03 0.05 0.1 0.2 0.5

0.4

0.5

0.6

0.7

0.8

0.9

False positives per image

M
is

s 
ra

te

Vehicles
Pedestrians

Fig. 5. DET curve for the Adaboost pedestrian and vehicles detection
system.

This suggests applying a logistic correction in order to get
back the posterior probability:

P(qi|X) , P(y = 1|x) =
1

1+ exp(−2F(x))
(14)

Some preliminary experiments were made with the Ad-
aBoost classifier in order to test its robustness and accuracy.
Two training data sets have been used: for pedestrians, the
INRIA dataset [20], and, for cars, the CALTECH dataset
[21]. The INRIA dataset is composed by 2416 pedestrian
images and 12180 background images, for the training phase,
and 997 pedestrian images in a variety of realistic scenes, for
the test phase. The CALTECH dataset is composed by 3698
car images and 13690 background images for the training
phase, and 337 car images, in the test phase. All the tests
were made in the same conditions of [22]. The results of
these are presented in the DET curves shown in Fig. 5. The
AdaBoost classifier runs in real-time (≈ 13 f ps).

V. COORDINATE TRANSFORMATION SYSTEM

The task of multi-sensor cooperation leads to establishing
a correspondence between the measurements gathered by
distinct sensors. In this case, it is necessary to find a
correspondence between the camera reference and the Lidar
reference system. The coordinate transformation subsystem
(see Fig. 6) is used to calculate this correspondence. Thereby
the result of the object’s position and size estimation, in the
Lidar space, is used to construct a ROI in the image frame
by means of a set of coordinate transformations. The ROI is
formed in the image plane as the result of a correspondence
between the objects under tracking (in the laser reference)
and the objects in the image frame, in order to facilitate
the process of detection in the vision-based system and to
decrease the computational time of the AdaBoost classifier.

The advantages of using a Laserscanner in cooperation
with the vision system are: simpler segmentation process
and data processing; the laser measurements are not very
sensitive under weather changes and consequently the whole
system become more robust. Moreover the laser sensor
has a good accuracy in the distance/depth measurements,



Fig. 6. Sensory cooperation between the Laserscanner and the monocular
camera.

while vision systems are cheap and have a very detailed
information of the surrounding.

A. Calibration

The Lidar and the camera are mounted in a common
base, where their axes are parallel and “ideally” aligned.
The calibration procedure is necessary to obtain a mapping
expression to transform points in the laser reference system
{L} to the camera reference system {C} and then to the
image plane. Considering that the laser and the camera
are parallel and aligned with one another, and using a flat
target (“checkerboard”) positioned at different distances to
the laser-camera common base, the transformation between
{L} and {C} was obtained under a quadratic error minimiza-
tion criteria. Various images and laser measurements taken
at different positions of the target were used to estimate
this coordinate transformation. The camera’s intrinsic and
extrinsic parameters were calculated using a Matlab Toolbox
[23].

Once the range points, that define the segments detected
by the Laserscanner, are transformed to the camera reference
frame and hence are projected in the image plane, a ROI is
constructed in the image plane corresponding to each object
that rely in camera’s FOV. With the Ladar information it is
only possible to obtain the horizontal limit of the object in
the image. If it is assumed that the vehicle/robot moves on a
“flat” surface, it is geometrically easy to obtain the bottom
limit of the ROI. The top limit of the ROI can be estimated
using the distance to the object and the maximum height for
all categories.

VI. COMBINING CLASSIFIERS
The data from the camera and the Lidar is used by different

classifiers whose results are fused. Inspired in [24] it was
used a sum rule to combine the classifiers outputs discussed
previously. Based on the a posteriori probability calculated
by each classifier, the sum decision rule is used to ultimate
classify an object.

Let us consider the number of classifiers as NC, and
the feature vector used by the ith classifier denoted by Xi.
Let us assume that each class q j is represented by a class-
conditional probability density function p(Xi|q j) and its a

priori probability of detection P(q j). Given the PDF and the
a priori probability, the following classical decision rule can
be stated:

assign Ob ject −→ q j i f
P(q j|X1, . . . ,XNC) = maxk P(qk |X1, . . . ,XNC) (15)

Assuming that the features vectors are conditionally sta-
tistically independent, and that the posterior probability of
each classifier do not deviate dramatically from the prior
probability, after some mathematical formulations [24], a
“practical” combinational Bayesian decision rule is stated
as:

assign Ob ject −→ q j i f

(1−NC)P(q j)+
NC
∑

i=1
P(q j|Xi) =

maxNC
k=1[(1−NC)P(qk)+∑

NC
i=1 P(qk|Xi)]

(16)

The “sum” decision rule depends on the prior probability
of occurrence of each class q j and the posterior probabilities
yielded by the respective classifiers.

VII. EXPERIMENTAL RESULTS
The experimental were conducted in some outdoor envi-

ronments, constrained to low speed moving object (under
20 Km/h) and up to 20 m of distance from the vehicle
(Fig. 7 shows one of the vehicles used in the experiments).
The sensory devices were mounted on the front of the
vehicle approximately 65cm above the ground. Our setup
is composed of a LMS200 connected to the PC through a
RS422-USB conversor and a firewire camera.

The system was tested using data sequences (image frames
and laser points) of pedestrians and cars in different size,
pose and lighting conditions. The Hit Rate (HR) and the
number of False Positives (FP) of each classifier are shown
in the Tables I and II. Fig. 8 shows some detected objects,
in the image space, during the experimental trial.

In the vision based system, the classification performance
of cars is better than that of the pedestrians. This happens
because pedestrians are non-rigid bodies. In other words, the
shape and size of a pedestrian varies greatly, and therefore
the model of pedestrians is much more complex than that of
rigid objects. For the laser based system, the classification
results for car like category was, in this context, less accurate
than for pedestrian class. This is more evident when the
detected cars and the ego-vehicle are moving. A remarkable
disadvantage on using LMS200 in outdoor scenario, far
from 15 m, is its poor capacity to detect cars is some
circumstances.

TABLE I
CLASSIFICATION RATES FOR PEDESTRIANS.

Hit Rate (%) False Positives (%)
AdaBoost classifier 69.5 33.2
GMM classifier 67.4 21.1
Combining classifier 82.9 6.0



Fig. 7. Vehicle used in the experiments conducted in an outdoor scenario.
The Lidar and the camera are mounted on the front of the vehicle.
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Fig. 8. Output of the vision-based system. The vertical lines represent the
ROI defined by the laser.

VIII. CONCLUSIONS AND FUTURE WORK

A multi-modal system for detecting, tracking and clas-
sifying objects in outdoor environment was presented. The
objects of interest were restricted to pedestrians and cars. A
cooperative technique was implemented in order to “fuse”
the information from a lidar and a monocular vision camera.
Some results were obtained for each classifier separately
and also for a classifier combination scheme, employed to
improve the performance of the system. This compound
classification technique can be summarized as a practical
Bayesian framework that combines, in a probabilistic sense,
the a posteriori probability of each classifier by means of a
sum rule. Preliminary experiments, conducted on some real

TABLE II
CLASSIFICATION RATES FOR VEHICLES.

Hit Rate (%) False Positives (%)
AdaBoost classifier 66.7 20.4
GMM classifier 78.8 16.5
Combining classifier 84.0 8.6

urban street scenes, demonstrate that the system is able to
detect and classify pedestrians and cars in various positions,
shapes, sizes and colors with a good accuracy.

In the future, we intend to integrate more cameras in the
system to increase the field of view and consequently the per-
ception of the surrounding environment of the autonomous
vehicle. Moreover, new methodologies/classifiers will be
studied. It is also planned to investigate new combinations
of classifiers to improve the global system performance.
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