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Abstract— We study the problem of registering local rela-
tive pose estimates to produce a global consistent trajectory of
a moving robot. Traditionally, this problem has been studied
with a flat world assumption wherein the robot motion has
only three degrees of freedom. In this paper, we generalize this
for the full six-degrees-of-freedom Euclidean motion. Given
relative pose estimates and their covariances, our formulation
uses the underlying Lie Algebra of the euclidean motion to
compute the absolute poses. Ours is an iterative algorithm that
minimizes the sum of Mahalanobis distances by linearizing
around the current estimate at each iteration. Our algorithm
is fast, does not depend on a good initialization, and can
be applied to large sequences in complex outdoor terrains.
It can also be applied to fuse uncertain pose information
from different available sources including GPS, LADAR,
wheel encoders and vision sensing to obtain more accurate
odometry. Experimental results using both simulated and real
data support our claim.

Index Terms— consistent pose registration, Lie algebra,
odometry, special euclidean group, Mahalanobis distance

I. I NTRODUCTION

The ability of a mobile robot to localize itself is critical
to its autonomous operation and navigation. Consequently,
there has been considerable effort on the problem of mobile
robot localization and mapping. This problem is known as
simultaneous localization and mapping(SLAM) and there
is a vast amount of literature on this topic (see e.g., [1]
for a comprehensive survey). SLAM has been especially
succesful in indoor structured environments [2], [3]. For
indoor mapping, the world is modeled as planar and the
pose of the robot has only three degrees of freedom (2D
translation and the yaw). This is known as2D SLAM.

On the other hand, mapping for outdoor environments
is still an open research problem. Outdoor mapping is
harder, primarily because of two factors. First, outdoor
environments are unstructured, and simpler features such as
planes and lines can rarely be used. Approaches for outdoor
navigation mapping systems therefore generally use range
sensors that build a3D model of the environment [4], [5],
[6], [7]. The second and perhaps the more fundamental
problem of applying SLAM for outdoor navigation is the
fact that the planar-world assumption is rarely valid in most
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outdoor terrains. Therefore, the theoretical framework of
2D SLAM is not applicable for navigation over rough,
undulating outdoor terrains. Succesful navigation over such
terrains requires a euclidean motion model that utilizes the
full six degrees of freedom.

In this paper, we present a framework for localization of
a robot moving in an unconstrained environment with the
full six degrees of freedom. We assume that we are given
the relative pose constraints of the robot in motion. The
uncertainties in these relative poses are also known to us.
Typically, these local pose constraints are computed either
from odometry readings between the poses or by matching
features in the environment. Wheel encoders augmented
with inertial navigation system is an example of one
odometry-based technique to compute relative poses over
short distances. In computing relative poses from features,
the3D features that are visible from both locations are used
to get an estimate of the relative pose and the uncertainty.
The most commonly used sensors in this method are stereo-
vision systems [8], [7] and3D laser range scanners [5]. We
are indifferent to the process of obtaining these relative
pose constraints and their uncertainties as long as we have
a reliable and a robust way of computing these.

Given these local relative pose constraints, our goal is
to recover the global motion of the robot by linking these
constraints. A straight-forward but error-prone method of
estimating this trajectory is to localize based on adjacent
poses. In such a formulation, the previous position and the
relative motion are used to estimate the current pose. This
recursive estimate is bootstrapped by assuming that the
initial pose is known in the world frame. This technique,
however, has two fundamental limitations

1) Error-prone: Error tends to accumulate over the
distance traveled. Small errors early in the motion
can have large effects on later position estimates.
This results in an overall drift of the odometry and
poor localization. Accommodating such systematic
correlated errors is key to building maps successfully,
and it is also a key complicating factor in robotic
mapping.

2) Suboptimal: This method is suboptimal as it does not
utilize all the available pose constraints optimally.
This is due to the fact that the local pose constraints
can also be estimated reliably between all adjacent



robot positions, not just the consecutive positions. As
long as there are common visible features between
the two locations, we can get an estimate of the
relative motion between those locations. Therefore,
the technique must take into account all the avail-
able local constraints simultaneously and produce the
trajectory that best fits these constraints.

In this paper, we will use the Consistent Pose Regis-
tration (CPR) framework of Lu and Milios [9] to effi-
ciently use all the redundant local relative pose constraints
and estimate a global trajectory. CPR is a batch SLAM
method that estimates the global poses such that it is
consistent with all the available local pose constraints and
their uncertainties. Their approach solved a2D SLAM
problem, and the2D pose relations were obtained either
by odometry or by matching range-finder data in adjacent
frames. The global poses were estimated by minimizing
the Mahalanobis distance between the actual and derived
pose over this whole network of pose relations. Since this
involves inversion of a large matrix, this approach is likely
to be computationally expensive and was later extended by
Gutmann and Konolige [10] to perform online, incremental
pose estimation. The computational properties of CPR for
very large environments were studied and presented by
Konolige [11].

In applying CPR for pose estimation in the general
case of euclidean motion, one of the major challenges is
the appropriate representation of the motion. In particular,
rotations are noncommutative and highly nonlinear. The
space of all euclidean motions is a Lie group and can be
represented succinctly using the underlying Lie algebra. We
propose to solve the CPR problem for the full euclidean
case using the underlying Lie algebra. Ours is an iterative
algorithm that minimizes the sum of Mahalanobis distances
by linearizing around the current estimate of the pose at
each iteration represented in the Lie algebra.

The work of Govindu [12] is very similar to the work de-
scribed here. However, that approach performs averaging in
the Lie algebra. Therefore, Govindu treats all the local pose
constraints equally and cannot incorporate the uncertainties
in these pose constraints. The approach described in this
paper minimizes the Mahalanobis distance and therefore
is much more general and has wider applicability. In
particular, our approach can be used to fuse uncertain pose
information from various sources in which some constraints
are more reliable than others.

The rest of the paper is organized as follows. Section II
provides a brief introduction to Lie groups. In particular,
the geometry of the special euclidean group is described
along with its underlying algebra. Our problem formulation
is also discussed in this section. The CPR framework of Lu
and Milios is described in Section III for the linear case.
The nonlinear iterative formulation of CPR is discussed
in IV. The algorithm for CPR for euclidean motion is
also described. Results on both simulated data and real
sequences are discussed in Section V. Section VI concludes
this presentation and discusses ongoing and future work.

II. GEOMETRY OF THESPECIAL EUCLIDEAN GROUP

For readers not familiar with Lie algebra, we will provide
a brief introduction. For further details, please refer to the
texts [13], [14] for a thorough exposition on this topic.

A. Lie Algebra

A group G is a set with a binary operation, usually writ-
ten as juxtaposition that satisfies the following properties.

1) The group must be closed under its binary operation.
2) The group must be associative.
3) The group must have a unique identity element.
4) Every element of the group must have a unique

inverse.

Lie groups satisfy additional axioms.

1) The set of group elements forms a differentiable
manifold.

2) The group operation must be a differentiable mani-
fold.

3) The map from a group element to its inverse must
also be differentiable.

It can be easiliy seen that the set of nonsingularn × n
square matrices forms a group where the group product is
modeled by matrix multiplication. Furthermore, this group
satisfies the additional axioms given above and hence is a
Lie group, usually denoted byGL(n) for the general linear
group of ordern. Intuitively, Lie groups are differentiable
manifolds on which we can do calculus. Locally, it is topo-
logically equivalent to the vector spaceRn, and the local
neighborhood of any group elementG can be described
by its tangent-space. The tangent-space at the identity
element forms its Lie algebrag. The exponential function
maps an element of the Lie algebra to its corresponding
group element and the logarithm function is the inverse
mapping from the Lie group to the algebra. For elements
x, y belonging to the Lie algebra, the exponential function
satisfies the propertyexp(x) exp(y) = exp(BCH(x, y)),
where BCH(x, y) is the Baker-Campbell-Hausdorff for-
mula [14]. The BCH formula is given by the series

BCH(x, y) = x + y +
1
2

[x, y] + O(|(x, y)|3) (1)

The bracket in this case is the commutator operation
[x, y] = xy − yx.

B. Euclidean Motion

In particular, the rotation group onR3 is a subgroup of
GL(3), defined as

SO(3) =
{
R|R ∈ GL(3), RRT = I,det(R) = 1

}
(2)

The Special Euclidean Group in three dimensions, SE(3),
represents the euclidean transformation of rotation followed
by translation. It is a semidirect product of the Special
Orthogonal group (SO(3)) andR3. Using homogenous
coordinates, we can represent SE(3) as follows,

SE(3) =
{(

R t
0 1

)
∈ GL(4)

∣∣∣∣ R ∈ SO(3), t ∈ R3

}

(3)



The action of an elementg ∈ SE(3) on a pointp ∈ R3 is
given by

g =
(

R t
0 1

)
(4)

g.p = Rp + t (5)

The Lie algebra of SE(3) is given by

se(3) =
{(

ω̂ u
0 0

)
∈ GL(4)

∣∣∣∣ ω̂ ∈ so(3), u ∈ R3

}

(6)
Here ω̂ is the skew symmetric matrix form of the rotation
vector ω = (ωx, ωy, ωz)

T and is an element of the Lie
algebra forSO(3).

ω̂ =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (7)

The exponential map,exp : se(3) → SE(3), is given by

exp
(

ω̂ u
0 0

)
=

(
exp (ω̂) Au

0 1

)
(8)

where

A = I +
1− cos(‖ω‖)

‖ω‖2 ω̂ +
‖ω‖ − sin ‖ω‖

‖ω‖3 ω̂2 (9)

andexp(ω̂) is given by Rodrigue’s formula,

exp(ω̂) = I +
sin ‖ω‖
‖ω‖ ω̂ +

1− cos ‖ω‖
‖ω‖2 ω̂2 (10)

The logarithm map,log : SE(3) → se(3), is given by

log
(

R t
0 1

)
=

(
log(R) A−1t

0 0

)
(11)

where

log(R) =
φ

2 sin(φ)
(R−RT ) ≡ ω̂ (12)

andφ satisfies

Tr(R) = 1 + 2 cos(φ), |φ| < π (13)

and where

A−1 = I − 1
2
ω̂ +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖ ω̂2 (14)

Using equations 11 and 8, an element of the Lie group
(R, t) can be mapped directly to an element of its Lie alge-
bra(ω̂, u) and vice versa. We will assume that we are given
the relative pose constraints in the Lie algebra. In addition,
by computing the Jacobian matrix of the transformation
(either analytically or numerically), it is possible to convert
the covariance matrix in one representation to the other. If
J is the jacobian of the exponential mapping andΣse(3) the
covariance matrix in the Lie algebra representation, then the
covariance matrix in the Lie group representation is given
by

ΣSO(3) = JΣse(3)J
T (15)

C. Problem Formulation

For a motion of the robot, letn be the number of poses
to be estimated. LetXi be the pose at the positioni, i =
1, . . . , n. In the Lie algebra ofSE(3), this pose can be
expressed asXi ≡ (ωi, ui). Each local pose constraint,
Dij gives us relative motion of thejth pose with reference
to the ith pose. In terms of the Lie algebra,

exp(Dij) = exp(Xj) exp(−Xi) (16)

Dij = BCH(Xj ,−Xi) (17)

We are also given the covariance matrixCij for each
relative pose measurement,Dij . These relative poses may
be obtained through various modalities, each having its own
characteristic covariance matrix. For example,DGPS

ij may
be obtained through GPS measurement with the associated
uncertaintyCGPS

ij and this may be quite different from
the relative pose obtained by, say, visual odometry. This
covariance matrix may be obtained from the measurement
equation that relates the measured variables to the pose
coordinates. For example, for a laser range scanner, the
measured variables are the range estimates of the points
used to get an estimate of the relative pose.

The goal then is to estimate the posesXi, given these
redundant relative pose constraint pairs(Dij , Cij) which
may be obtained from different modalities (e.g; GPS, range
scans, visual odometry,a priori information). We will use
the Consistent Pose Registration (CPR) framework to solve
for these poses optimally, a brief introduction to which is
provided next.

III. L INEAR CONSISTENTPOSEREGISTRATION(CPR)

The CPR framework of Lu and Milios [9] produces
a global map by fusing uncertain local pose constraints.
These relative poses enforce geometric consistency, thereby
producing a globally consistent map.

In the linear case, the relative poseDij is given by

Dij = Xj −Xi (18)

These measurement equations can be expressed in a matrix
form as

D = HX (19)

whereX is the concatenation of all the posesX1, . . . , Xn

andD is the concatenation of all the relative posesDij . H
is the incidence matrix with only zeros, and for each row a
one and a minus one at the appropriate column to form the
difference (equation 18) for each relative pose constraint.

Assuming a Gaussian, independent generative model for
the relative pose errors with mean̄Dij and covarianceCij ,
the maximum likelihood pose estimates can be obtained by
minimizing the following Mahalanobis distance (where the
sum is over all the given relative pose measurements):

W =
∑

(i,j)

(
Dij − D̄ij

)T
C−1

ij

(
Dij − D̄ij

)
(20)

=
(
D̄ −HX

)T
C−1

(
D̄ −HX

)
(21)



whereD̄ is the concatenation of all the observationsD̄ij

and C is a block diagonal matrix whose entries are the
covariance matricesCij . WhenC is taken as the identity
matrix, this problem reduces to the standard least squares
minimization. The solutionXmin that minimizes thisW is
obtained by solving the linear system

GXmin = B (22)

G = HT C−1H (23)

B = HT C−1D̄ (24)

IV. N ONLINEAR CPR

Unlike the linear case (equation 22), there does not exist
a closed-form expression forXmin in the general case
where the relative poses are determined by a nonlinear
equation. Therefore, the minimum solution is obtained
iteratively by linearizing around the current solution at each
iteration. Letf be the pose compounding operation in the
nonlinear case. Therefore, the pose measurement equation
is given by

Dij = f(Xj ,−Xi) (25)

To a first degree this can be approximated byDij ≈ Xj −
Xi. Corresponding to a relative pose measurementD̄ij , the
error in this measurement is given by

Υij = D̄ij − f(Xj ,−Xi) (26)

Therefore, the Mahalanobis distance becomes

W =
∑

(i,j)

ΥT
ijC

−1
ij Υij (27)

At the nth iteration, letXn
i andXn

j be the pose estimates
at locationsi and j, respectively, andΥn

ij be the error
corresponding to the relative pose constraint between these
two poses. For the next iteration, we will have to refine
these pose estimates. LetδXn

i be the change in theith

pose between the successive iterationsn and n + 1. We
have

Xn+1
i = Xn

i + δXn
i (28)

Also, the error (Υij) between the two iterations can be
approximated to a first degree as

Υn+1
ij = Υn

ij −
(
δXn

j − δXn
i

)
(29)

This is easily derived through a Taylor series expansion of
the right side of equation 26. In matrix form, equation 29
can be written as

Υn+1 = Υn −H∆X (30)

where Υn+1 and Υn are the concatenation of allΥn+1
ij

and Υn
ij , respectively,∆X is the concatenation of all the

pose differencesδXn
i , andH is the incidence matrix (as

in equation 19). Substituting forΥn+1 from this equation
into equation 27, the Mahalanobis distance at the(n+1)th

iteration can be written in matrix form as

W = (Υn −H∆X)T
C−1 (Υn −H∆X) (31)

Notice that the form of this equation is identical to the
linear case (equation 21), and therefore the Mahalanobis
distance is minimized for∆X = ∆Xmin given by the
linear system

G∆Xmin = B (32)

G = HT C−1H (33)

B = HT C−1Υn (34)

Once we calculate∆Xmin, each of the pose differences
δXn

i becomes known to us and therefore we can use
equation 28 to update the pose estimates at the next
iteration. This process is repeated until convergence.

Intuitively, each iteration of the algorithm seeks to find
changes in the pose that will lead to reduction in the
Mahalanobis distance. This is accomplished by solving a
linear CPR problem at each step. Therefore, this algorithm
is very much like a gradient descent algorithm and is guar-
anteed to find only a local minima. In practice, however,
the algorithm performs very well and finds solutions that
are globally optimal for most situations.

Lie-algebraic CPR

The iterative algorithm for nonlinear CPR described in
the previous section can be directly applied to the problem
of registering euclidean motions in the Lie algebra. The
pose compounding function inse(3) is given by the BCH
formula, that is,f ≡ BCH. The BCH formula forSE(3)
has a closed-form expression [14].

The algorithm for performing CPR in the Lie algebra of
SE(3) is outlined below

1) At the start of the algorithm computeG = HT C−1H
(equation 33) andK = HT C−1 (equation 34).

2) Start with random initial posesX1
i .

3) Repeat steps 4-7 until convergence.
4) Determine Υ, where for each constraint between

posesi andj, Υij = D̄ij −BCH(Xj ,−Xi) (equa-
tion 26).

5) DetermineB = KΥ (equation 34).
6) Solve the linear systemG∆Xmin = B for ∆Xmin

(equation 32).
7) Update the poses asXn+1

i = Xn
i + δXi (equa-

tion 28), whereδXi is obtained from∆Xmin.

The convergence of the algorithm is determined by looking
at the norm of the update vector∆Xmin. In other words, the
iterations are carried out as long as‖∆Xmin‖ ≥ ε, where
ε is the desired accuracy. For computational efficiency,
the inverse of the matrix G and the K matrix can be
precomputed at the start of the algorithm. Therefore, each
iteration of the algorithm involves only two matrix vector
products (O(n2)). In the next section, we present exper-
imental results of applying our algorithm to a simulated
sequence and also a real sequence where pose constraints
are obtained by visual odometry.

V. RESULTS

Figure 1 shows the3D trajectory consisting of100 poses
X1, . . . , X100 used in our simulation for experimental



validation of our algorithm. Although the orientation of the
robot at these poses is not shown, it also varies substantially
between two consecutive locations. Thus, the posesXi

have the full six degrees of freedom. The robot starts
and ends at the same location and orientation, thereby
resulting in a closed loop. The total distance traveled is
22346 mm. Relative pose measurements were obtained
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Fig. 1. 3D trajectory of a moving robot with 100 poses

between 15 consecutive locations, that is, we have local
pose constraints,Dij for all i, j such thatj > i and|j−i| ≤
15. Each such pose measurement,D̃ij can be computed
as D̃ij = BCH(Xj ,−Xi). For each such constraint, we
need to simulate noise during the measurement process.
This is accomplished by first generating a6 × 6 random
symmetric positive definite matrix,Cij , for eachD̃ij . Next,
we generate a random correlated vectorhij with covariance
matrix Cij . hij is added toD̃ij to obtain the observed
measurement̄Dij . In other words

D̄ij = BCH(Xj ,−Xi) + hij (35)

Thus, the inputs to our algorithm are the measured relative
pose pairs(D̄ij , Cij). The outputs are the poses̄Xi com-
puted at all the 100 locations on the trajectory. We initialize
the algorithm with all the poses set to zero. The error of
the results obtained is measured by finding the distance
between the computed location(t̄i) and the ground truth
location (ti); that is,ei =

√
|ti − t̄i|.

Given these pose links, it is straightforward to link the
consecutive poses together and thus reconstruct the trajec-
tory from the 99 consecutive local pose links(D̄i(i+1)).
Obviously, this does not take into account the covariance
estimates of these adjacent links. Figure 2, plot 1 shows the
error in the locations obtained by linking these adjacent
poses together. TheX axis is the pose index, and the
Y axis is the error. Notice that the error in localization
keeps on accumulating as we move further. At the end,
the accumulated error is6052 which is about27% of the
total distance traveled. Plot 2 in the same figure is an error
plot obtained by applying our Lie algebraic CPR algorithm
to just the consecutive pose relations(D̄i(i+1)). Notice

that the error is much more well behaved and more or
less spread uniformly throughout. The accumulated error
in this case is354 mm, which is only 1.58% of the
total distance travelled. Thus, incorporating covariances
and minimization of Mahalanobis distances reduces the
error dramatically.
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Fig. 2. Error plot obtained from adjacent pose relations

As the number of relative pose links is increased, more
constraints are added to the system. Therefore, the error
in localization should decrease. Figure 3 shows the effect
of adding more constraints on the localization error. Plot
1 is the error plot obtained by linking consecutive poses
together (this is same as the error plot 2 of the previous
figure). Plot 2 is the error plot obtained where constraints
from two consecutive pose constraints are incorporated,
and plot 3 is the error plot obtained by adding constraints
from five adjacent relative pose links. Thus, it is clear that
the error dramatically reduces as we add more local pose
links. The accumulated error for the trajectory obtained by
considering five adjacent pose links is only0.02%.
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If we do not have information about the covariance
matrix, then we may take it to be the identity matrix. In



such a case, the Mahalanobis distance becomes the sum
of the squared errors and the problem simply becomes
the standard least squares minimization. Figure 4 compares
the error plot obtained by least squares minimization with
that of Mahalanobis distance minimization for the case of
five adjacent links. From this error plot, it is clear that
incorporating the covariance matrix helps reduce the overall
error.
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Fig. 4. Comparison of least squares minimization with our approach

Our algorithm typically converges in about40 to 50
iterations for a precision corresponding toε = 1e−5. In
addition, we have observed that the initial starting point for
the nonlinear minimization does not affect the computed
poses significantly.

We have also applied our approach to a real-world
sequence consisting of50 poses. A pair of stereo cameras
was mounted on a cart and moved in an indoor hallway
at the intersection of two corridors. The camera was
moved so as to ‘cut the corner’ at the intersections of
the two corridors. Relative poses between every4 adjacent
frames were obtained through visual odometry [8]. The
covariance matrix for the relative pose was computed from
the Jacobian matrix of the nonlinear function which is
minimized to estimate the pose from the visual features.
Figure 5, plots 2,3,4 shows the estimated trajectory of
the vehicle using the approach described in this paper.
The different trajectories correspond to different number
of adjacent pose constraints used to solve the CPR. For
reference, the trajectory obtained by linking consecutive
poses (as in Figure 2) is shown in plot 1. Since ground
truth is not available for this data, we can not compare
the errors, but the trajectories from the plots 1 and 4 are
quite different, especially towards the end of the sequence.
Linking consecutive poses leads to error accumulation as
we proceed and therefore the endpoints are different. As
more and more relative pose constraints are added, the CPR
algorithm, probably converges to the true pose estimates.
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Fig. 5. CPR applied to a real-world sequence

VI. CONCLUSION

We have presented a Lie algebraic framework for the
global localization of a moving robot from uncertain rela-
tive pose estimates. Given these pose constraints and their
uncertainties, we formulate the problem as minimizing the
Mahalanobis distances in the Lie algebra. This nonlinear
minimization problem is solved by iterative application
of the consistent pose registration framework of Lu and
Milios. Experimental results demonstrate that our algorithm
converges rapidly and the minimization is not very much
affected by the initial starting point. Our approach can be
applied to robots moving in outdoor environments where
the motion is not necessarily planar. This extends the
applicability of robot navigation to rugged, natural terrains.

Although we have demonstrated the proof of concept of
our approach by applying it to a simulated sequence and a
real experiment with pose relations obtained through visual
odometry, we are in the midst of extensive testing and
experimental evaluations. In particular, we plan to combine
relative pose measurements from different modalities such
as visual sensing, vehicle odometry, and laser range finders
to obtain the trajectory of the vehicle and compare it
with precise ground truth measurements using differential
GPS. We are also investigating the effect of the number
of available relative pose measurements on the recovered
trajectory. As formulated in this paper, our approach is
essentially a batch method and requires the inversion of a
large matrix. This may become computationally prohibitive
for large sequences. We are currently working on develop-
ing an incremental version of our algorithm in the lines
of [10] and also looking at computational aspects of our
algorithm for large-scale map making [11].
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