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A LIFTING FUNCTOR FOR TORIC SHEAVES
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Abstract. For a variety X which admits a Cox ring, we introduce a functor from the
category of quasi-coherent sheaves on X to the category of graded modules over the homo-
geneous coordinate ring of X. We show that this functor is right adjoint to the sheafification
functor and therefore left-exact. Moreover, we show that this functor preserves torsion-freeness
and reflexivity. For the case of toric sheaves, we give a combinatorial characterization of its
right derived functors in terms of certain right derived limit functors.

1. Introduction. Consider an affine normal variety W = Spec(S) over an alge-
braically closed field K , G a diagonalizable group scheme which acts on W , and H ⊆ G

a closed subgroup scheme. We denote T the quotient of diagonalizable group schemes G/H .
Moreover, we assume the following.

• There exists a Zariski-open G-invariant subset X̂ of W such that a good quotient
X = X̂//H exists. We denote π : X̂ → X the corresponding projection.

• X admits an affine T -invariant open covering (this is automatic if T is a torus, see
[Sum74]).

• The complement Z = W \ X̂ has codimension at least 2.

The actions of G and H on W induce gradings both on O
X̂

and S by the character groups
X (G) and X (H), respectively, which are compatible via the surjection X (G) ։ X (H). In
particular, O

X̂
decomposes as a direct sum of OX-modules O

X̂
∼=

⊕
α∈X (H)(OX̂

)α, where
we can identify the structure sheaf OX of X in a natural way with the zero component (O

X̂
)0

or, equivalently, with the sheaf of rings of H -invariants OH

X̂
. With this, we require moreover

the following.

• X (H) ∼= Ad−1(X), the divisor class group, where d = dim X.
• For every α ∈ X (H) there exists for a suitable representative Dα ∈ Ad−1 an isomor-

phism of OX-modules between (O
X̂
)α and the divisorial sheaf O(Dα) on X.

• These isomorphisms induce an isomorphism ofOX-modulesO
X̂

∼=
⊕

α∈X (H)O(Dα).
In particular, the latter carries an induced structure of a sheaf of X (H)-graded rings.

These conditions essentially imply that X is a variety which admits a Cox ring (see Proposition
3.2), where we admit some possible further action by a diagonalizable group scheme on X.
In particular, this class of varieties includes the Mori dream spaces. The main application
we have in mind is the case where T is a torus and X a toric variety such that S is the
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associated homogeneous coordinate ring as defined in [Cox95]. It was shown in [PT10, §6]
that by taking local invariants we obtain an exact and essentially surjective functor which
maps an X (G)-graded S-module E to a T -equivariant quasi-coherent sheaf Ẽ on X, the so-
called sheafification functor. Conversely, there is a functor from the category of T -equivariant
sheaves on X to the category of X (G)-graded S-modules, mapping a quasi-coherent sheaf
E to an X (G)-graded S-module Γ∗E := Γ (X̂, π∗E). This functor is right inverse to the
sheafification functor, i.e., we have Γ̃∗E

∼= E for any E . However, the functor Γ∗ in many
cases is not very well behaved. So it usually does not preserve properties such as torsion-
freeness and reflexivity. Also, by being the composition of the right-exact functor π∗ with the
left-exact global section functor, Γ∗ does not have any exactness properties. In general, Γ∗ is
right-exact if X̂ = W (and thus X is affine) and it is left-exact if π is a flat morphism.

The aim of this note is to construct an alternative functor to Γ∗, which we are going to
call the lifting functor, which maps a quasi-coherent T -equivariant sheaf E to an X (G)-graded
S-module Ê . We will show that the lifting functor has the following two general properties:

1. The lifting functor is right adjoint to the sheafification functor and therefore left-
exact (Theorem 3.10).

2. Lifting preserves torsion-freeness and reflexivity. For torsion-free sheaves it pre-
serves coherence (Theorem 4.4).

The lifting functor is an offspring of the author’s recent work on toric sheaves [Per11].
Assume that X is a toric variety and X̂ the standard quotient presentation as in [Cox95]. By
results of Klyachko [Kly90], [Kly91], any coherent reflexive T -equivariant sheaf E can be de-
scribed by a finite-dimensional vector space together with a family of filtrations parameterized
by the rays of the fan associated to X. In order to represent E by an appropriate Z

n-graded
module over the homogeneous coordinate ring, it is a rather straightforward observation that,
rather than taking Γ∗E , we can choose a reflexive sheaf which is associated to precisely the
same filtrations as E (this is possible because there is a one-to-one correspondence between
the rays of the fans associated to X and X̂, respectively). Our results show that this ad-hoc
observation indeed has a functorial interpretation. In Section 5, we will see that the lifting
functor has moreover a very nice interpretation in the combinatorial setting of [Per11].

2. Preliminaries.

2.1. Let A be any abelian group, S an A-graded K-algebra, and E an A-graded S-
module. Then E ∼=

⊕
α∈A Eα and for any β ∈ A we denote E(β) =

⊕
α∈A Eα+β the degree

shift of E by β.
2.2. For any two S-modules E and F , the tensor product E ⊗S F can be A-graded as

follows. Consider first the K-vector space E ⊗K F and set (E ⊗K F)α =
⊕

β∈A(Eβ ⊗K

Fα−β ). Then for α ∈ A we form (E ⊗S F)α as the quotient of (E ⊗K F)α by the subvector
space generated by re ⊗ f − e ⊗ rf for e ∈ Eβ , f ∈ Fγ , r ∈ Sδ with β + γ + δ = α. Note
that E(α) ⊗S F ∼= E ⊗S F(α) ∼= (E ⊗S F)(α).

2.3. For any A-graded S-modules E, F , the graded version of HomS(E, F ) by defini-
tion is given by
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HOMA
S (E, F ) :=

⊕

α∈A

HomA
S (E, F (α)) ,

where HomA
S (E, F (α)) = {f ∈ HomS(E, F ); f (Eβ) ⊆ Fβ+α for every β ∈ A}. We can

consider in a natural way HOMA
S (E, F ) as a subset of HomS(E, F ). Moreover, within the

graded setting, HOMA
S satisfies the same general functorial properties as the standard Hom

(see [Nv04, §2]). Note that when we speak of the category of A-graded modules, the set of
morphisms between modules E and F is given by HomA

S (E, F ) and not by HOMA
S (E, F ).

2.4. We will deal with three gradings, given by the character groups X (T ), X (G),
and X (H), respectively. Any given X (G)-graded ring S carries an X (H)-grading as well
via the surjection X (G) ։ X (H). To distinguish between these two gradings, we write the
homogeneous components S(α) and Sχ for the X (H)- and the X (G)-grading, respectively,
where α ∈ X (H) and χ ∈ X (G). For χ ∈ X (G) we may also write S(χ) for the X (H)-
homogeneous component determined by the image of χ in X (H). Then S(χ) has a natural
X (T )-grading which is given by S(χ)

∼=
⊕

η∈X (T )(S(χ))η with (S(χ))η = Sχ+η. We use the
same conventions for X (G)- and X (H)-graded S-modules.

2.5. For any X (G)-graded S-modules E,F , we have the two graded modules

HOMX (G)
S (F,E) and HOMX (H)

S (F,E), together with the natural sequence of inclusions

HOMX (G)
S (F,E) ⊆ HOMX (H)

S (F,E) ⊆ HomS(F,E)

(which even satisfy certain topological properties [Nv04, §2.4]).
2.6. The X (H)-invariant subring R = S(0) is automatically X (T )-graded. It is also

X (G)-graded by trivial extension, i.e., we set Rχ = 0 for every χ ∈ X (G)\X (T ). Likewise,
every X (T )-graded R-module can be given an X (G)-grading.

2.7. With the notation as in 2.3, note that we have HOMA
S (F,E) =

⊕
α∈A

HomA
S (F,E(α)) =

⊕
α∈A HomA

S (F (−α),E)). That is, we identify the α-th graded com-

ponent HOMA
S (F,E)α with HomA

S (F (−α),E). However, in order to avoid some cumber-
some signs, we will usually write expressions like Ê =

⊕
α∈A HomA

S (S(α),E), where it is
understood that the proper grading is given by (Ê)α = HomA

S (S(−α),E).
2.8. The sheafification functor as defined in [PT10] maps an X (H)-graded (respec-

tively X (G)-graded) S-module E to a quasi-coherent sheaf Ẽ over X as follows. Let open
affine covers {Ui = Spec(Ri)}i∈I and {Ûi = π−1(Ui) = Spec(Si)}i∈I on X and X̂, re-
spectively, be given, such that Ui = Ûi//H (by our general assumptions, both covers can
be chosen T - and G-invariant, respectively). Then Ri = SH

i = (Si)(0) for every i ∈ I and

we can associate to every Ui the Ri -module Γ (Ûi , E)(0), where by abuse of notation we
identify E with its associated quasi-coherent sheaf over W . These glue naturally to give a
quasi-coherent sheaf of OX-modules. Moreover, if the Ui are chosen T -invariant, then the Ri

are X (T )-graded, and both the Ri and Si are X (G)-graded by 2.6. In this case, E has also an
induced T -equivariant structure.
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3. The right adjoint. For a given morphism of schemes f : U → V and a quasi-
coherent sheaf F on V , it is standard to define the pullback f ∗F as f −1F ⊗f −1OV

OU .
This defines a right-exact functor from the category of (quasi-)coherent OV -modules to the
category of (quasi-)coherent OU -modules. However, this is not the only conceivable way to
define a pull-back functor; instead, one could consider the sheaf

f ˆF := Homf −1OV
(OU , f −1

F) .

Clearly, f ˆ is a left-exact functor from the category of quasi-coherent OV -modules to the
category of quasi-coherent OU -modules. In the affine case, i.e., U = Spec(A), V = Spec(B)

for some commutative rings A, B, and F the sheaf corresponding to a B-module F , f ˆF

corresponds to the module HomB(A, F ), where the A-module structure is given by (rg)(r ′) =

g(rr ′) for r, r ′ ∈ A and g ∈ HomB(A, F ).
However, the following example shows that f ˆ is not well-behaved as, for instance, in

general it does not preserve finitely generatedness and torsion-freeness.

EXAMPLE 3.1. Assume B = F = K and A = K[x]. Then we have isomorphisms of
K-vector spaces

HomK (K[x],K) ∼= HomK

( ⊕

i≥0

K,K

)
∼=

∏

i≤0

HomK (K,K) ∼=
∏

i≤0

K.

So we have created from a one-dimensional K-vector space a K[x]-module with an uncount-
able generating set. Also, the graded submodule

⊕
i≤0 HomK (K[x]−i,K) is the torsion sub-

module of HomK (K[x],K). To see this, denote y−i ∈ HomK (K[x]i,K) the basis element
dual to xi . Then it is easy to see that for any j ≥ 0 and i ≤ 0 we have xjyi = yi+j which be-
comes zero for i +j > 0. Moreover, note that this torsion module coincides with the injective
hull of K as a K[X]-module (see [BH94, Corollary 3.6.7 & Proposition 3.6.16 (c)]).

These pathologies will be avoided by our general assumptions on X and X̂. Let {Ui}i∈I

and {Ûi = π−1(Ui)}i∈I be affine T - and G-invariant covers, respectively, as in 2.8. By the
general properties of good quotients, the Ûi form an affine open covering of X̂ such that
Ui = Ûi//H for every i ∈ I . We denote Ui = Spec(Ri) and Ûi = Spec(Si); then Ri = SH

i

for every i ∈ I . Moreover, both the Ri and Si are X (G)-graded by 2.6. Using the notation
from the introduction, we observe the following properties of the homogeneous coordinate
ring S.

PROPOSITION 3.2. (i) There is an isomorphism of S0-modules S ∼=
⊕

α∈X(H) Γ (X,

O(Dα)) which is compatible with the X (H)-grading of S. In particular, the latter carries an

induced ring structure.

(ii) For any i ∈ I , the graded component (Si)(α) is isomorphic to Γ (Ui ,O(Dα)).

PROOF. (i) The X (H)-graded isomorphism O
X̂

→
⊕

α∈X (H) O(Dα) induces for

every i ∈ I and α ∈ X (H) a natural isomorphism of Ri-modules Γ (Ûi, (OX̂
)α) → Γ (Ui,

O(Dα)). By definition of divisorial sheaves, both Γ (X̂, (O
X̂
)α) and Γ (X,O(Dα)) can be
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constructed as intersection of the Γ (Ûi, (OX̂
)α) and Γ (Ui ,O(Dα)), respectively, inside the

fields of rational functions K(X̂) and K(X), respectively. As the isomorphisms naturally
commute with restriction maps, they induce isomorphisms S(α) = Γ (W,OW )(α) =

Γ (X̂, (O
X̂
)(α)) → Γ (X,O(Dα)) for every α ∈ X (H) and hence we obtain the desired

isomorphism (note that the second equality follows because X̂ has codimension 2 in W ).
(ii) Follows from the previous discussion and by remarking that (Si)(α) =

Γ (Ûi,OX̂
)(α). ✷

3.3. For any character (and thus divisor class of X) α ∈ X (H), there is naturally as-
sociated the module O(α) ∼= S̃(α), which by Proposition 3.2 is reflexive and of rank one
(see e.g. [CLS11, Proposition 8.0.4] for the correspondence between Weil divisors classes α

and isomorphism classes of divisorial sheaves on X). This module is a distinguished repre-
sentative for the isomorphism class of such sheaves associated to the class α. Similarly, if
we choose some χ ∈ X (G) which maps to α via the surjection X (G) ։ X (H), we obtain

an induced T -equivariant structure on O(α), which we denote by O(χ) := S̃(χ). More-
over, we observe that the G-action on X̂ induces a decomposition O

X̂
∼=

⊕
χ∈X (G)(OX̂

)χ

which is compatible with the X (H)-grading via the surjection X (G) ։ X (H). Using the
sheaves O(χ), we can write this decomposition as O

X̂
∼=

⊕
χ∈X (G) O(χ)T . Also, for every

α ∈ X (H), we have a natural decomposition O(α) ∼=
⊕

χ O(χ)T , where the direct sum
runs over all χ which map to α. With this, the two gradings on S can be represented as
S ∼=

⊕
α∈X (H) Γ (X,O(α)) ∼=

⊕
χ∈X (G) Γ (X,O(χ)T ) ∼=

⊕
α∈X (G) Γ (X,O(χ))T .

DEFINITION 3.4. Let E be a T -equivariant quasi-coherent sheaf on X. Then we set

EH :=
⊕

α∈X (H)

HomOX
(O(α), E) ,

and

EG :=
⊕

χ∈X (G)

HomT
OX

(O(χ), E) .

Both EH and EG are graded sheaves where the graded pieces are given by (EH )α =

HomOX
(O(−α), E) and (EG)χ = HomT

OX
(O(−χ), E), respectively (see 2.7).

PROPOSITION 3.5. Let E be a T -equivariant quasi-coherent sheaf on X.

(i) Both EH and EG are quasi-coherent subsheaves of πˆE , and EH
∼= EG as O

X̂
-

modules.

(ii) (OX)H (and therefore (OX)G) is isomorphic to O
X̂

.

(iii) If Γ (Ui, E) is a first syzygy module for some i, then so is Γ (Ûi, EH ).

(iv) If E is coherent and torsion-free, then EH and EG are coherent and torsion-free

as well.

PROOF. (i) First note that for every χ ∈ X (G) which maps to α ∈ X (H), we
have a natural inclusion of sheaves of K-vector spaces φχ : HomT

OX
(O(χ), E) →֒
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HomOX
(O(α), E). Summing over all such characters, we get a map of sheaves

φα :=
∑

η∈X (T )

φχ+η :
⊕

η∈X (T )

HomT
OX

(O(χ + η), E) → HomOX
(O(α), E) .

Locally, we denote Ei := Γ (Ui, E) for every Ui and this map translates to an isomor-

phism of Ri-modules
⊕

η∈X (T ) HomX (T )
Ri

((Si)(χ+η), Ei) → HOMX (T )
Ri

((Si)(α), Ei). Be-
cause (Si)(α) is a finitely generated Ri-module by our general assumptions, the latter is iso-
morphic to HomRi ((Si)α, Ei) (see [Nv04, Corollary 2.4.4]). So, φα is indeed an isomor-
phism and by summing over all χ ∈ X (G), we get an isomorphism

∑
χ∈X (G) φχ : EG →

EH . Now, Γ (Ûi, EH ) ∼=
⊕

α∈X (H) HomRi ((Si)(α), Ei) and therefore EH (and thus EG) is

quasi-coherent. Moreover, observe that locally we have Γ (Ûi, πˆE) ∼= HomRi (Si , E) ∼=

HomRi (
⊕

α∈X (H)(Si)(α), Ei) ⊇
⊕

α∈X (H) HomRi ((Si)(α), Ei), so EH (and thus EG) indeed
is a subsheaf of πˆE .

(ii) It suffices to show that for any i the module R̂i :=
⊕

α∈X (H) HomRi ((Si)(α), Ri)

is naturally isomorphic to Si . For this, we have seen in Proposition 3.2 (ii) that (Si)(α)
∼=

Γ (Ui,O(α)). So, by the fact that Ui is affine, this implies that HomRi ((Si)(α), Ri) is nat-
urally isomorphic to HomOUi

(O(α)|Ui ,OUi ) for any α ∈ X (H). The well-known one-to-
one correspondence between Weil divisors classes α and isomorphism classes of divisorial
sheaves on X in particular entails that the O(α) are reflexive sheaves of rank one (see e.g.
[CLS11, Proposition 8.0.4]). Therefore, because Ui is affine, the global sections (Si)(α) cor-
respond to reflexive Ri-modules of rank one. In particular, this correspondence is naturally
compatible with dualizing, i.e., HomRi ((Si)(α), Ri) ∼= (Si)(−α) [CLS11, Proposition 8.0.6].

So we get (R̂i)(α)
∼= HomRi ((Si)(−α), Ri) for every α and therefore we have natural graded

isomorphisms R̂i
∼=

⊕
α∈X (H)(R̂i)(α)

∼=
⊕

α∈X (H)(Si)(α)
∼= Si .

(iii) By assumption, we can represent Ei as a first syzygy 0 → Ei → R⊕I
i , where I

is some index set. Applying
⊕

α∈X (H) HomRi ((Si)(α),−) preserves left-exactness and direct

sums in the right argument, and so we obtain an exact sequence 0 → Êi → R̂⊕I
i

∼= S⊕I
i ,

where Êi :=
⊕

α∈X (H) HomRi ((Si)(α), Ei) ∼= Γ (Ûi, EH ), and the latter isomorphism fol-
lows from (ii).

(iv) It suffices to show that for any i the module Êi :=
⊕

α∈X (H) HomRi ((Si)(α), Ei)

is torsion-free. Because Ei is by assumption torsion-free and finitely generated, it can be
represented as a first syzygy module 0 → Ei → R

ni

i for some integer ni . Applying (iii), we

obtain an exact sequence 0 → Êi → S
ni

i . Hence, Êi is finitely generated and torsion-free. ✷

We come now to our main definition.

DEFINITION 3.6. Let E be a T -equivariant quasi-coherent sheaf on X. Then we call
the X (G)-graded S-module

Ê := Γ (X̂, EG)

the lifting of E .
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REMARK 3.7. Note that the S-module Ê carries both an X (G)-grading as well as an
X (H)-grading, which are given by

Ê ∼=
⊕

α∈X (H)

HomOX
(O(α), E) ∼=

⊕

χ∈X (G)

HomT
OX

(O(χ), E)

(see 2.7 for our convention on the grading). In general, in the presence of a nontrivial T -
action on X, it sometimes might be too restrictive or undesirable for technical reasons to
consider only T -equivariant sheaves (such as in Section 4, see Remark 4.1). In such cases,
one could consider a “coarsening” of the lifting functor, e.g. by assuming that G = H (or by
replacing G by any diagonalizable group sitting between H and G and thereby passing from
the T -action to the action by some possibly non-trivial subgroup; we leave this generalization
to the reader). Then the corresponding lifting procedure would result in a module, say, Ē :=⊕

α∈X (H) HomOX
(O(α), E). Apparently, Ē then is defined for any quasicoherent sheaf on X.

If E is T -equivariant, then above isomorphisms show that Ē and Ê are isomorphic as X(H)-
graded modules, i.e., in this case, assuming G = H is essentially equivalent to forgetting the
T -equivariant structure.

Note morever that, by construction, the lifting is functorial and left-exact. Furthermore, if
X is smooth, then every sheaf of the formO(α) is invertible and we have natural isomorphisms
HomOX

(O(−α), E) ∼= Γ (X, E ⊗OX
O(α)) for every α (respectively HomT

OX
(O(−χ), E) ∼=

Γ (X, E ⊗OX
O(χ))T for every χ). In this case, our lifting functor is naturally equivalent to

the usual lifting functor Γ∗.

PROPOSITION 3.8. The sheafification functor is left-inverse to the lifting functor.

PROOF. We show that (Ê)˜ ∼= E for any T -equivariant quasi-coherent sheaf on X. The
corresponding statement about morphisms then will be evident. With notation as in the proof
of Proposition 3.5, we have for every i ∈ I

Γ (Ui, (Ê) )̃ = HOMX (G)
Ri

(Si , Ei)(0) = HomX (G)
Ri

((Si)(0), Ei) = HomX (T )
Ri

(Ri , Ei) ∼= Ei .

By naturality, the Ei glue to yield E . ✷

Before we can prove our main result, we need to clarify how homomorphism spaces are
related under going back and forth under lifting and sheafification.

LEMMA 3.9. (i) For any X (G)-graded S-module E, there exists a natural homo-

morphism of X (G)-graded S-modules E → ̂̃
E.

(ii) Let E , F be T -equivariant quasi-coherent sheaves on X. Then the lifting induces a

surjective homomorphism of K-vector spaces

HomX (G)
S (Ê, F̂) ։ HomT

OX
(E,F) .

(iii) Let E be an X (G)-graded S-module and F a quasi-coherent sheaf on X. Then

the sheafification and the lifting induce a surjective homomorphism of K-vector spaces

HomX (G)
S (E, F̂)  HomT

OX
(Ẽ,F) .
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PROOF. (i) Degree-wise we define a map φχ : E(χ) → HomX (G)
S (S(−χ), E(0)) for

χ ∈ X (G) by setting (φχ (e))(s) := s · e for every s ∈ S(−χ). We leave it to the reader to
check that this indeed yields an X (G)-homogeneous homomorphism of S-modules.

(ii) By revisiting the constructions of the proof of Proposition 3.8, we conclude that the
functorially induced composition

HomT
OX

(E,F) −→ HomX (G)
S (Ê, F̂) −→ HomT

OX
(E,F)

is a natural isomorphism. In particular, the second homomorphism is surjective.

(iii) By (i), we obtain a homomorphism of S-modules HomX (G)
S (

̂̃
E, F̂) → HomX (G)

S

(E, F̂ ) which naturally commutes with the maps HomX (G)
S (

̂̃
E, F̂ ) → HomT

OX
(Ẽ,F) and

HomX (G)
S (E, F̂ ) → HomT

OX
(Ẽ,F), respectively, which are induced by sheafification. By

(ii), the first map is surjective, hence the second must be surjective, too. ✷

We can show our main results now, which in particular implies that lifting is left-exact.

THEOREM 3.10. The lifting functor from the category of T -equivariant quasi-coherent

sheaves on X to the category of X (G)-graded S-modules is right adjoint to the sheafification

functor.

PROOF. We first consider the affine situation and assume that X̂ = Spec(S) and X =

Spec(R) = Spec(S(0)). Denote E an X (G)-graded S-module and F an X (T )-graded (and
therefore X (G)-graded, see 2.6) R-module. For simplicity, we write F̂ for the lifting of F .
Then we have the isomorphisms of X (G)-graded R-modules

HOMX (G)
S (E, F̂ ) = HOMX (G)

S

(
E, HOMX (G)

R (S, F )
)

∼= HOMX (G)
R (E ⊗S S, F ) ∼= HOMX (G)

R (E, F ) .

Taking invariants with respect to the X (H)-grading, we get

HOMX (G)
S (E, F̂ )(0) = HOMX (G)

R (E, F )(0) = HomX (G)
R (E(0), F ) = HomX (T )

R (E(0), F ) ,

where the second equality follows form the fact that F is concentrated in X (H)-degree zero.
For the general case, consider a T -equivariant sheaf F on X and an X (G)-graded S-

module E whose restriction to X̂ corresponds to a G-equivariant quasi-coherent sheaf E . As
above, denote {Ui}i∈I , {Ûi}i∈I a T -invariant (resp. G-invariant) affine cover of X (resp. X̂).
The affine case considered before corresponds to isomorphisms

Γ
(
Ûi ,HomG

O
Ûi

(E |
Ûi

,FG|
Ûi

)
)

→ Γ
(
Ui,HomT

OUi
(Ẽ|Ui ,F |Ui )

)

for every i ∈ I . These isomorphisms commute naturally with the restrictions

Γ (Ûi,HomG
O

Ûi

(E |
Ûi

,FG|
Ûi

)) → Γ (Ûi ∩ Ûj ,HomG
O

Ûi∩Ûj

(E |
Ûi∩Ûj

,FG|
Ûi∩Ûj

))

and

Γ
(
Ui,HomT

OUi
(Ẽ|Ui ,F |Ui )

)
→ Γ

(
Ui ∩ Uj ,HomT

OUi∩Uj
(Ẽ|Ui∩Uj ,F |Ui∩Uj )

)
,
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respectively for i, j ∈ I . Therefore we obtain an induced homomorphism

HomG
O

X̂
(E,FG) = Γ

(
X̂,HomG

O
X̂
(E,FG)

)
→ Γ

(
X,HomT

OX
(Ẽ,F)

)
= HomT

OX
(Ẽ,F) .

By the naturality of the local isomorphisms and the property that HomG
O

X̂
(E,FG) is

a sheaf, it follows that this homomorphism is an isomorphism. It remains to show that

HomX (G)
S (E, F̂ ) = HomG

OW
(E, F̂) equals HomG

O
X̂
(E,FG). For this, consider the commuta-

tive diagram

HomG
OW

(E, F̂)

φ

��

ψ

���

�

�

�

�

�

�

�

�

�

�

�

HomG
O

X̂
(E,FG)

∼=
�� HomT

OX
(Ẽ,F) ,

where φ is the restriction map and ψ the map induced by the sheafification functor. φ

is injective because F̂ is an extension of FG from X̂ to W and therefore does not have tor-
sion with support on Z. Now, ψ is surjective by Lemma 3.9 (iii), hence both φ and ψ are
isomorphisms. ✷

REMARK 3.11. From the proofs of Proposition 3.8 and Theorem 3.10, it follows that
the counit of the adjunction is for every T -equivariant quasicoherent sheaf E given by the
natural map (Ê)˜ → E which, using notation from the proof of Proposition 3.8, is locally given

by the natural isomorphisms HomX (T )
Ri

(Ri, Ei)
≡

−→ Ei . This is an interesting observation,
as it implies that the category of T -equivariant sheaves on X is a reflective localization of
the category of X (G)-graded S-modules by the kernel of the sheafification functor. This was
previously only known for the case where X is smooth. As was pointed out to me by Barakat
and Lange-Hegermann, this is relevant for recent work [BL12] related to computational toric
geometry.

4. Coherence. We have seen in Proposition 3.5 that a T -equivariant torsion-free co-
herent sheaf E on X lifts to a torsion-free coherent sheaf EG on X̂. In this section we want to
give similar and refined criteria for the lifting Ê .

REMARK 4.1. Recall that by Proposition 3.5 and Remark 3.7 there is no loss of gener-
ality if we only consider the X(H)-graded structure of Ê in order to prove properties such as
coherence and torsion-freeness. This has the additional technical advantage that in the proof
of Theorem 4.4 we will need to find suitable open subsets of X, which might not necessarily
exist if they had to be T -invariant.

PROPOSITION 4.2. Let D be a Weil divisor on X and denote α ∈ X (H) ∼= Ad−1(X)

the corresponding class. Then Ô(D) ∼= S(α). In particular, ÔX
∼= S.
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PROOF. By the isomorphism O(D) ∼= O(α), we have a decomposition as observed in
Remark 3.7:

Ô(D) ∼=
⊕

β∈X (H)

HomOX
(O(β),O(α)) ∼=

⊕

β∈X (H)

Γ (X̂,O(α − β)) ∼= S(α) .

✷

4.3. By the general properties of good quotients, any open subset U of X can be repre-
sented as a good quotient Û//H , where Û is the preimage of U in X̂ under the quotient map.
If U = Spec(R), then from the proof of Propositions 3.5 (ii) and 4.2, we can conclude that
Û = Spec(R̂) and R = R̂(0) with respect to the natural X (H)-grading of R̂.

THEOREM 4.4. Let E be a T -equivariant coherent sheaf on X.

(i) If E is torsion-free then Ê is torsion-free and finitely generated.

(ii) If E is reflexive then Ê is reflexive and finitely generated.

PROOF. First we note that by the fact that Z has codimension 2 in W , coherence (as
well as torsion-freeness and reflexivity, respectively, see [Har80, §1]) of EH implies that the
S-module Ê is finitely generated (and torsion-free, respectively reflexive). So, assertion (i)
follows from Proposition 3.5 (iv).

Now we prove (ii). If E is reflexive, then by [Har80, Proposition 1.1], we can choose for
every point in X a neighbourhood U = Spec(R) such that there exists a short exact sequence

0 −→ Γ (U, E) −→ Rn −→ F −→ 0 ,

where F is a finitely generated, torsion-free R-module. By 4.3, we have U ∼= Û//H with
Û = Spec(R̂) and we can lift this sequence to

0 −→ Γ (Û, EH ) −→ R̂n −→ P −→ 0 ,

where P is the homomorphic image of Sn in F̂ and therefore torsion-free by Proposition 3.5
(iv). Applying again [Har80, Proposition 1.1], we conclude that EG locally reflexive and
therefore reflexive. Hence, as the complement of X̂ in W has codimension at least two, the
module Ê is reflexive by [Har80, Proposition 1.6]. ✷

We will see in Example 5.6 that, in general, coherence is not preserved for sheaves with
torsion.

5. The case of toric sheaves. We now assume that X is a d-dimensional toric variety

with associated fan ∆ and X̂ ⊆ A
∆(1)
K = W its standard quotient presentation. As a general

reference to toric geometry we refer to [CLS11]; for specifics of our setting see also [Per11].
5.1. It is customary to denote M := X (T ) ∼= Z

d and T̂ := G, such that X (G) ∼=

Z
∆(1). Moreover, we denote N = M∗ and assume that ∆ consists of strictly convex poly-

hedral cones in N ⊗Z R. We denote {lρ}ρ∈∆(1) the set of primitive vectors of the rays in ∆,
which we interpret as linear forms on M . Elements m ∈ M can be considered as regular
functions on T and therefore as rational functions on X. In this case, we write χ(m), where
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χ(m + m′) = χ(m)χ(m′) for any m,m′ ∈ M . We have X (H) ∼= Ad−1(X) and the inclusion
of M in to Z

∆(1) yields the short exact sequence

0 −→ M
L

−→ Z
∆(1) −→ Ad−1(X) −→ 0 ,

where L can be represented as a matrix whose rows are formed by the lρ . For any strictly
convex rational polyhedral cone σ ∈ ∆, we get an affine toric variety Uσ whose M-graded
coordinate ring is given by K[σM ] with σM = σ̌ ∩ M and σ̌ denotes the dual cone of σ in
M ⊗Z R. Similarly, we get an exact sequence

M
Lσ

−−→ Z
σ(1) −→ Ad−1(Uσ ) −→ 0 ,

where Lσ is the submatrix of L consisting of the rows which correspond to rays in σ(1).
We start by recalling some facts about toric sheaves on affine toric varieties and poset

representations from [Per04] and [Per11]. Assume that σ is a cone and S = K[Nσ(1)] the
homogeneous coordinate ring. For any m,m′ ∈ M we write m ≤σ m′ if and only if m′ −m ∈

σM . This way we get a preordered set (M,≤σ ), which is partially ordered if dim σ = d .
Equivalently, M becomes a small category, where the morphisms are given by pairs (m,m′)

whenever m ≤σ m′. By the preorder ≤σ , M also becomes a topological space. Its topology
is generated by open sets U(m) = {m′ ∈ M; m ≤σ m′} for every m ∈ M .

PROPOSITION 5.2 ([Per04, Proposition 5.5], [Per11, Proposition 2.5]). The following

categories are equivalent:

(i) Toric sheaves on Uσ .

(ii) M-graded K[σM ]-modules.

(iii) Functors from (M,≤σ ) to the category of K-vector spaces.

(iv) Sheaves of K-vector spaces on M .

Note that, given a representation E of (M,≤σ ), the associated sheaf assigns to any open
subset U of M the limit lim

←−
Em for m ∈ U (see [Per11, Proposition 2.5]).

Similarly, N
σ(1) induces a partial order “≤” on Z

σ(1), which is compatible with ≤σ in
the following way.

LEMMA 5.3. Lσ (m) ≤ Lσ (m′) if and only if m ≤σ m′.

PROOF. We observe
Lσ (m) ≤ Lσ (m′) ⇔ Lσ (m′) − Lσ (m) ∈ N

σ(1)

⇔ lρ(m′ − m) ≥ 0 for every ρ ∈ σ(1)

⇔ m′ − m ∈ σM .

✷

So, with respect to a fixed cone σ , it is natural to write m ≤ m′ instead of Lσ (m) ≤

Lσ (m′), i.e., m ≤ m′ if and only if m ≤σ m′. Moreover, for every c ∈ Z
n there exists some

m ∈ M such that c ≤ m. To see this, we observe that we always can choose some m ∈ σM

with lρ(m) > 0 for every ρ ∈ σ(1) and some integer r > 0 such that c ≤ r · m. So, for every
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c ∈ Z
σ(1) we obtain a nonempty open subset Uc of M which is given as

Uc =
⋃

c≤m

U(m) .

By Proposition 5.2, every M-graded module E is equivalent to a sheaf of K-vector spaces on
M which assigns to every open subset U of M the vector space E(U) = lim

←−
Em, where the

limit is taken over m ∈ U . We use this to define a representation E of (Zσ(1),≤) by setting

Ec := E(Uc) .

By the functoriality of sheaves we have restriction maps Ec → Ec′ whenever c ≤ c′. Hence

we obtain a functor from (Zσ(1),≤) to the category of K-vector spaces and thus a Z
σ(1)-

graded S-module E :=
⊕

c∈Zσ(1) Ec by Proposition 5.2. Clearly this construction is functo-
rial.

PROPOSITION 5.4. Denote Ê ∼=
⊕

c∈Zσ(1) Êc the Z
σ(1)-graded lifting of the sheaf

over Uσ associated to E in the sense of Definition 3.6. Then the modules Ê and E are natu-

rally isomorphic. In particular, Êc
∼= HomM

K[σM ](S(c), E) is naturally isomorphic to Ec for

every c ∈ Z
σ(1).

PROOF. We write c =
(
cρ; ρ ∈ σ(1)

)
. We can consider S(c) as an M-graded K[σM ]-

submodule of the group ring K[M] with S(c)
∼=

⊕
m Kχ(m), where the sum is taken over

all m ∈ M with lρ(m) ≥ −cρ . Choose a minimal set of generators s1, . . . , st of S(c) with
degrees m1, . . . ,mt . Then any M-homogeneous homomorphism is determined by the images
of the si in the homogeneous components Emi . Hence, we can identify HomM

K[σM ](S(c), E) in

a natural way with a subvector space of
⊕t

i=1 Emi consisting of tuples (e1, . . . , et ) such that
χ(m−mi)ei = χ(m−mj )ej whenever mi,mj ≤σ m. But this vector space has the universal
properties of the limit lim

←−
Em and thus we can naturally identify it with Êc = lim

←−
Em. The

isomorphism of the modules Ê and E then follows from the naturality of this identification.
✷

REMARK 5.5. By Theorem 3.10 the lifting functor is left-exact and to any toric sheaf
E we can consider its right derived modules

Ê = Ê
(0), Ê (1), . . . .

By Proposition 5.4 we have now a very nice interpretation of these modules, as we can identify
them degree-wise with the right derived functors of the limit functor lim

←−
. Right derived limit

functors lim
←−

i have been pioneered by Roos [Roo61] and have since been studied extensively.
Roos also gives a combinatorial analog of the Cech complex which allows in simple cases
the explicit computation of the derived functors. We can now understand the left-exactness of
the lifting functor combinatorially by the fact that the posets {m ∈ M; lρ(m) ≥ −cρ for all
ρ ∈ σ(1)} are not filtered, i.e., for any m,m′ ∈ Uc there may not exist any m′′ ∈ Uc with
m′′ ≤σ m and m′′ ≤σ m′, which otherwise would imply the exactness of the limit functor
(see [Jen72, Corollary 7.2]).
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The following example shows both that lifting in general does not preserve exactness,
and the existence of nontrivial right derived modules Ê(i).

EXAMPLE 5.6. Let σ ⊂ NR
∼= R

3 be the cone generated by the primitive vectors
l1 = (1, 0, 0), l2 = (0, 1, 0), l3 = (−1, 1, 1), l4 = (0, 0, 1). Denote m ⊂ K[σM ] the maximal
homogeneous ideal and consider K = K[σM ]/m as a simple module in degree 0. Now for a
given c = (c1, c2, c3, c4) ∈ Z

4, it is straightforward to see that 0 ∈ M is a minimal element
in {m ∈ M; li(m) ≥ −ci} if and only if

c1, c3 ≤ 0 , c2 = c4 = 0 or c1 = c3 = 0 , c2, c4 ≤ 0 .

If c satisfies one of these conditions, then K̂c
∼= K , and K̂c = 0 otherwise. So there is no lower

bound for the ci such that K̂c vanishes and so K̂ cannot be finitely generated. We observe that
K̂ is Artinian and is supported precisely on those torus orbits which get contracted to the fixed
point under the quotient map A4

K → Uσ .

Moreover, by Lemma 4.2, we have K̂[σM ] ∼= S, and the long exact derived sequence of
0 → m → K[σM ] → K → 0 starts by

0 −→ m̂ −→ S −→ K̂ −→ m̂
(1) .

By degree-wise inspection one can see that m̂ = (x1, x2, x3, x4), and therefore m̂
(1) cannot be

finitely generated as well.

By adjointness, the lifting functor transports injective M-graded K[σM ]-modules to in-
jective Z

σ(1)-graded S-modules. In [Per11], codivisorial modules have been considered. For
given c ∈ Z

σ(1), such a module can be defined as K[−Mc,I ] =
⊕

m∈−Mc,I Kχ(m), where I

is any subset of σ(1) and Mc,I = {m ∈ M; lρ(m) ≥ cρ for ρ ∈ I }. If c = Lσ (m) for some
m ∈ M , then K[−Mc,I ] is an injective object in M-K[σM ]-Mod. However, if K[−Mc,I ]

is not injective, the following example shows that lifting can exhibit a more bizarre behavior
than in the previous example.

EXAMPLE 5.7. Let K[σM ] be as in Example 5.6 and consider the module K[−Mc,I ]

with c = 0 and I = {1, 3}. A similar computation as in Example 5.6 shows that
̂K[−Mc,I ](c1,0,c3,0)

∼= K1−c1−c3 whenever c1 + c3 ≤ 0. So this module exhibits an infi-
nite family of graded components of any finite dimension. This shows that the lifting functor
does not respect combinatorial finiteness in the sense of [Per11].

5.8. Rather than limits, we can also consider colimits associated to representations of
(M,≤σ ). That is, for any M-graded K[σM ]-module E, there is its colimit lim

−→
Em. As the

preordered set (M,≤σ ) is filtered, forming the colimit is exact. Given an M-graded K[σM ]-
module E ∼=

⊕
m∈M Em, we can associate to it the colimit E := lim

−→
Em. Similarly, for

the lifted S-module Ê we have the colimit Ê := lim
−→

Êc, which is formed over the poset

(Zσ(1),≤).

PROPOSITION 5.9. In the above situation we have E = Ê.
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PROOF. It is easy to see that for every c ∈ Z
σ(1) we can find some m ∈ M such that

c ≤ m. Conversely, for every m ∈ M we can find some c ∈ Z
σ(1) such that m ≤ c. It follows

that lim
−→

Em and lim
−→

Êc are cofinal. ✷

If dim σ < d , then we have m ≤σ m′ and m′ ≤σ m whenever m′ − m ∈ σ⊥
M . In

particular, such a pair (m,m′) is an isomorphism in the category M . The following proposition
states that, up to natural equivalence, we do not loose anything essential if we pass from the
preordered set (M,≤σ ) to M/σ⊥

M with the induced partial order:

PROPOSITION 5.10 ([Per11, Proposition 2.8]). Let Λ ⊆ σM be a subgroup. Then

there is an equivalence of categories between the category of M-graded K[σM ]-modules and

the category of M/Λ-graded K[σM/Λ]-modules.

Note that we state Proposition 5.10 in slightly greater generality than [Per11].
5.11. Now, we are ready to consider the non-affine case. Denote {Uσ }σ∈∆ the standard

covering of X and {Ûσ = Spec(Sσ )}σ∈∆ the corresponding cover of X̂ given by the preimages
of the Uσ . If we take a T -equivariant, i.e., toric sheaf E on X, we see by Proposition 5.10 that

the Sσ -modules Γ (Ûσ , E T̂ ) are naturally equivalent to the lifts of Γ (Uσ , E) to K[Nσ(1)]. In
particular, it is straightforward to check that coherence, torsion-freeness, and reflexivity are
preserved by passing back and forth between K[Nσ(1)] and Sσ .

5.12. Given a quasi-coherent sheaf E on X, we obtain a family of colimits Eσ :=

lim
−→

Γ (Uσ , E)m for σ ∈ ∆. For every pair of cones τ, σ such that τ is a face of σ , the
restriction Γ (Uσ , E) → Γ (Uτ , E) induces a map of directed families over (M,≤σ ) and
(m,≤τ ), respectively, and by the universal property of colimits we obtain an induced K-
linear isomorphism Eσ → Eτ (see [Per04, §5.4]). Since the face poset of ∆ has the zero cone
0 as the unique minimal element, we can use the isomorphisms Eσ → E0 to identify the Eσ

with E0 =: E. For the case that E is coherent, it has been shown in [Per04, §5.4] that dim E

equals the rank of E . We can do the same construction for Ê and obtain a colimit Ê, which,
using Proposition 5.9, we can in a natural way identify with E.

5.13. This construction becomes most interesting for the case that E (and thus Ê by

Theorem 4.4) is finitely generated and torsion-free. Then the maps Γ (Uσ , E)M
·χ(m′)
−−−→ Γ

(Uσ , E)m+m′ are injective for every σ ∈ ∆, m ∈ M , and m′ ∈ σM . It follows that the induced
maps Γ (Uσ , E)m → E are injective as well for every σ ∈ ∆ and m ∈ M , and analogously so
for the induced maps Êc → E for c ∈ Z

∆(1). This allows a greatly condensed representation
of torsion-free toric sheaves in terms of families of subvector spaces of a fixed vector space E

which are parameterized by the family of posets {(M,≤σ )}σ∈∆ (see [Per04, Theorem 5.18]).
For the case of reflexive sheaves, we have the following structural theorem due to Kly-

achko.

THEOREM 5.14 ([Kly90], [Kly91], see also [Per04]). The category of coherent reflex-

ive toric sheaves on a toric variety X is equivalent to the category of vector spaces E endowed

with filtrations 0 ⊆ · · · ⊆ Eρ(i) ⊆ Eρ(i + 1) ⊆ · · · ⊆ E for ρ ∈ ∆(1) which are full in the

sense that Eρ(i) = 0 for i ≪ 0 and Eρ(i) = E for i ≫ 0.
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5.15. Over Uσ , we observe that for a torsion-free K[σM ]-module E we have lim
←−

Em

equals the intersection
⋂

m≤σ m′ Em′ in E. Therefore, given E and Eρ(i) for ρ ∈ σ(1) as in
Theorem 5.14, one constructs a reflexive module E from this data by setting E =

⊕
m∈M Em

and Em =
⋂

ρ∈σ(1) Eρ
(
lρ(m)

)
⊆ E.

By Theorem 4.4 we know that for a reflexive toric sheaf E on X, its lifting Ê is reflexive
as well. The fan ∆̂ associated to X̂ in general contains more cones than ∆, but we have a one-
to-one correspondence between ∆(1) and ∆̂(1) given by, say, ρ �→ ρ̂. So we know a priori
that E and Ê are described by the same number of filtrations. The following result shows that
these filtrations (in an almost tautological sense) indeed coincide and, moreover, that lifting is
indeed “the” correct functor to translate reflexive toric sheaves into Z

∆(1)-graded S-modules.

THEOREM 5.16. A toric sheaf E is coherent and reflexive if and only if Ê is coherent

and reflexive. Moreover, if E and Ê are coherent and reflexive, then they are canonically

described by the same data, i.e., Ê = E and Êρ̂(i) = Eρ(i) for any ρ ∈ ∆(1). In particular,
lifting induces equivalences of categories between the category of reflexive toric sheaves on

X, the category of reflexive toric sheaves on X̂, and the category of reflexive Z
∆(1)-graded

S-modules.

PROOF. The statements on coherence and reflexivity follow from Theorem 4.4. It suf-
fices to consider the case that X is affine, i.e., X = Uσ . So, assume that E is a reflexive
M-graded K[σM ]-module, given by filtrations Eρ(i) of the vector space E. From this data
we can construct a reflexive Z

σ(1)-graded S-module F by setting F = E and F ρ̂(i) = Eρ(i).
Similarly, if we start with the reflexive S-module F , we get a reflexive K[σM ]-module E′ by
simply identifying the filtrations. We show that F ∼= Ê and E′ = F(0) = E.

The equality E′ = F(0) = E follows from the fact that Em =
⋂

ρ∈σ(1) Eρ
(
lρ(m)

)
=⋂

ρ∈σ(1) F ρ̂
(
lρ(m)

)
= Fm (see 5.15), where in the latter equation we identify m with its

image Lσ (m) ∈ Z
σ(1). Now consider Êc for some c ∈ Z

n. By 5.15 we have Êc = lim
←

Em =
⋂

c≤m Em =
⋂

c≤m

⋂
ρ∈∆(1) Eρ

(
lρ(m)

)
⊆ E. Now by the fact that the lρ are primitive

elements in N , we can always choose for any ρ ∈ ∆(1) some m ∈ M such that lρ(m) = cρ .
It follows that Êc =

⋂
ρ∈∆(1) Eρ(cρ) = Fc.

For the equivalence of categories, it suffices to remark that for any two reflexive toric
sheaves E,F , there is a natural bijection Hom(E,F) → Hom(Ê, F̂), as any homomorphism
of vector spaces E → F which respects the filtrations also respects any of their intersec-
tions. ✷

REMARK 5.17. For E reflexive, one can easily show that the S-module Ê is isomor-
phic to (Γ∗E)ˇ̌ , the reflexive hull of Γ∗E . Note that more generally, if E is torsion-free, then
Ê does not necessarily coincide with Γ∗E modulo torsion.

REMARK 5.18. In [Per11], reflexive M-graded K[σM ]-modules have been investi-
gated in terms of the vector space arrangements underlying the associated filtrations. Given
such a module E, it is not difficult to see that in general not all possible intersections are re-
alized as the graded components Γ (Uσ , E)m =

⋂
ρ∈σ(1) Eρ

(
lρ(m)

)
. However, for the vector
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space arrangement underlying the filtrations associated to Ê , all possible intersections indeed
are realized this way. In this sense, one can consider vector space arrangement in E underlying
the filtrations associated to Ê as the intersection completion of the vector space arrangement
underlying the filtrations associated to E.
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