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Simultaneous Localization and Mapping (SLAM) is an important technique for robotic system navigation. Due to the high
complexity of the algorithm, SLAM usually needs long computational time or large amount of memory to achieve accurate results.
In this paper, we present a lightweight Rao-Blackwellized particle filter- (RBPF-) based SLAM algorithm for indoor environments,
which uses line segments extracted from the laser range finder as the fundamental map structure so as to reduce the memory
usage. Since most major structures of indoor environments are usually orthogonal to each other, we can also efficiently increase
the accuracy and reduce the complexity of our algorithm by exploiting this orthogonal property of line segments, that is, we treat
line segments that are parallel or perpendicular to each other in a special way when calculating the importance weight of each
particle. Experimental results shows that our work is capable of drawing maps in complex indoor environments, needing only very
low amount of memory and much less computational time as compared to other grid map-based RBPF SLAM algorithms.

1. Introduction

In recent years, Simultaneous Localization and Mapping
(SLAM) has become one of the basic requirements for
robotic navigation. This technique allows robots to have the
ability to simultaneously build up a map and localize itself
in an unknown environment. The main issue involved is that
while localizing a robot we need an accurate map, and for
updating the map the robot needs to estimate its location
accurately. The relation between robot localization and map
updating is usually described as a highly complex chicken-
and-egg problem.

Clearly, lightweight SLAM algorithms are needed in in-
telligent robotic systems, because mobile robots are some-
times limited by its size and power budget, so it is usually
equipped with a microprocessor which has lower capability
than ordinary PCs. For instance, robotic vacuum cleaner has
been widely used in many indoor housekeeping applications,
but most of these robotic cleaners just randomly wander

around the environment and cleans up the floor along its
path, which is a very inefficient way to clean up a room.
After integrating SLAM into the robotic system [1, 2], we
can develop an intelligent robotic vacuum cleaner, which is
capable of planning its path in a more efficient way by using
the map and location information. However, as mentioned
in [3], price, size, and accuracy of the sensor is not the major
problem, due to the fast progress in sensing technology. The
biggest challenge will be how to develop a robust lightweight
algorithm and how to integrate it into these embedded ro-
botic systems.

Rao-Blackwellized particle filter (RBPF), which was first
introduced by Murphy and his colleagues [4, 5], has become
one of the most successful ways of solving the SLAM problem
[5–10]. Montemerlo et al. extended this ideal and proposed
the FASTSLAM [7] algorithm which uses a Rao-Blackwel-
lized particle filter to estimate the robot’s poses and tracks
the location of landmarks by using an extended Kalman
filter (EKF). Another efficient approach to solve the SLAM
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problem using RBPF is the DP-SLAM [8, 11], which uses
grid maps rather than landmark maps so that it does not
need any assumption on landmarks. The algorithm assigns
each so-called particle (i.e., a snapshot of the environment
the robot recognizes in terms of a local map and the location
and pose of the robot in the map) an individual map and
maintains these maps by sharing the same parts of the map
between particles using a technique called distributed parti-
cle mapping, which efficiently reduce the memory needed for
grid map-based RPBF SLAM. Recently [9] proposed a hybrid
approach which uses the grid map as the main map structure
and enhance the grid map by a set of line segment maps; as
a result, this hybrid approach is able to increase the accuracy
of the algorithm.

However, the techniques mentioned above needs large
amount of memory and high computational resource to
achieve good results. This is due to the fact that most of the
RBPF-based SLAM needs to maintain a large number of
particles where each particle has its own map. The most
commonly used map structure in RBPF SLAM is still the grid
map, because it is capable of describing objects of random
shapes and can easily calculate the importance weight of each
particle by using scan matching methods [12, 13], but there
is a drawback. Since each grid map is built in a fixed-sized
2D array where each cell represents a specific coordinate
location, it requires extremely large amount of memory for
storing these grid maps.

In this work, we aim to develop a lightweight laser range
finder-based SLAM algorithm for indoor environments
using Rao-Blackwellized particle filter (RBPF), while most of
the major structures (walls, doors, etc.) and furniture of
indoor environments can be easily represented as line seg-
ments, we decided to use line segments as our map structure
instead of grid map. Also when storing line segments into
the map, we only need to store the location and parameters
of each line segment. As a result, the memory requirement is
much more efficient as compared to grid map.

On the other hand, we also use the orthogonal property
of indoor environments to increase accuracy of our algo-
rithm. This property is based on the fact that most structures
of indoor environments are parallel or perpendicular to each
other [3]. By just considering these orthogonal lines, we can
filter out most of the erroneous line segments caused by
sensor noise or line extraction error. Although this concept
has already been used in many other works [3, 14, 15],
there is still a main differentiating factor in our work—we
dynamically modify the reference direction, which is used to
identify the orthogonal lines, rather than just aligning the
lines with the x-axis and y-axis. This is extremely important
since it can thereby allow the robot to have the ability to
start its initial pose at any angle and need not to align its
initial direction with the major structures of the environ-
ment.

The rest of this paper is organized as follows. Section 2
quickly describes how the Rao-Blackwellized particle filter
solves the SLAM problem. In Section 3, we will discuss
the details of our lightweight RBPF SLAM algorithm.
Section 4 presents the experimental results, and Section 5
concludes.

2. RBPF for SLAM

As mentioned in [16], a full SLAM problem is to estimate the
joint posterior by which a robot recognizes the environment
after moving around for a while. This joint posterior is de-
noted as p(x1:t ,m | z1:t,u1:t−1), where x1:t denotes the entire
robot trajectory estimated so far from time instant 1 to time
instant t,m is the associated map in terms of some data struc-
ture (e.g., grid map or line segment based map in our sys-
tem). The joint posterior is constantly derived and updated
based on two given pieces of information—the observations
z1:t from the environment-measuring sensor (which is a laser
range finder in our system), and the odometry measurements
u1:t−1, which is a rough estimation of the trail a robot
have traveled up to some point in time. Since odometry is
based on how many rounds each of the robot’s two wheels
has turned, it often has significant errors referred to as
odometry noise. A robust SLAM algorithm should be able
to derive accurate joint posterior p(x1:t ,m | z1:t ,u1:t−1) under
significant observation inaccuracy and/or odometry noise.

The key idea of the Rao-Blackwellized particle filter based
algorithm is to solve the SLAM problem by splitting the joint
posterior p(x1:t ,m | z1:t ,u1:t−1) into two separate parts [4,
6]. The first part is about estimating the robot trajectory, that
is, x1:t , using a particle filter (to be explained in detail later).
The second part is about the update of the map based on
the derived trajectory. With this concept, we can rewrite the
formula in two cascaded parts as

p(x1:t ,m | z1:t,u1:t−1)= p(m | x1:t , z1:t)·p(x1:tz1:t,u1:t−1).
(1)

While using a particle filter to estimate the robot’s poten-
tial trajectories, a motion model is needed regarding the

generation of the new particles {x
(i)
t } from the corresponding

previous particle {x
(i)
t−1} by taking into account the odometry

data. Due to the enormous error of the odometer, we need
to determine how accurate each new particle is, that is, we
assign each of them an importance weight according to how
well the current measurement of the environment matches
with the map. After assigning each particle an importance
weight, the particles that have lower weight will be discarded,
until only a small number of particles are left. Finally, the
map is updated for each remaining particles using the current
measurements from the sensor. By repeatedly executing the
steps mentioned above, we can maintain a set of particles at
any given time, indicating the mostly likely robot’s poses and
a map built by its previous trajectory. By doing so, the robot
is capable of moving around in an unknown environment
without getting lost.

3. Proposed Lightweight RBPF SLAM

3.1. System Overview. Figure 1 shows the overall flowchart of
our lightweight RBPF SLAM algorithm. When a robot starts
executing SLAM in an unknown environment, we will first
set the robot’s initial pose at the origin of its coordinate
system as (x, y, θ) = (0, 0, 0), and build an initial map using
the information from the laser range finder according to
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Figure 1: Overall flowchart of a particle filter-based algorithm.

the initial pose. After initializing the system, it will repeatedly
estimates the correct robot pose using a particle filter and
update the map of each particle by a line merging technique
each time when the robot moves farther than a distance.

Usually an RBPF-based SLAM algorithm can be imple-
mented by using the Sampling Importance Resampling (SIR)
filter, which is one of the most commonly used particle filter-
ing algorithms [6], and a map update technique. The entire
procedure can be summarized in the following steps,

(1) Sampling: New particles are generated from the pre-
vious particle using a motion model.

(2) Importance Weighting: Each new particle is assigned
an importance weight to determine the accuracy of
the particle according to how well the current obser-
vation matches the map it has already built.

(3) Resampling: Particles with low weights are likely to be
replaced by the ones with high weights.

(4) Map Update: The most current map observed by the
laser range finder is updated to each remaining par-
ticle after the resampling step according to its indi-
vidual pose, so that each particle has a most updated
map of the environment.

Because of using line segments as our map structure, we
need some extra procedure to maintain these lines. First of
all, we need to extract the line segments from the raw scan
data provided by a laser range finder; this will allow us
to have the information about the environment the robot
currently sees. But extracting the line segments for every
new particle generated in the particle generation step will
cost an enormous effort, so our algorithm only extracts a
set of reference line segments, then by rotating and shifting
this set of line segments to the corresponding new particles
pose. In the importance weighting step, we need to find
out the relation between the new extracted line segments
and the map we have already built before calculating the

importance weight of each particle; this procedure is called
data association. Also in the data association step, we mainly
consider the orthogonal lines [3] extracted from the laser
range finder, to filter out erroneous lines caused by sensor
noise or line extraction error. Finally, in the map-update step,
line segments which are too close to each other are merged
together to maintain consistency of our map and lower the
number of line segments. After updating the map for each
particle, we will wait until the robot has moved farther than
a distance before starting the new iteration over again.

In the following subsections, we will discuss the details of
each step mentioned in Figure 1 to implement a lightweight
RBPF SLAM for indoor environments.

3.2. Particle Generation. This is the first step of the particle
filtering process, where a motion model is used to generate
new potential robot poses according to its previous pose
based on the odometry data. These potential robot poses
are usually called particles. The motion model we used here
can be found in [17], where the authors proposed a motion
model that is capable of capturing the relationship between
odometry data and the change of robot configuration, then
by using this information to modify its parameters and
increase the accuracy of the model. The motion model can
be written as

xt = xt−1 + D cos

(

θt−1 +
T

2

)

+ C cos

(

θt−1 +
T + π

2

)

,

yt = yt−1 + D sin

(

θt−1 +
T

2

)

+ C sin

(

θt−1 +
T + π

2

)

,

θt = θt−1 + T mod 2π,

(2)

where D, T, and C are three noise models which represent
the robots travel distance, amount of turns performed, and the
shift in the orthogonal direction to the major axis, respec-
tively.
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After the particle generation step, we will have a set of
new particles {xi}i=1,...,m generated by the motion model,
each representing a potential pose of the robot (x, y, θ) and
an updated map considering its previous trajectory. Due to
the enormous error of the odometry data, we cannot rely
only on the motion model to estimate the true robot pose. So,
we need the help of a laser range finder, which is significantly
more precise, to provide the information of the current envi-
ronment and matches it with the map we have already built
to filter out particles that are too much inconsistent with the
true pose, which will be introduced in the following sections.

3.3. Line Segment Extraction. The accuracy of a feature-based
SLAM algorithm can be increased by using a robust feature
extraction method; this is because feature-based SLAM
heavily depends on the features extracted from the sensor
to estimate the robot pose. Figure 2 shows the procedure of
our line extraction algorithm, where an enhanced sequential
segmentation algorithm is used to extract a set of reference
line segments from raw scan data provided by a laser range
finder, and, then, we rotate and shift the reference scan lines
to the corresponding particle pose (xi, yi, θi) generated by the
motion model, so that each particle has its own set of scan
lines.

In this section, we will describe how to enhance the se-
quential segmentation algorithm proposed by [18], and cre-
ating scan lines for each new particle by rotating and shifting
the reference scan lines.

3.3.1. Least Square Fitting. Least square fitting is a technique
that finds the best fitting line L : x · cosθ + y · sin θ = ρ to
a given set of sample points {(xi, yi)}i=1,...,n, which minimizes
the following error:

Efit =

n
∑

i=1

(

xi cos θ + yi sin θ
)

− ρ, (3)

θ and ρ can be computed by using a least square method [19]
as follows:

θ =
1

2
atan 2

−2
(

Sxy −NXNYN

)

(

Syy − Sxx
)

−
(

Y 2
N − X2

N

)

,

ρ = XN cosθ + YN sin θ,

(4)

where

Sxx =
N
∑

i=1

x2
i , Syy =

N
∑

i=1

y2
i , Sxy =

N
∑

i=1

xiyi,

XN =
1

N

N
∑

i=1

xi, YN =
1

N

N
∑

i=1

yi.

(5)

The relation of line L : x · cosθ + y · sin θ = ρ between
Hough space and x- y plane are shown in Figure 3.

3.3.2. Enhanced Sequential Segmentation Algorithm. The se-
quential segmentation line extraction algorithm was first
introduced in [18], which is known as a very efficient method
for line extraction [18, 20]. The main difference between our
work and [18] is that we enhanced the algorithm by adding a
corner detection technique and an adaptive breakpoint detector
for line segmentation. This will lead to better quality in
complex indoor environments.

Sequential segmentation algorithm works by first giving
a set of raw scan data, denoted as {di}i=1,...,N . If the distance
between three consecutive points {dk, . . . ,dk+2}1�k�N−2 are

within a threshold δd , which is ‖dk+1 − dk‖ � δd and
‖dk+2− dk+1‖ � δd, then a line L is extracted from the points
{dk, . . . ,dk+2} using least square fitting [19]. After finding
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the first three consecutive points that can be extracted into
a line segment L, we will determine whether the next consec-
utive point dk+3 can be merged into line L by the following
steps:

(a) ‖dk+3 − dk+2‖ � δd,

(b) the perpendicular distance from scan point dk+3 to
line L is within a threshold.

If the two conditions all achieves, we will merge the scan
point dk+3 into line L by using a sequential least square
method proposed in [18], and the next point dk+4 is tested.
Otherwise, a new scan line Si is determined from L, and the
same process is repeated for extracting new scan lines starting
from dk+3 and ends until all the scan points have been tested.
When a new scan line Si is extracted from a set of scan points
{dk,dk+1, . . . ,dk+n}, the two terminal points of the new scan
line are determined by projecting the first point dk (start
point) and the last point dk+n (end point) onto the scan line
as shown in Figure 4.

The enhanced sequential segmentation algorithm takes
place in two parts in the original algorithm. First, we deter-
mine the threshold value δd, which decides if two consecutive
points are close enough to be in the same line segment, by
using an adaptive breakpoint detector introduced in [21]
rather than a constant value. This is due to the fact that the
distance between two consecutive points will increase while
the distance between the laser range finder and the scan point
increases. So, δd can be defined as

δd = rk+1 ·
sin∆ϕ

sin
(

λ− ∆ϕ
) + 3σr , (6)

where ∆ϕ is the angular resolution of a laser range finder, rk+1

is the distance between laser range finder and scan point dk+1,

λ is a constant parameter, and σr is the residual variance. As a
result, by dynamically changing the threshold δd can let our
line extraction algorithm achieve a better quality in detecting
break points when two consecutive scan points are very close
to or very far away from the laser range finder.

Second, a corner detection technique is performed while
adding new consecutive scan point dn into the line L, so
now we not only detect if the distance ‖dn − dn−1‖ and the
perpendicular distance from dn to L are under a threshold,
but also detect if dn is on the corner of two line segments.
The corner detection procedure can be summarized by the
following steps, which is also shown in Figure 5.

(a) Detect if the scan point dn and its next two consecu-
tive points {dn+1,dn+2} can be merged into a line L2,
which is positive when the distance from dn to dn+1

and dn+1 to dn+2 are both under a threshold δd.

(b) Detect if the perpendicular distance from dn+2 to L1

is larger than a threshold.

(c) If one of the two conditions mentioned above does
not achieve, the scan point will not be at the corner
of two line segments. Otherwise, we will calculate
the angle θ12 between the lines we are currently
extracting, that is, L1, and L2, which are extracted
from the three new scan points {dn,dn+1,dn+2}. If θ12

is smaller than a threshold, a corner is detected.

After the enhanced sequential segmentation has com-
pleted, we will have a set of scan lines {si}i=1,...,N extracted
from the raw scan data, and each scan line is defined as.

Si =
{(

spi, epi

)

,N , Sxx, Syy , Sxy ,XN ,YN

}

, (7)

where (spi, epi) are the start point and end point of the scan
line and N , Sxx, Syy , Sxy , XN , YN are parameters generated
in the least square fitting step, which are used to speed up the
algorithm while updating the scan lines and merging two line
segments.

3.3.3. Rotate and Shift. Since each new particle generated by
the motion model has its own pose (xi, yi, θi), each particle
needs a set of line segments representing the information
about the current environment according to its individual
pose. However, due to the fact that all particles extract
line segments by projecting from the same set of raw
scan data, performing line extraction for each particle is
a very inefficient way since it has a lot of repeated and
redundant computation. In our work, we speed up the
process tremendously by exploiting a property—there exists
shifting and rotating relations between scan lines derived for
the particles generated by the motion model, that is, once we
have derived the scan lines of one particle, we can use them
as the reference scan lines, and map these reference scan lines
into those for some other particle via shifting and rotation
transforms. In detail, we pick up a reference particle first
and generate a set of reference scan lines from the raw scan
data for this particle. Then for every other particle, we rotate
and shift the reference scan lines according to the particle’s
relative location to the reference particle.
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The way of rotating and shifting the reference scan lines is
inspired by the sequence least square fitting algorithm [18],
where we do not need to recalculate all the parameters using
least square fitting for each particle, but only updates the
six parameters of a line segment in a sequential manner as
follows.

(a) Rotation

Sxxrot = Sxxrefcos2θi − 2S
xy
ref sin θi cosθi + S

yy
refsin2θi,

S
yy
rot = Sxxrefsin2θi + 2S

xy
ref sin θi cosθi + S

yy
refcos2θi,

S
xy
rot =

(

Sxxref − S
yy
ref

)

sin θi cosθi + S
xy
ref

(

cos2θi − sin2θi
)

,

Xn
rot = cosθi · X

n
ref − sin θi · Y

n
ref,

Yn
rot = sin θi · X

n
ref + cosθi · Y

n
ref.

(8)

(b) Shift

Sxxshift = Sxxrot + 2N · xi·X
n
rot + N · x2

i ,

S
yy
shift = S

yy
rot + 2N·yi · Y

n
rot + N · y2

i ,

S
xy
shift = S

xy
rot + N · yi · X

n
rot + N · xi · Y

n
rot + N · xi · yi,

Xn
shift = Xn

rot + xi,

Yn
shift = Yn

rot + yi,

(9)

where the start/end points of each line can also be computed
by rotating and shifting from the reference scan lines by

x =
(

xref · cosθi − yref · sin θi
)

+ xi,

y =
(

yref · cosθi + xref · sin θi
)

+ yi.
(10)

3.4. Data Association. Data association is to find the relation-
ship between the new extracted scan lines and the map lines
which we have already built in the map for each particle, and
by using this relationship to calculate an importance weight
of each particle to indicate the correctness of its pose. As we
can see, the accuracy of data association is a crucial issue to
achieve a robust SLAM algorithm.

As shown in Figure 6, before entering the data association
step, a local map is created to reduce search space while
matching scan lines with the map; this is due to the fact
that the motion model will generate a large amount of
new particles (i.e., 500 particles per iteration), where each
particle has its own set of scan lines and each scan line needs
to be matched with the entire map. Also, the orthogonal
assumption for indoor environments [3] is performed in the
orientation step, where we only consider scan lines which
are parallel or perpendicular to each other. This is because
most major structures of indoor environments usually have
the orthogonal relationship, and by using this assumption we
can reduce the number of scan lines and filter out erroneous
scan lines caused by sensor noise or line extraction error to
increase the accuracy of the algorithm. The details of building
a local map, the orientation step, and data association are
described below:

3.4.1. Local Map. The size of a local map is determined by
a few meters larger than the largest area that can cover all
the scan lines of the new particles generated by the same
previous particle, which we called parent particle. All the
new particles generated from the same parent particle shares
a local map, because the maps they contain are built from
the same previous robot trajectory. This can let us reduce the
number of times to build local maps, and efficiently reduce
the search space for finding the best match of each scan line
in the data association step.

Also a reference direction θref is calculated in order to let
the orientation step determine which scan line extracted
from the laser range finder are orthogonal lines. This is done
by first determining the most observed line in the local map
as a reference line, which is the line that has been observed
most of the time. If there is more than one most observed
line, the longest one is picked. Then, by using all the lines
that are orthogonal to the reference line in the local map
to compute a weighted reference direction similar to the
method proposed in [3] by the following formula:

θref =

∑N||
i=1 wiθi +

∑N⊥
j=1 w j

(

θ j − π/2
)

∑N||
i=1 wi +

∑N⊥
j=1 w j

, (11)

where N|| and N⊥ are the number of lines that are parallel
and perpendicular to the reference line, respectively, wi is the
length of line i, and θi is the angular parameter of line i. Our
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work dynamically modifies the reference direction each time
the local map is built rather than just aligning the orthogonal
lines with the x axis, so that the robot is capable of starting its
initial pose without aligning with the major structures of the
environments and can still correctly detect the orthogonal
lines.

3.4.2. Orientation. The orientation step uses the reference
direction θref to identify whether the scan line is an orthogo-
nal line by the following equation:

|θi − θref| ≤ εθ , parallel to θref,

∣

∣

∣

∣

θi − θref −
π

2

∣

∣

∣

∣

≤ εθ , perpendicular to θref,
(12)

where εθ is a threshold about 5◦ and θi is the angle of a
scan line i in polar coordinates. If a line segment does not
match one of the above two equations, it is considered as a
nonorthogonal line and will not be taken into account for
calculating the importance weight of the particle.

3.4.3. Vector-Based Line Representation. Before discussing
the details of the data association step, we will explain the
vector-based line representation technique [18, 20, 21] used in
our line matching method, in which each line segment in the
map is assigned a direction starting from its first point to its
last as shown in Figure 7(a), so that each line segment can be
presented as a vector. The main advantage of using a vector-
ased line representation is we can avoid mismatch in enclosed
areas (e.g., opposite sides of a thin wall) by determining the
direction of the vectors. Figure 7(b) shows an example of
using vector lines to represent an indoor environment, where
the robot starts at one side of the wall (at starting point A)
and moves along to the other point B. We can see that the
vectors representing two sides of the wall (enclosed in a box
in Figure 7) have different directions, and thus they can be
easily distinguished from each other to avoid mismatch in
the data association step.

3.4.4. Data Association. In the data association step, only or-
thogonal scan lines {Si}i=1,...,N of each particle are taken into
account to find a best match in the local map {LM j} j=1,...,l

.

If a scan line does not matches any lines in the map, it will
be defined as a new observed line and be added into the
map during the map-update step. Otherwise, the scan line
is able to find the best match, which means it had already
been observed by the robot previously and can be taken into
account to calculate the particles importance weighting.

Our line matching algorithm for finding the best match
in the local map {LM j} j=1,...,l

for each scan line Si is done by

the following procedures.

(a) Detect if the angle θi j between a scan line Si and a
local map line LM j is under a threshold. Here, we
determine the line segments as vectors, so we can
compute the angle quickly by

θi j = cos−1

⎛

⎜

⎜

⎝

⇀

Si ·
⇀

LM j
∣

∣

∣

∣

⇀

Si

∣

∣

∣

∣

∣

∣

∣

∣

⇀

LM j

∣

∣

∣

∣

⎞

⎟

⎟

⎠

. (13)

(b) Detect if there is an overlap between Si and LM j by
calculating Lov as follows:

lt =
√

(xe − xs)
2 +
(

ye − ys
)2

,

Lov = lm + ls − lt =

⎧

⎨

⎩

positive, if there exists overlap,

negative, otherwise,

(14)

where lm is the length of a local map line LM j , ls is
the length of a scan line Si, and lt is the length of a
potential line Lt by merging Si and LM j , as shown in
Figure 8.

(c) If one of the conditions mentioned above does not
achieve, this means that Si and LM j are too far away
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Scan line
Si

(xs, ys) Lt

(xe , ye)
LM j

Local map line

Figure 8: Overlap detection.

Scan line
Si

Lm

loverlap

LM j

Local map line

Figure 9: Illustration of the overlap distance loverlap between the
matching pair Si and LM j .

and could not be the best match. Otherwise the
weighted Euclidean distance DH j [14] are computed
to find out how well Si and LM j matches by using the
parameters θ and ρ of the two lines in Hough space
as follows:

DH j =

√

wρ

(

ρs − ρm
)2

+ wθ(θs − θm)2,

wρ + wθ = 1.

(15)

After all the lines in the local map {LM j} j=1,...,l
are

matched with the scan line Si, we can determine the best
match by finding a matched pair that has the smallest
weighted Euclidean distance DH j by

DH = MIN(DH1,DH 2, . . . ,DH l). (16)

If no matching pairs are found for a scan line Si, we will
determine the scan line as a new discovered line, and
therefore insert it into the map in the map-update stage.

3.5. Importance Weighting. Each particle generated from the
motion model is assigned an importance weight according
to how well its current measurement of the environment
matches the map we have already built, so that we can
determine the accuracy of each particle by its importance
weighting.

In our case, the importance weight W i
tot for particle i is

computed using the matching pairs we found in the data
association step, by first assigning each matching pair a
weight as follows:

w = loverlape
−DH , (17)

where DH is the weighted Euclidean distance of the matched
pair and loverlap is the overlap distance between the matched
scan line and the map line, which is shown in Figure 9.

End point

Start point

Lm

Si

LM j

Figure 10: Merging two lines Si and LM j by considering all the scan
points.

After all the matched pairs are assigned a weight, we can
compute the importance weight of the ith particle by

W i
tot =

Nm

Ntot scan

Nm
∑

k=1

wk, (18)

where Nm is the number of matched pairs, Ntot scan is the total
number of orthogonal scan lines extracted in this iteration,
and wk is the weight of the kth matching pair. The main
purpose of multiplying the ratio Nm/Ntot scan is to avoid some
particles having extremely high importance weight caused
by matching pairs which have long overlap distance between
them.

After assigning each particle an importance weight, the
resampling step will take place by deleting the ones that
have lower weights. Also particles that are assigned a higher
weight (meaning that it has a higher probability to be the
correct robot pose) will have the opportunity to generate
more new offspring particles from the motion model in the
next iteration.

3.6. Map Update. The map of each particle is maintained and
updated in this step, where new observed lines are added to
the map and lines that are close to each other, will be merged
into a single line segment.

Figure 10 shows an example of merging a scan line Si
and a map line LM j into a single line Lm, where Lm is
generated using all the scan points constituting Si and LM j .
By considering all the points, line segments can be merged
more accurately, but with higher requirement of memory
since it requires the storing of all the points constituting the
individual lines. To overcome this issue, the recursive least-
squares (RLSs) method [20] for line merging is used in our
work, which does not need to store all the points, but only
requires six additional parameters (N , Sxx, Syy , Sxy ,XN ,YN)
of each line being merged. The RLS method operates by
first updating the six parameters for the merged line and
then determines the start/end points of the line by projecting
the terminal points onto the new line. Here, we briefly
review the RLS algorithm. More information can be found in
[20].

In order to reduce the computational complexity of
maintaining the map for each particle, the map-update pro-
cedure is split into two modes: (1) local map update and (2)
global map update, where the local map update executes at
every iteration and the global map update only executes once
in a period of time.
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Table 1: Summarizes the total memory, average time, and maximum time needed for the two algorithms.

Total memory (MB) Avg. time (ms) Max. time (ms)

General approach 193.2 (100%) 453.4 (100%) 1062 (100%)

Proposed algorithm 10.7 (5.5%) 29.5 (6.5%) 78 (7.4%)

Si

LM j

l1
l2

Figure 11: Illustrates the perpendicular distance l1 and l2 from the
terminal points in the overlap section to the opposite line.

3.6.1. Local Map Update. In this step, new scan lines are
added into the map and the matched pairs determined in
the data association step will be merged together. Also line
segments in the local map are merged if they are close to
each other and have an overlap between them. The way of
determining if two line segments in the local map can be
merged together is similar to finding the matching pairs
in the data association step, but instead of calculating the
weighted Euclidean distance, we only calculates the average
distance between two overlapped lines to determine if the
lines can be matched as shown in Figure 11.

Where l1 and l2 are the perpendicular distance from the
terminal points covering the overlap section to the opposite
lines, the average distance can be computed as

ldist =
l1 + l2

2
. (19)

If the average distance ldist is smaller than a threshold, the two
lines are close to each other and will be merged together.

3.6.2. Global Map Update. In order to avoid having several
broken line segments that are meant to be the same line in
the map, we need to check all the map lines and determine
whether the lines can be merged together by using the same
way as in local map update, but this time the whole map will
be tested. Due to the fact that checking all the line segments
will cost an extremely large effort and the local map update
can merge most of the broken lines together, we only execute
the global map update once in a predetermined period of
time. As a result, we are able to maintain the map more
efficiently and reduce the number of line segments in our
map.

4. Experimental Results

Our algorithm has been implemented for a P3-DX robot
equipped with SICK LMS-100 laser rangefinder, where
we also test its performance using different datasets from
Radish [22]. All the experiments are performed on a laptop
computer with 2G CPU and 3G RAM, which our algorithm
is capable of running in real-time with low memory usage.

The first dataset is recorded by our P3-DX robot at the
Center of Innovation Incubator, room 212, in our NTHU
campus, where the size of the room is about 7 m × 4 m.
Our main purpose is to test whether the algorithm can
successfully detect the orthogonal lines in the environment
even when the robot does not starts its initial pose aligned
with the walls. Figure 12 shows an experiment of starting
the robot at different directions, all of which are not aligned
with the major structures of the environment. We use our
proposed algorithm to determine the orthogonal lines (blue
lines) and nonorthogonal lines (red lines) in the initial map.
Also, error line segments caused by sensor noise or line
extraction error can be filtered out by simply considering the
orthogonal lines in the map. Figure 13(a) shows the floorplan
of the room, and Figure 13(b) is the map of the entire room
built by our algorithm, which only considers orthogonal lines
in the environment. As we can see, by dynamically modifying
the reference direction to identify the orthogonal lines, the
algorithm is capable of determining the correct orthogonal
direction even when the robot’s initial pose is not aligned
with the major structures of the environment.

The second experiment uses the dataset called intel
oregon by M. Batalin, which was recorded at Intel Lab in
Hillsboro, Ore, USA, using a P2-DX robot with LSM-200
laser rangefinder. As mentioned in [20], the covering area of
this dataset is about 750 m2 and the total moving distance of
the robot is 110 m, which contains several loops and complex
indoor structures. In this experiment, we also implemented
a general approach RPBF SLAM using grid map as its
map structure to compare the total memory usage and
computation time against our proposed lightweight SLAM
algorithm, which uses line segments as our map structure.
Figure 14 depicts the mapping result of intel oregon using
general approach (Figure 14(a)) and our proposed algorithm
(Figure 14(b)), and Figure 15 shows the computation time
of each iteration needed for executing the two algorithms,
respectively. As it can be seen, our lightweight SLAM not only
reduces the memory usage, but also needs less computation
time as compared to the general RBPF SLAM. This is mainly
due to the fact that line segment map only needs to store
the geometric position and some parameters of each line, but
grid map needs to store the whole environments information
in a large 2D array. Also when a new particle is generated,
a map built by the robot’s previous trajectory is copied to
the new particle so that each particle maintains its own map.
Since copying memories is often time consuming, we can
thereby increase the speed of the algorithm by lowering the
amount of data needed to be copied. Table 1 summarizes
the total required memory, average computation time, and
maximum computation time needed in an iteration of the
general approach RBPF and in our lightweight algorithm.
As compared to the general approach RBPF SLAM, the total
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(a) (b)

(c) (d)

Figure 12: Initial map built by robots starting at different directions and indicates orthogonal (blue lines) and nonorthogonal (red lines)
lines.

(a) (b)

Figure 13: (a) Floorplan of the room. (b) Resulting map drawn by our algorithm.
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(a) (b)

Figure 14: Mapping results of intel oregon using (a) general RBPF SLAM (grid map) and (b) proposed lightweight SLAM (line segment
map).
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Figure 15: Computation time of each iteration needed for a grid
map-based RBPF SLAM (blue line) and our proposed lightweight
approach (red line).

memory usage and average computation time can be reduced
to only 5.5% and 6.5%, respectively, by our algorithm. Since
our algorithm is also much faster, it can support the SLAM
operation for a faster-moving robot. In some sense, our
algorithm is 453.4/29.5 = 15.36 times faster.

5. Conclusion

In this paper, we have successfully developed a robust light-
and-fast RBPF-based SLAM algorithm for indoor environ-
ments. We use an enhanced sequential segmentation algo-
rithm to increase the reliability of line segments extraction
from the raw scan data. We also integrated the vector
based line representation with the orthogonal assumption
of indoor environments to avoid mismatches in the data
association step. Experimental results show that our work
needs much low amount of memory (e.g., only 5.5%) and
much less computation time (e.g., only 6.5%) as compared to
previous grid map-based RBPF SLAM. In other words, ours
is capable of performing accurate SLAM for 15.36x faster-
moving robots in complex indoor environments.
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