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Abstract—Different from previous tree modeling approaches, 

our method is based on the idea of making tree 

reconstruction as quick as possible and simplifying the 

representation of final results while keeping the tree model 

visually acceptable. Each tree is represented by Billboard 

model. We first get the shape mask of a tree by projecting 

LiDAR point cloud onto 2D camera plane. Then we use the 

shape fitting method to obtain the corresponding rotation 

axes and bounding boxes for the main trunk and tree crown. 

We get the corresponding texture and correct the 

misalignment artifacts by texture completion. Finally, we 

rotate each textured polygon around the rotation axis to a 

certain degree. We demonstrate the effectiveness of our 

system with some LiDAR data sets and compare our tree 

modeling scheme with other state-of-the-art reconstruction 

algorithms to show its advantages in terms of speed and 

memory footprint. 

Keywords-LiDAR point cloud; Tree modeling; Large-scale 

reconstruction; Texture completion 

I.  INTRODUCTION  

Trees are ubiquitous in the real world but are very 
complex in geometry and various in structure from each 
other, which makes it difficult to model them in a realistic 
way. Different methods of modeling trees have been 
proposed and great progress has been made because trees 
play an important role in enriching the realism of virtual 
environments. These methods can be mainly divided into 
two categories: One is procedural modeling. By forming a 
set of grammar like L-system[10], different shapes of trees 
can be generated even those with extreme complexity. 
However, this method needs a lot of parameters[18], the 
computational cost is very high and it is difficult to 
conform the resulting geometry shape exactly to a 
specified one[1, 14, 15]. Another one is reconstructing 3D 
model directly from real world data such as images[9, 12, 
16, 17],  or laser-scanned point clouds[6, 20]. The problem 
is that due to the large variance in trees, fully automatic 
algorithm for reconstructing trees is very difficult and 
computationally expensive. 

In this paper, we present a light-weight method to 
automatically reconstruct large-scale trees in a short time, 
while the resulting model is visually acceptable as shown 
in Figure 1. This method is motivated by trying to find a 
method to automatically reconstruct a large amount of 
trees  

 
(a)        (b)                        (c)                         (d) 

Figure 1. Reconstruction of laser-scanned trees using our method: a) 
photograph; b) point cloud; c) An image of texture after being completed; 

d) final result of reconstruction. 

from laser-scanned point clouds and images. We adopt 
Billboard model, which just uses a few polygons. These 
polygons are rotated around the symmetric axis of a tree to 
a certain angle and are pasted with transparent texture so 
that this model will look like 3D model rather than 2D 
planes. 

The texture mapped to the rotated polygons is 
generated automatically from images captured by Ladybug 
camera. Our proposed algorithm of texture completion is 
able to extract the correct texture of trees from images with 
misalignment artifacts and replace the wrong parts with 
the right ones, as illustrated in Figure 1(c). 

The main contribution of this paper is to address an 
automatic and light-weight method to reconstruct trees in 
large scale, especially in shape fitting and texture 
completion. This method is evaluated by reconstructing a 
large number of trees from point clouds acquired by 
terrestrial LiDAR (Light Detection And Ranging) device. 
The algorithm is efficient in terms of speed and memory 
footprint and the results appear vivid. 

II. RELATED WORK 

Traditionally, rule based methods are used to design 
virtual trees[5]. De Reffye et al. [3] designed rules 
according to botanical knowledge. Weber et al. [18] use 
rules related to the geometrical characteristic of trees. 
Though these methods can create vivid tree models, they 
need a lot of parameters and sometimes professional 
knowledge. In order to increase the realism of 3D model of 
trees, considerable research attention has been paid to 
reconstruction of trees from real world data, e.g. images or 
laser-scanned point clouds. 
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Images based methods have been widely used in the 
past years. Reche-Martinez et al. [12] use a set of carefully 
registered photographs to generate a volumetric 
representation of the tree foliage and its branches. Neubert 
et al. [9] adopt particle flows to estimate an approximate 
voxel-based model. Quan et al. [11] and Tan et al. [16] use 
structure from motion to generate 3D point cloud from a 
series of images. Then point cloud is used to generate the 
triangle mesh model of branches and leaves. All the 
methods above need multiple carefully registered images 
as input and trees should be segmented out accurately from 
background. Instead of relying on multiple images, Tan  et 
al. [17] create an approximate but simple branching 
structure from a single image with user sketches. But it 
needs user interaction and can not be performed 
automatically. 

As laser scanning technology is developing very fast, 
approaches that reconstruct trees from laser-scanned point 
cloud are becoming more and more popular. Xu et al. [19] 
present a semi-automatic method to produce the skeleton 
of trees by clustering points in a spanning graph and 
shortest path algorithm. Then smaller branches and leaves 
are synthesized to form the tree crown. Bucksch et al. [2] 
reconstruct the geometry of tree by clustering points using 
space partitioning, followed by connecting adjacent 
clusters. The two methods above use pre-defined 
resolution for clustering or partitioning, which are 
unreliable  when trees have different densities in different 
parts. Runions et al. [13] use a space colonization 
algorithm to grow skeleton within an envelope under the 
constraints of attraction points which are controlled by 
users. Leaves are then randomly added. Zhu et al. [21] 
propose a novel approach for tree crown reconstruction 
based on an improvement of alpha shape modeling. Livny 
et al. [6, 7] automatically reconstruct the branching 
structure of trees using global optimizations and propose a 
lobe-based representation for tree modeling. The foliage 
part of trees is abstracted and represented by lobe-
geometry, which  captures the main characteristics of tree 
crown while the model representation takes few memory. 

Our method takes both laser-scanned point clouds and 
images as input. Different from those methods that 
reconstruct branches of trees and then add leaves, we use a 
few polygons with transparent texture to model trees, 
which takes low computational cost. Besides, texture can 
be generated from images even those with misalignment 
artifacts. The specific description of our model is 
introduced in Section IV. 

III. OVERVIEW 

The pipeline of reconstruction of trees from a large-
scale data set is illustrated by Figure 2: The input consists 
of the laser-scanned point clouds and the image sequences 
captured by cameras. Semantic segmentation is used to 
extract point cloud of each single tree. The shape fitting 
and texture completion process are the core steps of our 
method, which determine the quality of reconstruction. 

The remaining part of this paper is organized as 
follows. Section IV introduces the Billboard model we use 

to reconstruct trees. In section V we discuss preprocessing 
steps. In section VI, we describe the shape fitting 
algorithm, followed by the algorithm of texture completion. 
We demonstrate experimental  results in Section VII and 
give discussions and conclusions about our method in 
Section VIII. 

 

 
Figure 2. Pipeline of the reconstruction process: the point cloud of the 

whole scene is semantically segmented into different categories, such as 
houses or trees. The point cloud of each tree are then separated from 
each other. Shape mask is calculated and the corresponding texture 

image is selected from set of images in the  process of preprocessing. 
Afterwards two rotation axes and the respective bounding boxes are got 

from shape mask and the texture is extracted and completed through 
texture completion algorithm. The final tree model consists of six 
polygons rotated around the two rotation axes and patched with 

transparent texture. 

IV. MODEL REPRESENTATION 

We adopt Billboard model to reconstruct trees as 
illustrated in Figure 3. Trees are divided into two parts: the 
main trunk and tree crown. Because trees grow 
approximately in a direction that is vertical to the ground, 
the tree crown is rotated around a vertical axis. But the 
trunk part may be slant, so we need to treat it alone. If the 
proper rotation axis is found, simply by rotating the 
polygons around the symmetry axis to certain degrees so 
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that each polygon is uniformly distributed at 360 degrees, 
the resulting trees will look like 3D models. 

As a result, we use six polygons to represent a tree, 
three for the main trunk and the rest for the tree crown. 
Proper rotation axes and bounding boxes are found using 
shape fitting. Then the six polygons are rotated around the 
axes and patched with alpha texture generated by texture 
completion. One resulting model is shown in Figure 3. 
 

 
Figure 3. Billboard model is used to represent trees. 

V. DATA PREPROCESSING 

The data is acquired by a car equipped with a LiDAR, 
GPS/IMU system and ladybug camera, including laser-
scanned point clouds and images. In order to carry on the 
progress of automatically reconstruct trees in large scale, 
we need to extract the point cloud and images for every 
single tree. 

We adopt semantic segmentation algorithm proposed 
by Zhou et al. [20] to extract point cloud of each single 
tree. The corresponding image of a certain tree is selected 
using the following equation: 

2arg min
i

−i centerx x‖ ‖                       (1) 

where i is image number, xi is the camera position and 
xcenter is the center position  of a tree. In other word, the 
corresponding image is the nearest one to the tree. 

We calibrate the camera and calculate the relative 
rotation Rlc and translation Tlc between the coordinate 
systems of LiDAR and camera, thus getting the intrinsic 
matrix K and the extrinsic matrix Mlc = [Rlc |  - Rlc Tlc] in 
the local coordinate system of LiDAR. With GPS/IMU, 
the transformation  between world and LiDAR  coordinate 
systems is continuously got: Mwl = [Rwl  |  -Rwl Twl], where 
Rwl is the relative rotation matrix and Twl is the translation 
matrix between world and LIDAR coordinate systems. In 
this way we can project each point in the world coordinate 
system onto image plane by the projection matrix P = 
KMlcMwl . After obtaining the corresponding image, we 
can project the point cloud of a tree onto the corresponding 
image plane using projection matrix and get the shape 
mask which will be used in Subsection VI-A. 

VI. TREE RECONSTRUCTION 

Given the point cloud of a certain tree and the 
corresponding image, plus the shape mask, we can 

reconstruct trees based on two steps: shape fitting and 
texture completion.  

A. Shape Fitting 

Rotation axes and bounding boxes are calculated from 
the shape mask using a heuristic method as follows: First, 
we use morphology operations to fill holes and remove 
noisy points of shape mask. Second, edge image is 
extracted using canny operator. We define a function f(y) = 
xmax - xmin, where edge(x,y)≠ 0, edge(x,y) is the binarized 
value of pixel(x,y) in the edge image, xmax and xmin are the 
maximum and minimum x-coordinate values that meet the 
defined requirement and have the same y-coordinate value. 
In other words,  f(y) is the function of width of the tree in 
each line. By finding the first none-zero point of function   

/f y∂ ∂  , we can get an approximate area of the main trunk, 
as shown in Figure 4(a). Then RANSAC algorithm[4] is 
run on the approximate area of the main trunk to detect the 
two edge lines of main trunk. The middle line of the two 
edge lines is considered as the rotation axis for the main 
trunk. The rotation axis of the tree crown is a vertical line 
determined by the central x-coordinate value of tree crown 
such as the blue line in Figure 4(b). 

 

          
(a)                          (b)                         (c)                          (d) 

Figure 4. Process of shape fitting: a) approximate detection of the main 
trunk; b) rotation axes; c) accurate detection of the main trunk; d) 

bounding boxes. 

f(y) is tend to be larger than the width of the main trunk 
when some leaves fall down, making the detection of main 
trunk not very accurate. We refine the definition of 
function f by restrict the xmax and xmin in each line to the 
most nearest two points to the rotation axis of the main 
trunk which is obtained in the above step. As illustrated in 
Figure 4(c), we use the red points to calculate the trunk 
width in each line. Then we use the same method as before 
to detect the area of the main trunk again and a more 
accurate bounding box of the main trunk can be obtained 
like the green box in Figure 4(d). The blue one is the 
bounding box of tree crown which is acquired according to 
the approximate height of main trunk in Figure 4(a). 

After determining the rotation axes and bounding 
boxes of the two parts, we also need to estimate the real 
size of the final model. As mentioned in Section V, trees 
are represented using six polygons. The size of each 
polygon can be determined by a scaling factor s = (zmax - 
zmin)/imgheight, where zmin and zmax  are respectively the 
minimum and maximum  z-coordinate values of the 3D 
bounding box of a tree, imgheight is the height of the shape 
mask. Then by multiplying the factor s with the height and 
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width of the bounding box, we can estimate the size of 
each polygon. 

For those trees which do not have a single main trunk(a 
tree with a single main trunk is determined only if it has 
two edge lines of the main trunk in the edge image), such 
as Figure 5, we treat them as the tree crown and using only 
three polygons to represent this kind of trees. 

 
Figure 5. Trees with more than one main trunk. 

B. Texture Completion 

Given the shape mask and the corresponding image, 
the coarse texture is extracted as Figure 6(a). Due to the 
some pixel offsets and the hollow parts of trees, some 
wrong texture is included such as the color of sky. We 
need to remove those texture and replace them with the 
right ones. 

We use the Gaussian Mixture Model (GMM) and the 
Expectation Maximization (EM)[8] algorithm to cluster 
pixels in the space of HSV, because hue value is more 
constant than RGB value when illumination changes. The 
clustering result is shown in Figure 6(b). We compute the 
average values in hsv channels of all pixels and the cluster 
which has the nearest values is considered as the right 
cluster of texture for trees. Then the pixels belong to the 
cluster of wrong texture are removed, the resulting image 
containing correct texture, called imgct, is shown in Figure 
6(c). 
 

         
(a)                           (b)                           (c)                           (d) 

Figure 6. Texture completion: a) coarse texture; b)result of GMM 
clustering; c) removing the wrong texture; d) resulting texture after 

completion. 

After removing the wrong texture, we need to fill it 
with correct ones. We define the texture candidate block Ti 
in texture completion  to be a square block with a fixed 
size s in the imgct. ST is defined as a set of those 
overlapping blocks Ti . The block size s starts with an 
initial value and is reduced to make sure that at least one 
block Ti  is full of texture.  With s determined, imgct is 
divided into a set of tiling blocks of size s, which we refer 
as SB. Each block is assigned a label of texture status Li = 

{0, 1, 2}. Li = 0 indicates the texture of current block 
needs to be replaced, 1 means texture is correct and 2 
means the block is empty. 

After obtaining the  set of texture candidate ST and the 
set of tiling blocks SB, we use Algorithm 1 to finish 
texture completion. The degree of connectivity for a block 
is the number of blocks whose Li = 1 in the 4-neighbour. 
Bk is a block from SB with the most degree of connectivity.  
Each iteration we select the best Tj from ST to replace Bk 
in order to minimize the cost function of Bk, which is 
represented using equations as follows: 

( ) ( )

arg min ( , ) ( , )
j B N B B N Bi k i k

hist j i boundary j i
T

E T B E T B
∈ ∈

+∑ ∑   (2) 

where N(Bk) is the blocks in the neighbourhood of Bk. 
Ehist(Tj, Bi) is the Bhattacharyya distance of histograms of 
each block: 

1 2 1 2
2

1 2

1
( , ) 1 ( ) ( )

I

d H H H I H I
H H N

= − ∑ ฀     (3) 

Where H1 and H2 are the histograms of two image blocks. 
Eboundary(Tj, Bi) is the sum of the squared differences of all 
pixels's RGB values in the boundary area between two 
blocks.  When all the Bk whose Li = 0 in SB have been 
replaced, the algorithm stops. Then the shape mask is used 
to remove the over completed texture. The completed 
texture is shown in Figure 6(d). 
 

 
Algorithm 1: Texture completion algorithm. 

When texture is filled completely, bounding boxes 
obtained in subsection VI-A along with the shape mask are 
used to extract the corresponding texture and set other 
parts transparent. Then the alpha texture is patched onto 
the corresponding polygons which make the final model 
that will be illustrated in next section. 

VII. EXPERIMENTAL RESULTS 

We have tested our proposed method on the data set 
obtained in real world. The reconstructed trees appear 
realistic and vivid, as illustrated in Figure 1, 7. We use the 
point cloud to get shape mask which encloses the 
geometry information and generate the right texture from 
images even those with some misaligned artifacts by 
texture completion. A capture of resulting trees from a 
large-scale scene is shown in Figure 8. The ground image 
is extracted from google earth and trees are registered to it 
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by GPS coordinates. The reconstruction for different kinds 
of trees in Figure 8 demonstrates that our method is 
efficient for various trees. We can conclude that although 
our method of modeling trees does not maintain a high 
level of detail but it can capture the main characteristics of 
trees and make the reconstructed trees visually acceptable.  

The advantages of our approach are the automation and 
the quick speed of reconstructing large-scale trees. Besides, 
our model performs well in memory footprint. Some 
quantitive evaluation of our approach is shown in Table 1. 
The times are recorded on an Intel i5-2300 2.8GHz 
machine. Table 2 lists the comparison between our method 
and the one of Livny [7, 6](Among the two tables, the 
Time of Pipeline does not contain the time of extracting 
individual trees which is done offline prior to the 
reconstruction process). It's clearly that our pipeline runs 
faster than Livny's method. The usage of memory for  
model representation does not differ greatly but the size of 
final reconstructed trees shows that our model can save a 
lot of memory due to the Billboard model we have adopted. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Some trees reconstructed from data set. Column 1 are the 
original images. Column 2 are the point cloud of each tree. Column 3 are 

the final results using our approach. 

TABLE I. RESULTING MODEL SIZE AND TIME OF THE TREE 
RECONSTRUCTION IN FIGURE 7. 

Figure #points Model 

Size 

Texture 

Size 

Time of 

Pipeline 

7(a) 
7(b) 
7(c) 

45936 
7792 

95529 

208B 
416B 
416B 

46.6kB 
15.2kB 
42.8kB 

0.58s 
0.37s 
1.32s 

TABLE II. THE COARSE TIME AND MEMORY FOOTPRINT FOR ONE TREE 
USING OUR METHOD AND LIVNY'S. 

Method Time of 

Pipeline 

Model and 

Texture Size 

Final tree 

size 

Ours < 2s around 40kB around 40kB 
Livny[6,7] > 20s around 240kB 25MB 

VIII. CONCLUSIONS 

In this paper we presented an approach for 
automatically reconstructing trees in large-scale by using 
several polygons with alpha texture images. The 
geometric parameters are determined in the shape fitting 
process, followed by texture completion which generates 
correct texture while do not need carefully registered 
images. We demonstrated this method using data 
collected in an area of real world and it runs very quickly 
and the resulting model consumes few memory. 

The quick speed and few memory usage are the key 
advantages of our approach. In the future, we plan to 
improve the model to reconstruct trees to a more precise 
level while preserving the advantages we have in speed 
and memory footprint. We are also interested in finding 
ways to convert existing models to ours to simplify the 
model representation and reduce memory footprint. 
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Figure 8. Reconstructed trees in a large-scale scene. 
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