
A Light-Weight Component Model for Peer-to-Peer Applications

Alois Ferscha, Manfred Hechinger and
 Rene Mayrhofer

Institut für Praktische Informatik
Johannes Kepler Universität Linz

Altenberger Straße 69
A – 4040 Linz, Austria

[ferscha,manfred,rene]@soft.uni-linz.ac.at

Roy Oberhauser
Corporate Technology CT SE 2

Siemens AG
Otto-Hahn-Ring 6

81730 Munich, Germany
roy.oberhauser@siemens.com

Abstract

Mobile Peer-to-Peer (P2P) computing applications

involve collections of heterogeneous and resource-limited
devices (such as PDAs or embedded sensor-actuator
systems), typically operated in ad-hoc completely
decentralized networks and without requiring dedicated
infrastructure support. Short-range wireless
communication technologies together with P2P
networking capabilities on mobile devices are responsible
for a proliferation of such applications, yet these
applications are often complex and monolithic in nature
due to the lack of lightweight component/container
support in these resource-constrained devices.

In this paper we describe our lightweight software

component model P2Pcomp that addresses the
development needs for mobile P2P applications. An
abstract, flexible, and high-level communication
mechanism among components is developed via a ports
concept, supporting protocol independence, location
independence, and (a)synchronous invocations;
dependencies are not hard-coded in the components, but
can be defined at deployment or runtime, providing late-
binding and dynamic rerouteability capabilities. Peers
can elect to provide services as well as consume them,
services can migrate between containers, and services are
ranked to support Quality-of-Service choices. Our
lightweight container realization leverages the OSGi
platform and can utilize various P2P communication
mechanisms such as JXTA. A “smart space” application
scenario demonstrates how P2Pcomp supports flexible
and highly tailorable mobile P2P applications.

Keywords: Peer-to-peer computing, pervasive computing,
context awareness, component framework, OSGi, JXTA,
Web Services.

1. Introduction

Small, mobile communications devices such as PDA’s,
mobile phones, wearable devices, and smart tags are
gaining increasing hardware, networking, software, and
user interaction capabilities. As the pervasiveness of
these devices increases, there is a correlating increase in
the both the scale and the level of heterogeneous
integration in these infrastructures.

Furthermore, the increasing expectations and demands
for greater functionality and capabilities from these
devices often result in greater software complexity for
applications. Because these resource-constrained
environments have not had the rich component and
container support commonly available for enterprise
development, the result in this context has often been a
potpourri of “stovepipe" applications with few
opportunities for reuse and unplanned integration without
significant effort. Where functionality modularization
was planned, e.g. with services, these have often been
coupled to a single middleware or communication
protocol (e.g. COM [12], RMI [19], MOM-based JMS
[16], SOAP [14], JXTA [15]).

Thus, there is an increasing need to abstract and
encapsulate the different middleware and protocols used
to perform the interactions from the components involved
in the interactions. By component we mean a unit of
functionality that is deployable and consists of an object
or cohesive group of objects with a clearly defined
interface that typically provides a service. A component
model specifies how to construct a component. Yet often
component models (such as Java EJB [13], CORBA CCM
[11]) define a component model that is tied to their
middleware as well as their container. Here we refer to a
container as the containment model for components and
the runtime system that supports their deployment and
undeployment, as well as their activation and deactivation
at runtime.

For mobile P2P applications, however, the classical
designs of component models and architectures either
suffer from extensive resource demands (memory,
communication bandwidth, CPU) or dependencies on the
operating system, protocol, or middleware (e.g. .NET,
CORBA ORBs). In addition, any infrastructure must not
significantly diminish the ability of applications to address
the increasing functionality and complexity demands;
otherwise, its adoption would be jeopardized. Hence
lightweight component models are needed with containers
able to execute on resource-constrained platforms (PDAs)
to enable reusability, the dynamic distribution and
deployment, location transparency - irrespective of
dynamic changes in the peer topology and combination,
platform and middleware independence, standardized
component definitions, hot-swapping, and optimal
tailoring of service configurations. Therefore, a method
for node-transparent and transport-transparent component
interaction could significantly reduce the development
time and costs of distributed component-based
applications in our context.

In this paper we motivate and present our component
framework P2Pcomp, designed and implemented at the
confluence of open standards compliance (OSGi) and the
restrictions of limited resource platforms (PDAs and
mobile appliances). P2Pcomp aims to ease and support
the development of pervasive computing applications
based on spontaneous interaction of mobile peers.

A central motivation for P2Pcomp was infrastructural
support for context awareness in mobile P2P applications
[8][9][10]. Thus the design goals for P2Pcomp were
concerned with (i) supporting the description, gathering,
transforming, interpretation and dissemination of context
information within ad-hoc, highly dynamic and frequently
changing computing environments, (ii) dynamically
discovering, inspecting, composing and aggregating
software components in order to identify, control and
extend context, as well as overcome context barriers (like
time, position, user preference, etc.), and (iii) allow for
dynamic interactions among software components in a
scalable fashion while satisfying special requirements
such as fidelity, QoS, fault-tolerance, reliability, safety
and security, etc.

The rest of this paper is organized as follows: in
Section 2 we introduce the basic concepts of P2Pcomp,
relate those to comparable concepts in the service-
oriented container OSGi, and describe why our solution
was necessary. Conceptual details of P2Pcomp for ports
and containers, together with implementation and
syntactical issues are presented in Section 3. Section 4 –
in the frame of an application scenario – gives empirical
evidence for P2Pcomp being truly lightweight. Our work
is compared with other approaches in the literature in
Section 5, and conclusions are drawn in Section 6.

2. General Concept

For rapid application development of distributed
applications in this domain, we can identify two key
elements: P2P as a communication paradigm and
component-based programming for code reuse. For P2P
coordination, the language-independent JXTA framework
has established itself as a quasi-standard, but provides no
component model. As a component model, the OSGi
specification provides a component model geared for
resource-constrained devices but lacks support for
distributed components.

In our work, we build upon these two technologies and
combine them to simplify the development of distributed,
component-based applications. In OSGi terminology, a
container will be used for managing components (Fig. 1);
this includes installing, starting, stopping and removing
components as well as checking dependencies between
components. In addition to these basic features of an
OSGi-conformant container, it should also communicate
with other containers and offer installed components a
simple way of communicating with components
instantiated in remote containers. In OSGi terminology, a
component offers services to other components and is
packaged as a bundle. Interaction between bundles is only
possible via defined services.

Figure 1. P2Pcomp containers/components

With plain OSGi containers, components have to
implement communication channels to remote
components themselves; the container can only return
references to other local components instantiated inside
the same container. Thus, the present paper introduces the
ports concept: a port is one endpoint of a communication
channel and can be used by components to communicate
with others. From the component view, only the port is
visible, the underlying communication channel is not; this
encapsulates, e.g., the protocol or protocol APIs from the
component. When ports are used as a general concept of
connecting to a service offered by another component,
local and remote services can be accessed similarly. The
container offers ports as a unified interface to inter-
component communication for local as well as remote
components, relieving component developers from the
task of managing communication with remote components
(cf. Portsmanager in Fig. 1).

3. Approach

In the sequel, after introducing the main features of
Oscar OSGi, we will present our P2Pcomp ports concept
and introduce provide ports as a means to offer services to
other components, and uses ports as points of connection
for components to access those services.

3.1. Oscar OSGi

As an OSGi implementation, the open source package
Oscar [18] was used. It is compliant to the OSGi
specification and implements most major functionality of
OSGi 1.0. Its aim is to provide a fully compliant OSGi 2.0
framework and some of the major elements are already
implemented, specifically the:

 Package Admin service
 System Bundle
 Service Tracker
 Service properties and selection algorithm
 Filter class and related framework methods

Although this aim has not yet been completely

achieved and some minor compliance issues still have to
be resolved, it has many advantages for the development
of our ports concepts and for the deployment in resource-
constrained systems:

 very lightweight – can easily be embedded in

applications
 can fetch bundles (components) from a remote

host
 offers an optional shell for interactive commands
 already has some (syntactical) parts of our ports

concept (see below for details)
 supports dependencies between bundles
 each bundle is loaded in its own class loader

(important for security)
 under an open source license (GPL)

Our code implementing the ports concept is

independent of the specific OSGi framework
implementation. Although Oscar supports dynamic class
loading, it was apparently not designed to support remote
services the way it is implemented by our PortsManager,
since classes which are exported by a bundle may not be
loaded by any other object but by Oscar itself. To override
this, and enable the PortsManager to load and instantiate
the exported classes, a new Interface
PortsManager.ExportedClassFetcher has
been created. The interface is implemented by a very
small wrapper class for Oscar. While the functionality of
the class is small, it was deliberately split into a class and
interface; thus, the presented ports concept is usable with

any OSGi container implementing this interface (possibly
via a wrapper class as it has been done for Oscar).

While the OSGi framework is a good solution to run
services within a container, operation is restricted to a
single local node since there is no direct support for
interoperation with other containers running on remote
nodes. Each component that wishes to interact with other
nodes must implement the network functionality and the
invocation of remote services (see Fig. 2).

Figure 2. Remote component interaction in OSGi

3.2. The Ports Concept

For making the implementation of interdependent
components as simple as possible, a ports concept is
introduced as an abstract, flexible, protocol-independent,
and high-level communication mechanism (see Fig. 3).
The main design goal is that the communication should
be completely transparent to the actual components;
whether it is communication with local or remote
components or OSGi-independent Web Services should
not be known inside the component. This concept has the
additional advantage that dependencies are not hard-
coded in the components, but can be defined by the
component deployer or at runtime to support very late
binding.

Figure 3. P2Pcomp ports concept

3.3. Provides Ports

A component may have zero or more provides-ports
(see Fig. 3). A provides-port is a "service" that is
"provided" to other components or to the framework and
is defined in terms of a Java interface. When offering a
provides-port, a component simply implements a Java
interface and “exports” it via an entry in the deployment
descriptor. From the component view, it is then up to the
container to add this “service” to its internal registry and
to advertise it other containers via P2P mechanisms. The
container is also responsible for calling the interface

methods on behalf of the “service users” when they are
unable (or not configured) to call them directly.

In the case that a component is providing ports to two
or more other "user" components, there is no prescribed
scheduling behavior for the order in which the external
invocations are served. It is up to the component
implementation to determine this. Each component
should supply a "data sheet" that defines any special
runtime execution behavior that is required for its correct
execution.

3.4. Uses Ports

A uses-port can be viewed as a connection point on the
surface of the component where the framework can attach
(connect) references to provides-ports provided by other
components or the framework (see Fig. 3). Viewed from
the inside of the component, a uses-port is simply the
Java interface the component needs to use. The
component makes calls on uses-port references to "use"
the "provided" services. A component may have zero or
more uses-ports. These ports are named in the code, but
the XML descriptor for the component provides a
mapping to the actual name used in the system, which can
vary from the name used at the time of the component
implementation. This supports “very late binding” of
components by the deployer.

3.5. Access Ports

An access-port is a connection point at the boundary of
a container and is used for connections to other containers
(see Fig. 3). It can use any available communication
technology, e.g. JXTA, WSDL-based Web Services,
SOAP, custom XML over UDP or TCP/IP, RMI, etc. to
link local with remote provides- and uses-ports. For
components, access ports are invisible because they only
use provides- and uses-ports to communicate with other
components.

3.6. Implementation

The goal of our ports concept is that an invocation of
the service implementation on a remote container is, for
the programmer of the components, as simple as in the
case of local invocation and completely transparent with
regard to the location of the service implementation. Even
syntactically, the invocation of a remote service should be
equal to calling a (local) implementation of the interface.

To accomplish this, a component called PortsManager
has been developed as an implementation of the ports
concept and is packaged as an OSGi bundle. All
components may fetch services via the PortsManager
component. If a requested service is not locally available,
the PortsManager component interacts with the respective

PortsManager on other containers, thus enabling
transparent interaction between services, regardless if they
are remote or local.

An additional component, the P2PService, is an
implementation of access ports for P2Pcomp,
implementing JXTA and alternatively a special transport
using XML messages over UDP broadcasts and TCP
connections. The PortsManager component uses this
simple interface for sending messages to other containers
and is notified of incoming messages and of devices
(peers) entering and leaving spatial proximity (i.e. remote
containers becoming available or unavailable). The
PortsManager component can use arbitrary
implementations of access ports (e.g. for interacting with
Web Services) as long as this simple interface is
implemented.

The PortsManager component has a number of features

which make it appealing for mobile application
development:

Service fetching: Local and remote service references

can be queried via the PortsManager, which will in turn
query the services from those OSGi containers that
manage the requested service and forward them to the
caller. In addition to the service interface, a filter string
resembling an LDAP search filter according to RFC 1960
can be used for fetching a service. Additionally, a specific
service reference for a single service implementation can
be fetched if hot-swapping (see below) is undesirable for a
specific application.

Service ranking: According to OSGi, every service

may be given a certain rank which describes its quality,
importance, etc. depending on the services context. A
services rank can be set within the bundles activator class
and usually stays the same while a bundle is in the
“active” state. If there is more than one matching service
available, the PortsManager decides upon each service’s
rank which to load first. Should a service become
unavailable for some reason and the service has not been
fetched by service reference, then the PortsManager
automatically tries to locate the next highest ranked
service.

Hot swapping: If the matching service which was used

during service fetching disappeared because it was either
locally or remotely uninstalled or the specific remote peer
is no longer reachable, the PortsManager will
automatically try to regain a matching service. The service
reacquisition order is the same as if it is fetched initially,
i.e. depending on the service’s rank. This behavior enables
the PortsManager to allow exchange of equivalent
stateless services during run-time, i.e. perform “hot

swapping”. To detect service transitions (i.e. new
availability of a service, removal of a service or change of
service properties), the PortsManager implements the
OSGi ServiceListener interface. This extends the standard
OSGi local functionality to remote service change
notifications.

Synchronous remote invocations: If a service

reference returned to a calling component points to a
remote device, then the invocation of methods on this
service will be done remotely. Input parameters will be
transparently forwarded over the network, the remote
component method will be invoked and the return value
will be transferred back while the client is blocked. Thus,
the syntax and semantic of calling a method on a service
that has been fetched via the PortsManager are, from the
caller’s point of view, equal to calling a method of a local
Java object.

Asynchronous remote invocations: For P2P

interactions, asynchronous object-oriented invocations
provide enhanced application development vs. lower-level
messaging. The PortsManager component offers the
asyncInvoke method (Fig. 5), which takes the service
reference, the method name and its parameters as input
arguments and returns a token for retrieving the remote
method’s result value when the remote method has
terminated. The method of the remote component is then
invoked asynchronously without blocking the caller – the
status of the method can be queried using the returned
token or the caller can register to receive an event when it
terminates.

Object[] args = new Object[1];
args[0] = "content";
AsyncInvokeToken token =
 portsManager.asyncInvoke(
 prsntService,"show", args);
…
token.getResult();

Figure 5. An asynchronous invocation

3.7. Method call syntax with PortsManager

Provides-ports are Java interfaces that are implemented
by the components and registered with the container by
listing them in the deployment descriptor. When
requesting a service via the PortsManager, the requesting
component connects its uses port to the provides port of
the service. The PortsManager component is responsible
for returning the correct Java object when the uses-port is
requested by a component; it is a stub object (i.e. a
generic dynamic proxy) which either calls the respective
methods of the locally available service implementation
object or translates the Java method calls to messages,
sends them to a remote container, waits for remote
execution and then returns the value contained in the
received message.

To dynamically generate stub objects that implement
the required Java interface for arbitrary services, a Java
Dynamic Proxy [19] (available since JDK 1.3) is used. To
process incoming requests (e.g. Java RMI, SOAP, JXTA)
and appropriately call interface implementations of local
components, the container interprets received messages
and calls the respective component (which must be known
to the container’s registry) methods via standard Java
reflection.

Figure 4 shows a standard OSGi container-local
service invocation side-by-side with the use of our
PortsManager. As can be seen, in addition to first fetching
the PortsManager (within a container-independent OSGi
bundle), the only change is to retrieve the service
reference via the PortsManager service instead of the
OSGi BundleContext object. Since calls on a service
reference are equivalent, existing components can be
easily adapted to use the PortsManager. The overhead in
code size for using the PortsManager is insignificant and
the run-time overhead is marginal, because Java dynamic
proxies are used and the hot swapping feature (which
dynamically checks service availability) can be
deactivated if necessary.

If even more transparency of the PortsManager is
required, the BundleContext context instantiated

prsntSrvRef = context.getServiceReference(
 PresentationService.class.getName());
prsntService = (PresentationService)
 context.getService(prsntSrvRef);
if (prsntService != null)
 prsntService.show(content);

portsManRef = context.getServiceReference(
 PortsManager.service.PortsManager.
 class.getName());
portsManager = (PortsManager)
 context.getService(portsManRef);
prsntService = (PresentationService)
 portsManager.getService(
 PresentationService.class.getName());
if (prsntService != null)
 prsntService.show(content);

Figure 4. Retrieving a service reference and invoking a service: plain OSGi vs. PortsManager

by the container can be modified. For most OSGi
containers it should be possible to modify the class factory
so that it returns a wrapper as the BundleContext,
which will directly use the PortsManager for normal
components. This would allow unmodified, OSGi
conformant components to use the PortsManager features.

Thus for smart spaces, a mobile user could retrieve the
presentation service reference once and use it at any
location where such a service is available without
reconfiguring the presentation client. In an auditorium, a
powerful PresentationService implementation
with overhead projector and audio system might be
available. When leaving the auditorium and presenting a
few more details in a cafeteria, a normal notebook
computer could offer a less powerful
PresentationService implementation (with lower
service ranking). The client application, running on the
user’s PDA, does not need to notice this service transition,
because method calls on the service reference will be
resolved dynamically when the initial service becomes
unavailable. Hot-swapping combined with service ranking
greatly supports users on the move by fully exploiting the
possibilities of ad-hoc environments.

4. Evaluation

4.1. Smart Space Scenario

P2Pcomp has been built to support the implementation
of roomware services in smart spaces [2][2][3]. Due to the
most recent technological developments, smart
environment scenarios appear possible, in which almost
every object in our everyday environment will be
equipped with embedded processors, wireless
communication facilities and embedded software to
perform and control a multitude of tasks and functions.
Many of these objects will be able to communicate and
interact with the background infrastructure (e.g. the
Internet), but also with each other [5]. Terms like
“context-aware” smart spaces have appeared in the
literature to refer to such technology-rich environments,
which intelligently monitor the objects of a real world
(like persons, things, places), and interact with them in a
situative, pro-active, autonomous, sovereign, responsible
and user-authorized way [6]. Opposed to centralized
approaches in smart space middleware, P2Pcomp has
been rigorously designed as a P2P framework, and
implemented on top of JXTA. Comparable home
environment networking approaches are [20], [21] and
[23].

4.2. Performance and Scalability

A performance case study for the P2Pcomp
implementation has been conducted in order to
demonstrate feasibility and scalability of P2Pcomp for
different devices (Table 1). To test method invocation
overhead with a few parameters, echoInt service is used
(int result = echoInt(int a,int b)). The
echoString service (String result =
echoString(String data)) tests the parameter
marshalling code and scalability regarding varying
parameter sizes of the Portsmanager by passing in and
returning a string using sizes varying from 10 to 105 bytes.
Both services actually do nothing except returning the
input parameters, since we do not want to measure the
performance of the services itself but the performance of
the invocation, passing in and returning different
parameter sizes. Both services have been invoked in the
following settings: a) without component indirection
(monolithic), b) invoking the service via Oscar, c) using
Portsmanager to access the service on the local device d)
using Portsmanager to access the service on a remote
device. Table 2-4 show the test results for settings a), b)
and c). The values specified represent the average
duration for invoking the corresponding service.

Since the overhead for method invocation on remote
devices heavily depends on the used transport technology,
setting d) has been conducted using TCP with XML
messages (Table 5) and then with JXTA (Table 6) with
100Mb/s Ethernet and 11 Mb/s WLAN. Measurements
using JXTA on the IPAQ were not possible.

Table 1. Used devices

Device CPU RAM OS Java VM
Note-
book

P3, 850
MHZ

256
MB

WinXP Sun 1.4.1

Server P4, 2.4
GHZ

1.0
GB

Linux
2.4.22

Blackdown
1.4.1

IPAQ StrongArm2
06 MHZ

64
MB

Familiar
Linux
0.7.1

Blackdown
1.3.1

Table 2. Average call duration, setting a)

in µsec Notebook Server IPAQ
echoInt 0.04 0.036 8.725
str(102) 0.04 0.032 7.203
str(104) 0.05 0.033 7.480
str(105) 0.06 0.038 10.372

Table 3. Average call duration, setting b)

In µsec Notebook Server IPAQ
echoInt 0.05 0.036 8.718
str(102) 0.04 0.031 7.217
str(104) 0.05 0.031 7.692
str(105) 0.06 0.044 10.146

Table 4. Average call duration, setting c)

in µsec Notebook Server IPAQ
echoInt 1.41 0,62 428.36
str(102) 0.8 0,43 247.30
str(104) 0.8 0,43 252.44
str(105) 1.0 0,45 275.94

The tables above show that the invocation of the

echoString service is faster than the invocation of the
echoInt service if the string is small enough. The reason
for this is that the Java dynamic proxy code is faster for
small strings than for integer variables. The invocation in
setting c) is slower than in setting a) and b) since the calls
are running “through” the Portsmanager and the Java
dynamic proxy code.

Table 5. Avg. call duration for TCP, setting d)

in
millisec

Notebook
Server/Ethernet

Notebook
Server/Wlan

IPAQ
Server/Wlan

echoInt 8.51 15.72 242.89
str(102) 6.51 15.02 268,37
str(104) 31.85 78.82 3,073.75
str(105) 533.57 916.61 28,622.40

Table 6 shows the performance of our implementation

for invoking remote methods using various parameter
sizes. The measured values show that invocation duration
is comparable to other means of remote method
invocations.

The TCP transport used for the measurements in table
6 could be improved to speed up remote method
invocations, for example by sending raw data instead of
XML messages, leading to shorter invocation duration.
The results also show that our implementation scales well
regarding the size of the input parameter at least for local
invocations. When invoking methods remotely, scalability
heavily depends on the transport technology’s parameters
(throughput, latency, frame size …).

Table 6. Avg. call duration for JXTA, setting d)

in
millisec

Notebook
Server

(100Mbit,
Ethernet)

Notebook
Server (11Mbit,

Wlan)

IPAQ
Server/Wlan

echoInt 39.56 47.07 n.a.
str(102) 30.15 41.36 n.a.
str(104) 62.99 119.17 n.a.
str(105) 626.40 1,111.60 n.a.

5. Comparison with Related Work

Expeerience [21] is a middleware layer over JXTA that
addresses issues with JXTA with regard to intermittent
connections in adhoc environments. It supports code
mobility and service migration, including state to the
extent of support for mobile agent systems. Expeerience
does not, however, address the component models issue
with JXTA nor protocol exchangeability as P2Pcomp
does.

With regard to the combination of OSGi and JXTA,
the advantages of extending OSGi with JXTA for Virtual
Home Environments are described in [20]. It does not
address a distributed component model, protocol
exchangeability, and QoS for adhoc environments.

OSGi component-related work includes Beanome [1],
a lightweight component model and framework on top of
OSGi to support complex applications. While Beanome
includes component descriptors, factories, a registry, and
introspection capabilities, it does not address various
issues that P2Pcomp does, such as remote communication,
“transparent” asynchronous and synchronous remote
invocation, OSGi peer discovery, protocol independence,
dynamic binding, dependability, etc.

In the area of component communication, [7] presents
a lightweight XML-based middleware based on a ports
concept. While addressing protocol exchangeability with
various transport channels and integration via XSLT-
based connectors, it uses a generative approach that may
limit runtime flexibility vis-à-vis P2Pcomp and does not
address containers and component lifecycles.

The JavaPorts framework [22] aims to simplify multi-
threaded distributed P2P applications with a component
model. While it uses a location-independent ports
concept and supports asynchronicity, it appears to be
primarily focused on parallel computing and does not
address the issues of mobile adhoc environments.

SEESCOA [24] supports dynamic reconfiguration and
evolution of components in embedded systems by
leveraging ports to reroute messages between components.
However, the intent is not aimed at supporting P2P
application interactions and protocol independence.

6. Conclusions

In this paper, we have discussed the new challenges
posed by mobile, completely decentralized, ad-hoc P2P
applications to the design of component-based distributed
software systems. As the devices representing peers in
such applications are usually heterogeneous and resource-
constrained, there is the need for an appropriate,
lightweight component model. With our OSGi-compliant
P2P framework P2Pcomp, we have integrated a minimal

set of component model concepts (containers and ports for
component interaction, location-independence, protocol-
independence, dynamic deployment and binding of
components, lifecycle management, packaging and
distribution, etc.) on a very small software footprint. Our
framework, P2Pcomp, thus represents an operational
runtime environment that is both conceptually and
physically lightweight, addresses the unique development
needs in this context, and enables flexible and highly
tailorable component-based, distributed, mobile P2P
applications.

7. Acknowledgements

Many thanks go to Thomas Köckerbauer and Michael
Kumar for their great job implementing most parts of the
Ports concept.

8. References

[1] Cervantes, H., and Hall, R. Beanome: A
Component Model for the OSGi Framework, in
Software Infrastructures for Component-Based
Applications on Consumer Devices, Lausanne,
September 2002.

[2] Streitz, N. A. et al.: Roomware: Towards the Next
Generation of Human-Computer: Interaction based
on an Integrated Design of Real and Virtual
Worlds. In J. A. Carroll (Ed.): Human-Computer
Interaction in the New Millenium, Addison
Wesley, pp. 551-- 576. 2001.

[3] Phillips, P., Friday, A. and Cheverst, K.:
Understanding Existing Smart Environments: A
brief classification, In Workshop on Ubiquitous
Computing in Domestic Environments, pages 1--4.,
Sept. 2001. Lancaster University.

[4] Open Management Group: Unified Modeling
Language version 1.4 specification, “formal/01-09-
67”, 2001.

[5] Mills. K.: AirJava: Networking for Smart Spaces,
National Institute of Standards and Technology,
US.

[6] Fox, A., Johanson, B., Winograd, T., and
Hanrahan, P.: Integrating Information Appliances
Into an Interactive Workspace,IEEE Computer
Graphics & Applications (special issue: "Off the
Desktop"), May/June 2000.

[7] Löwe, W., and M.L. Noga: “A Lightweight XML-
based Middleware Architecture”, 20th IASTED
International Multi-Conference Applied
Informatics (AI), 2002.

[8] Dey, A. K.: Understanding and Using Context.
Personal and Ubiquitous Computing, Special Issue
on Situated Interaction and Ubiquitous Computing,
5(1), 2001.

[9] Ferscha, A.: Contextware: Bridging Virtual and
Physical Worlds. Reliable Software Technologies,
AE 2002. Springer Verlag, LNCS 2361, pp 51-64,
2002.

[10] Ferscha, A.: Collaboration and Coordination in
Pervasive Computing Environments. Proceedings
of the 12th International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises (WETICE 2003), IEEE Computer
Society Press, pp 3-9, 2003.

[11] Corba Specification. OMG, http://www.omg.org/
 technology/documents/formal/corbaiiop.html.
[12] Component Object Model. Microsoft,
 http://www.microsoft.com/com/.
[13] Enterprise JavaBeans Specification. SUN

Microsyst.
 http://java.sun.com/products/ejb/docs.html.
[14] Simple Object Access Protocol (SOAP)
 http://www.w3.org/2000/xp/Group/.
[15] Project JXTA. http://www.jxta.org.
[16] Java Message Service (JMS). SUN Microsystems,
 http://java.sun.com/products/jms.
[17] Open Services Gateway Initiative (OSGi),
 http://www.osgi.org.
[18] Open Service Container Architecture (Oscar)
 http://oscar-osgi.sourceforge.net/.
[19] Java 2 Platform, Standard Edition,
 http://java.sun.com/j2se/.
[20] Loeser, C., W. Mueller, F. Berger, and H.

Eikerling: “Peer-to-Peer Networks for Virtual
Home Environments”, Proceedings of the 36th
Hawaii International Conference on System
Sciences (HICSS’03), 2003.

[21] Bisignano, M., A. Calvagna, G. Di Modica, and O.
Tomarchio: “Expeerience: a JXTA middleware for
mobile ad-hoc networks”, Proceedings of the Third
International Conference on Peer-to-Peer
Computing, 2003, pp. 214-5.

[22] Manolakos, E.S., Galatopoullos, D. and Funk, A.:
“Component-Based Peer-to-Peer Distributed
Processing. Heterogeneous Networks Using
JavaPorts”, IEEE International Symposium on
Network Computing and Appl., 2001, pp. 234-7.

[23] Alda, S.: “Adaptability in Component-Based Peer-
to-Peer Applications”, 2nd International Conference
on Peer-to-Peer Computing (P2P'02), 2002.

[24] Vandewoude, Y. and Berbers, Y.: “Run-time
Evolution for Embedded Component-Oriented
Systems”, Int. Conf. on Software Maintenance
(ICSM'02), 2002.

