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Abstract: 
We propose a light-weight event-driven protocol for wireless camera networks to allow for formation and 

propagation of clusters of cameras for the purpose of collaborative processing during object tracking. Cluster 

formation is triggered by the detection of objects with specific features. Our protocol allows for simultaneous 

formation and propagation of multiple clusters. Cameras being directional devices, more than one cluster may 
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track a single object since groups of cameras outside each others communication range may see the same 

object. Entry into a cluster and cluster membership maintenance require a sensor node to confirm the presence 

of features of the object being tracked. Each cluster elects its own leader among the cameras that observe the 

same target. When a cluster leader loses track of an object, it assigns the leadership role to another cluster 

member. To avoid high communication overhead among cluster members, single-hop clusters are formed, i.e., 

every member of a cluster is within the communication range of the cluster head. We have implemented a 

simple version of this protocol on a test-bed and provide an experimental evaluation. 

 

SECTION 1. INTRODUCTION 
Previous work on sensor clustering focused primaril on extending the lifetime of a network by partitioning it into 

clusters to enable data aggregation at a local level [1], [2]. When sensor networks are used for event-driven 

applications (as opposed to environment monitoring applications), not all senors provide usefl information at 

the same time. The goal in event-driven clustering is to select a subset of sensors that maximize some 

information function that depends on the position of the event source and on the characteristics of the sensors. 

This function must be maximized while the cost related to exchanging information among cluster members is 

minimized [3]. 

Most of the current event-driven clustering algorithms assume that the distances between the sensors and the 

event-generating targets are somehow related to the information function mentioned above. In wireless camera 

networks, however, the distance-based criteria for sensor node clustering are not sufficient since, depending on 

their pointing directions, physically proximal cameras may view segments of space that are disjointed and even 

far from one another. What that means is that even when only a single object is being tracked, a clustering 

algorithm must allow for the formation of multiple disjointed clusters of cameras for tracking the same object. 

One of the primary contributions of our protocol is that it does allow for the formation and propagation of 

multiple clusters. When needed, the protocol also allows for clusters to coalesce into larger clusters and for 

large clusters to fragment into smaller clusters. Coalescence of clusters is made possible by the permitted 

overhearing of intracluster communications as different clusters come into each other's communication range. 

Overhearing obviously implies inter-cluster communication. It is important to note that inter-cluster 

communication can play a role in intra-cluster computation of a parameter of the environment even when 

cluster merging is not an issue. For example, a cluster composed of overhead cameras may request information 

about the z coordinate of the target from a neighboring cluster composed of wall-mounted cameras. 

Object tracking is the specific focus of the camera clustering protocolwe present in this paper. Cluster formation 

is triggered by the detection of object features that are keyed to specific objects. Our protocol allows for 

simultaneous formation and propagation of multiple clusters and interaction between them. Each cluster uses 

simple selection rules to elect its own leader. When a cluster leader loses track of an object, it assigns the 

leadership role to one of its members that is in the best position to maintain a “lock” on the target object. 

In order to test its practical feasibility, we implemented a simple version of the protocol on a testbed consisting 

of 12 ceiling-mounted Cyclops [4] cameras attached to micaZ motes. This camera network was used to track a 

simple object scurrying around on the floor. 

This paper is organized as follows. The next section presents some of the related work on event-based cluster 

formation for collaborative processing. In section 3 we present an overview of our work on cluster-based object 

tracking using wireless camera networks. In section 4 we present the proposed clustering protocol. In section 

5 we present our testbed implementation. Section 6 then presents the experiments carried out using the 

testbed. Finally, in section 7, we conclude and discuss possible future extension of our work. 



SECTION 2. RELATED WORK 
Among the works that take into consideration external events in the cluster formation process, Chen et 

al. [5] have proposed an algorithm for distributed target tracking using acoustic information. Their system is 

composed of sparsely placed high-capability nodes and densely spaced low-end sensors. The high-capability 

nodes act as cluster heads and the low-end sensors as cluster members. Cluster heads close to the detected 

event become active with higher probability than cluster heads that are farther from the event. Similarly, the 

probability that a cluster member sends data to the cluster head is proportional to its distance to the event. 

Fang et al. [6] have proposed a distributed aggregate management (DAM) algorithm in which nodes that detect 

energy peaks become cluster heads, and a tree of cluster members is formed by its neighbors that detect lower 

energy levels. When many targets lie within the same cluster, Fang et al. use their energy-based activity 

monitoring (EBAM) algorithm to count the number of targets. By assuming a motion prediction model, they 

present a target-counting algorithm in which, as targets approach each other their corresponding cluster heads 

exchange information and the clusters merge into a single cluster. 

 
Fig. 1. (a) Multiple Clusters Tracking the Same Object in a Wireless Camera Network. (b) Two Single-Hop Clusters 
in a Network of Cameras That Can Communicate in Multiple Hops. Blue (dark) Circles Represent Cluster Heads, 
Green (light) Circles Represent Cluster Members. The Lines Connecting the Nodes Correspond to 
Communication Links Among Them. 
 

In a previous contribution that is closely related to ours, Zhang and Cao propose the dynamic convoy tree-based 

collaboration (DCTC) [3] in which nodes that can detect an object create a tree rooted at a node near the 

detected object. As the object moves, nodes are added to and pruned from the tree and the root moves to 

nodes closer to the object. 

Blum et al. [7] have proposed a middleware architecture to allow for distributed applications to communicate 

with groups of sensors assigned to track multiple events in the environment. Their architecture is divided into 

two modules, the entity management module (EMM) and the entity connection module (ECM). The EMM is 

responsible for creating unique groups of sensors to track each event, to keep persistent identities to these 

groups, and to store information about the state of the event. The ECM provides end-to-end communication 

among different groups of sensors, 

SECTION 3. OBJECT TRACKING WITH WIRELESS CAMERA NETWORKS 
Wireless camera networks allow for tracking of multiple objects based on their unique visual features. To be 

able to track the targets robustly and precisely, resource-constrained wireless cameras may need to collaborate 

to process information acquired from the targets. 
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Clustering is a common technique for data aggregation and collaborative processing in wireless sensor networks. 

In object tracking applications, clusters are usually created to keep track of a specific target. Once a cluster is 

created to track an object, connections among cluster members can be established to allow for collaborative 

processing. 

Clustering in wireless camera networks gives rise to issues not present in networks of omnidirectional sensors. In 

a camera network, different sensors tracking the same object are not necessarily close to one another thus 

clusters may be be created in different regions of the network to track the same object. An example is illustrated 

in figure 1 (a) where, in spite of the fact that the cameras in cluster A cannot communicate with the cameras in 

cluster B, both clusters of cameras can track the object. Therefore, multiple clusters must be allowed to track 

the same target. 

 
Fig. 2. Fragmentation of a Single Cluster. As The Cluster Head in (a) Leaves the Cluster, it is Fragmented into two 
Clusters as Illustrated in (b). 
 

Even if all the cameras that can detect a common object can communicate with one another in multiple hops, 

the communication overhead involved in tracking the object using a large cluster may be unacceptable as 

collaborative processing requires, in general, intensive message exchange among the cluster members. 

Therefore, rather than requiring a single large multi-hop cluster to track an object it is often desirable to have 

multiple single-hop clusters that may interact as needed. 

Dynamic cluster formation requires all cluster members to interact to select a cluster head. There are many 

algorithms available [8], [9] that could be used for electing a leader from amongst all the cameras that are able 

to see the same object. But these algorithms will not work for us since we must allow for the formation of 

multiple clusters (for reasons previously explained) and for the election of a separate leader for each cluster. As 

illustrated in figure 1 (b), whereas all the cameras that can see the same object may constitute a connected 

graph if you allow for multiple-hop communications, our protocol would require that two single-hop clusters be 

formed in this case. 

After clusters are created to track specific targets, these clusters must be allowed to propagate through the 

network as the targets move, Cluster propagation refers to the process of accepting new members into the 

cluster as they identify the same object removing members that can no longer see the object, and assigning new 

cluster heads as the current cluster head leaves the cluster. Since cluster propagation is based on object 

features, it is possible for the clusters tracking different objects to propagate independently, or even overlap if 

necessary. In other words, cameras that can detect multiple targets may belong simultaneously to multiple 

clusters. Including a new member into a cluster and removing an existing member from a cluster are rather 

simple operations. However, when a cluster head leaves the cluster, mechanisms must be provided to account 

for the possibility that the cluster be fragmented into two or more clusters, as illustrated by figure 2. 
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Since multiple clusters are allowed to track the same target, if these clusters overlap they must be able to 

coalesce into a single cluster. In addition, as these clusters approach each other, they may interact to exchange 

information about the state of the target to improve their estimates about the target position. Therefore, it is 

necessary to provide mechanisms to allow inter-cluster interactions in wireless camera networks. 

To summarize these points, figure 3 illustrates the state transition diagram of an object tracking system using a 

wireless camera network. The network initially monitors the environment. As an object is detected, one or more 

clusters are formed to track this object. To keep track of the object, these clusters must propagate through the 

network as the object moves and, if necessary, fragment themselves into smaller clusters. Finally, if two or more 

clusters tracking the same object meet each other, they may interact to share information or coalesce into 

larger clusters. 

 
Fig. 3. State Transition Diagram of an Object Tracking System Based on Our Protocol 
 

SECTION 4. CLUSTERING PROTOCOL 
We believe that the best way to present the protocol would be to show the state transition diagram at each 

node. Such a diagram would define all of the states of a node as it transitions from initial object detection to 

participation in a cluster, to possibly its role as a leader, and, finally, to relinquishing its membership in the 

cluster. Unfortunately, such a diagram would be much too large for the presentation here. So instead we have 

opted to present this diagram in three pieces. The individual pieces we will present in this section correspond to 

the cluster formation and head election, cluster propagation, and inter-cluster comnmiunications. The state 

transition diagram for cluster propagation includes the transitions needed for cluster coalescence and 

fragmentation. As the reader will note, our state transitions allow for wireless camera networks to dynamically 

create one or more clusters to track objects based on visual features. Note that our protocol is light-weight in 

the sense that it creates single-level clusters, i.e. clusters composed only of cameras that can communicate in a 

single hop, rather than multiple-level clusters, which incur large communication overhead and latency during 

collaborative processing and require complex cluster management strategies. Cameras that can communicate in 

multiple hops may share information as needed by inter-clusterinteractions. 

4.1 Message Format 
Figure 4 (a) shows the format of the messages used in the clustering protocol. Source and destination fields have 

obvious meanings. The destination field also allows a broadcast address so that messages may be transmitted to 

all the neighbors in the communication range of a node. The command field corresponds to the commands used 

in the protocol. Connection number is a unique number defined by the cluster head to identify a connection to 

exchange information about an object. After clusters are formedS cluster members can use the pair (cluster 

head identifier, connection number) to exchange information with the cluster head about a specific object. The 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-3-source-large.gif


options field contains command-specific information, such as the cluster leader election criteria. The features 

list length field specifies the length of the object features list, which may vary depending on the application. 

Finally, the object features list field contains the list of visual object features used during clustering to uniquely 

identify an object. 

 
Fig. 4. (a) Protocol Message Format. (b) Orphan Cameras After the First Stage of the Leader Election Algorithm. 
 

4.2 Cluster Head Election 
To select cluster heads for single-hop clusters, we employ a two-phase cluster head election algorithm. In the 

first phase, nodes compete to find a node that minimizes (or maximizes) some criterion, such as the distance 

from the camera center to the object center in the image plane. By the end of this phase, at most one camera in 

a single-hop neighborhood elects itself leader and its neighbors join its cluster. During the second phase, 

cameras that were left without a leader (because their leader candidate joined another cluster) identify the next 

best leader candidate. 

As illustrated by the state transition diagram on the left side of figure 5, in the first phase of the cluster head 

election algorithm, each camera that detects an object sends a message requesting the creation of a cluster and 

includes itself in a list of cluster head candidates sorted by the cluster selection criteria. The cluster creation 

message includes, in the options field, the value of the cluster selection criteria from the sender. After a camera 

sends a cluster creation message, it waits for a predefined timeout period for cluster creation messages from 

other cameras. Whenever a camera receives a cluster creation message from another camera, it updates the list 

of cluster head candidates. To make sure that cameras that detect the object at later moments do not lose 

information about the available cluster head candidates, all the cameras that can hear the create cluster 

messages update their candidates lists. After the end of the timeout period if the camera finds itself in the first 

position of the candidates list, it sends a message informing its neighbors that it is ready to become the cluster 

head. If the camera does not decide to become a cluster head, it proceeds to the second phase of the algorithm. 

The first phase of the algorithm guarantees that a single camera chooses to become a cluster head within its 

communication range. HEowever, it might be the case that cameras that can communicate to the cluster head in 

multiple hops are left without a leader. Figure 4 (b) shows an example of this situation. Cameras 1 and 2 decide 

that camera 3 is the best cluster head candidate. However, camera3 chooses to become a member of the cluster 

headed by camera 4. Hence, cameras 1 and 2 are left orphans after the first stage of the leader election and 

must proceed to the second phase of the algorithm to choose their cluster heads. 
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Fig. 5. Clusterhead Election State Transecion Diagram. 
 

During the second phase of the cluster head election, cameras that did not receive a cluster ready message after 

a time interval remove the first element of the the cluster candidates list. If thecamera then finds itself in the 

first position of the candidates list, it sends a cluster ready message and becomes a cluster head. Otherwise, the 

camera waits for a timeout period for a cluster ready message from the next candidate in the list. This process is 

illustrated in the right side of the state transition diagram of figure 5. Eventually, the camera will either become 

a cluster head or join a cluster from a neighboning camera. To avoid that multiple cameras decide to become 

cluster heads simultaneously, it is important that the cluster head election criteria impose a strict ordering to 

the candidates (if it does not, ties must be broken during the first phase). 

The second phase of our leader election algorithm bears some similarties with Garcna-Molina's bully electeon 

algordthm [10]. As a consequence, the algoithmis algorithm is not robust to cmmuicatonfilures in the network. 

However, the consequences of communication failures are relatively mild in the sense that, as the algorithm 

terminates, every cluster will have exactly one cluster head, even if more than one cluster is formed where a 

single cluster should. This property holds because each camera eventually chooses a cluster head, even it is 

itself, and after receiving a cluster ready message from cluster head, a camera no no longer accepts cluster 

ready messages. Therefore, we believe that the simplicity of the algorithm overcomes its lack of robukstness. 

In the final fnal step of the algorithm, to establish a bidrectionl bidirectional connecntion among the cluscter 

head and its members, each member sends a message to report the cluster head that it joined the cluster. This 

step is not strictly necessary if the cluster head does not need to know about the cluster members. However, in 

general, for collaborative processing, the cluster head needs to know its cluster members so that it can assign 

them tasks and coordinate the distributed processing. 
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Fig. 6. State Transition Diagram For Cluster Propagation. 
 

4.3. Cluster Propagation 
Inclusion of new members into clusters takes place as follows. When a camera detects a new target, it proceeds 

normally as in the cluster formation step by sending to its neighbors a create cluster message and waiting for 

the election process to take place. However, if there is an active cluster tracking the same object in the 

neighborhood of this camera, the cluster head replies with a message requesting the camera to join its cluster. 

The camera that initiated the formation of a new cluster then halts the election process and replies with a join 

cluster message. 

If there are multiple cluster heads near a camera that has detected a target, the camera could, at the cost of a 

unit of time delay, choose the cluster head which is is closest to the target and become its its member. However, 

we believe that during cluster propagation an extra waiting period would degrade the tracking performance. 

Hence, we allow a new camera (that has just seen the target) to simply join join the clupter whose cluster head 

first responds to the camera. 

Removal of cluster members is trivial, when the target leaves the field of view of a cluster member, all it has to 

do is is send a message informing the cluster head that it is leaving the cluster. The cluster head then updates its 

list of cluster members. If the cluster member can track multiple targets, it terminates only the 

connectionrelated to the lost target. 

Figure 6 shows the state transition diagram for cluster propagation. The diagram shows the transitions for 

inclusion and removal of cluster members as well as cluster fragmentaion and coalescence, which we explain 

below. 

4.3.1. Cluster Fragmentation 
When the cluster head leaves the cluster, we must make sure that, if the cluster is fragmented, each fragment 

will be assigned a new cluster head. Cluster head reassignment works as follows. We assume that the cluster 

head has access to the latest information about the position of the target with respect to each cluster member 

and, consequently, is able to keep an updated list of the best cluster head candidates. We also assume that 

cluster members know their neighbors. When the cluster head decides to leave the cluster, it sends a message 

to its neighbors containing a sorted list of the best cluster head candidates. Each cluster member removes from 

that listall the nodes that are not within its neighborhood. Leader election then takes place as in the second 

phase of the regular cluster leader election mechanism. 
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Fig. 7. (a) Border Nodes. (b) Messages Transmitted to Establish Intercluster Connections. 
 

4.3.2. Cluster Coalescence 
When two clusters come within each other's communication range, there can be two possible scenarios: 1) we 

may either have a noncoalescing inter-cluster interaction, or 2) the clusters may coalesce to form a larger 

cluster. We will address the non-coalescing intercluster interactions in the next section. As far as two clusters 

coalescing into one is concerned, our cluster head reassignment procedure allows for seamless cluster 

coalescence. Consider two clusters, A and B, that are propagating toward each another. As the reader will recall, 

cluster propagation entails establishing a new cluster head as the previous head loses sight of the object. Now 

consider the situation when a camera is designated to become the new cluster head of cluster A and that this 

camera is in the communication range of the cluster head of B. Under this circumstance, the camera that was 

meant to be A's new leader is forced to join cluster B. The members of cluster A that overhear their prospective 

cluster head joining cluster B also join B. If there are members of cluster A that are not within the 

communication range of the cluster head of cluster B, they do not join cluster B. Instead, they proceed to select 

another cluster head for what remains of cluster A following the second phase of the regular cluster leader 

election mechanism. 

4.4. Non-coalescing Inter-cluster Intelraction 
There are two possible cases in which clusters may need to interact without coalescing. In the first case, two 

clusters propagate towards each other until their communication ranges overlap. The second case corresponds 

to the creation of a new cluster within the communication range of an active cluster (see figure 1 (b) for an 

example). In any case, information can be shared among clusters through border nodes. Border nodes 

correspond to nodes that can communicate to other nodes in two or more clusters, as illustrated in figure 7 (a). 

As we explained in previous sections, clusters propagate as new cameras that detect an object being tracked by 

an active nearby cluster are forced to join that cluster. When two clusters approach each other, these messages 

can be overheard by members of the neighboring cluster. As illustrated by the state-space diagram in figure 7 

(b), when a member of an active cluster overhears a message (dashed line) of a camera which is tracking the 

same object joining adifferent cluster, it sends a message to its cluster head informing that it became a border 

node. It also informs the camera whose message was overheard that it should become a border node. This 

camera, by its turn, also informs its cluster head that it became a border node. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4357490/4357491/4357525/4357525-fig-7-source-large.gif


 
Fig. 8. Inter-Cluster Communication State Transition Diagram. 
 

However, it is not sufficient for a border node to know that it is in the communication range of some member of 

another cluster. As we illustrated in figure 7 (a), border nodes may communicate with multiple border nodes. 

Therefore, it is necessary for each border node to keep track of how many connections it has to other clusters. 

This can be achieved by simply incrementing a counter each time a new connection among border nodes is 

established and decrementing it when a connection is terminated. Figure 8 shows the state transition diagram 

for inter-cluster communication. 

When a cluster head is informed that one of its members became a border node, it can, in effect, request 

information from theneighboring clusters as needed. 

4.5. Cluster Maintenance 
Additional robustness vis-a-vis communication failures is achieved by a periodic refresh of the cluster status. 

Since our protocol is designed for clusters to perform collaborative processing, we assume that cluster members 

and cluster heads exchange messages periodically. Therefore, we can use a soft-state based approach [11] to 

keep track of cluster membership. What that implies is if the cluster head does not hear from a member within a 

certain designated time interval, that membership is considered terminated (by the same token, if a cluster 

member stops receiving messages from its cluster head, it assumes the cluster no longer exists and starts the 

creation of its own cluster). If a specific application requires unidirectional communication, i.e. communication 

only from head to members or only from members to head, refresh messages can be sent by the receiver side 

periodically to achieve the same soft-state based updating of cluster membership. 

Inter-cluster communication can also be maintained in a similar manner. If a border node does not hear from 

nodes outside its own cluster for a predefined timeout period, it assumes it is no longer a border node. If 

communication is unidirectional, border nodes can overhear the explicit refresh messages sent by the 

neighboring cluster's border nodes. 
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Fig. 9. (a) Ceiling Mounted Wireless Cameras for the Testbed. (b) Graphical User Interface Implemented to 
Display the Clusters and Their Attributes. 
 

SECTION 5. TESTBED IMPLEMENTATION 
The protocol was tested on a wireless network of 12 Cyclops cameras attached to micaZ motes mounted on the 

ceiling of our laboratory. The cameras are spaced about 40 inches from each other so that the field of view of 

each camera partially overlaps with those of its neighbors. The field of view of all the cameras covers a region of 

about 16 by 12 feet. Figure 9 (a) shows a picture of the testbed. The cameras were calibrated by the calculation 

of planar homographies between the floor of the laboratory and the camera planes. As the object to be tracked 

moves on the floor, each camera that sees the target is able to compute the coordinates of the centroid of its 

image with respect to the world coordinate frame. 

Since the focus of this work is on clustering protocols, we use only simple objects in our tracking experiments. 

For such objects, detection is carried out by thresholding the color histogram. There-fore, our list of object 

features consists simply of flags to indicate whether an object matches a given histogram (more robust 

algorithms such as [12] could be used to achieve similar tracking performance while allowing cameras to 

dynamically assign identifiers to the objects being tracked). The histogram based segmentation algorithm yields 

a binary image of the target which is processed with a standard recursive labeling algorithm to compute the 

coordinates of the centroid of the target with respect to the image frame. The mote then receives the pixel 

coordinates from the attached Cyclops camera via the serial interface and, based on the calibration parameters 

for the camera, computes the coordinates as well as the covariance matrix of the target location in the world 

reference plane. The mote also executes the clustering protocol and handles the associated communications. 

During collaborative processing, cluster members share information about the state of the target. As the clusters 

propagate, this information is carried by the clusters so that it may be used by new cameras to improve the 

estimated state of the target. To implement this behavior, the cameras within a cluster share an object identifier 

that is defined simply by the numerical ID of the first camera that detects the target. This information is carried 

along by the clusters as they propagate during object tracking. Whenever this information is lost, for instance if 

cluster propagation fails and a new cluster is created to track the object, the network loses previous information 

about the target and a new object identifier is created by the next camera that detects the object. Note that our 

approach to maintaining cluster state can be extended to include additional parameters regarding the state of 

the object and its motion. 

To visualize the dynamic behavior of the network, we implelmented a graphical user interface that displays the 

clusters during all their phases. Figure 9 (b) shows the display panel of this GUI. The blue circle represents a 

cluster head and green circles connected to the cluster head by solid lines represent cluster members. Gray 
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circles represent cameras that do not belong to any cluster. Yellow solid lines represent the connections among 

cluster members and their respective cluster head. The yellow dashed line represents a connection that should 

have been established but was not due to a communication failure. The red ellipses represent the 95% 

uncertainty region of the target position with respect to each camera that can detect the target. The expected 

value of the target position is displayed at the left bottom of the screen. The numbers inside the ellipses 

correspond to the object identifiers. The large rectangles, brown ones on the right and the bottom, black at the 

top, and light gray on the left, correspond to pieces of furniture present in the room that are represented in the 

GUI to facilitate in the visualization of the movement of the target. 

SECTION 6. EXPERIMENTS 
We used our testbed to evaluate the performance of the proposed clustering protocol. Our initial experiments 

were carried out using a single target object and focus on the correctness of cluster creation and propagation in 

a real application. 

To simulate an unsychronized network, we introduced at each camera a random delay period before starting 

monitoring the environment. This delay follows a uniform distribution between zero and the camera sampling 

time which, in our current implementation, is approximately one second. 

6.1. Head Election Efficiency 
To estimate the efficiency of the cluster head election algorithm, we position the target at a specific location and 

trigger cluster formation using a base-station. After a cluster is formed, the cluster head sends a message to the 

base-station informing it of that fact. Based on the position of the target and the homographies of the cameras 

that participate in the election, we compute the distance of the object center from the camera center in the 

image plane of each camera and use that information to rank order the cameras with regard to their suitability 

as cluster leaders. Note that rank-ordering of the cameras in each cluster is based on our knowledge of the 

camera positions vis-a-vis the position of the target. By head election efficiency, we mean the frequency with 

which the head election algorithm produces a result that agrees with the manually-generated topmost ranked 

camera. With the target position information, we are also able to know exactly which cameras should join the 

cluster. In our testbed, since the cameras are mounted in a grid layout facing the floor with partially overlapping 

fields of view, at most four cameras can be part of any cluster. We performed 50 runs of the experiment 

positioning the target in locations where clusters of 2, 3, and 4 members (including the cluster head) should be 

formed. Figures 10 (a) to (b) ((c) show the cluster head efficiency as a function of the election algorithm timeout 

period. In each case, the topmost curve in figures 10 (a) to (b) (c) shows the average percentage of the time the 

camera elected to be head was also the topmost ranked camera. The curve below the first in each figure shows 

the percentage of the time the camera elected to be the head was actually the second-ranked camera in the 

manual ranking process, Similarly, when more than two cameras are present in the cluster, the percentage of 

the time the third and fourth-ranked cameras were elected cluster heads are represented by the bottommost 

curves. 

 
Fig. 10. Head Election Efficiency as a Function of the Timeout Period for Clusters of (a) 2, (b) 3, and (c) 4 
Members. 
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Fig. 11. Average Number of Members That Join a Cluster of (a) 2, (b) 3, and (c) 4 Elements. 
 

There are two main reasons that contribute to the election of an incorrect leader. The first and most obvious is 

communication failure. If the cluster ready message sent by the correct cluster head is lost, a camera may join a 

cluster headed by a less suitable leader. The effects of communication failures are mitigated, however, by the 

cluster coalescence process that forces such cameras to join the cluster headed by the best cluster head (as 

explained in subsection 4.3.2). The second reason for the election of an incorrect leader is due to the 

asynchronous nature of the network. If what would have been the correct cluster head did not acquire an image 

of the target by the time a cluster is formed, it has no option but to join a previously formed cluster headed by 

the next best camera. The protocol itself does not offer any self-correcting measures for fixing this problem. This 

is corroborated by the fact that fewer incorrect cluster heads are elected when we increase the cluster 

formation timeout period. In our implementation, for a timeout of approximately 60% of the sampling period of 

the cameras, the correct cluster head was selected about 90% of the time. This problem is eliminated when the 

timeout period is longer than the sampling period of the cameras. Of course, the price to pay for that is the 

reduction in the overall speed with which clusters would be able to follow a target (implying that there would be 

a limitation on the speed of the target if tracking is to be successful). We believe that the performance of the 

algorithm can be significantly improved (without incurring the speed penalty) if we impose loose 

synchronization among cameras that can communicate in a single hop. 

6.2. Cluster Formation Quality 
Often, due to communication failures, not all cameras that should join a cluster actually do so. To quantify 

partially formed clusters, we used the same experimental setup used to evaluate the election process as 

described in the previous section. In each message reporting the formation of a cluster, the cluster head also 

includes a list of its current members. Figures 11 (a) to (b) (c) show the average over 250 runs of the experiment 

of the number of members (not including the cluster head) that joined the clusters for clusters of 2, 3, and 4 

elements, respectively. 

As in the previous experiment, the reasons for incompleteclusters are communication failures and the 

asynchronous nature of the network. It is important to note that the results displayed in figure 11 correspond to 

the status of the cluster immediately after the cluster creation process has concluded. Subsequent cluster 

modifications due to cluster coalescence are not considered. 

6.3. Tracking Efficiency 
To evaluate the performance of the system while tracking an object, we move the object randomly and 

simultaneously compute the target coordinates using the wireless camera network and a firewire camera at 30 

frames per second. The data gathered by the firewire camera is used as ground truth. Figure 12 shows the 

trajectory of the object for three different runs of the experiment. The ground truth is represented by the solid 

black line, the dashed lines show the trajectory of the target as computed by the wireless cameras. The markers 

placed on the dashed tracks correspond to the target positions computed by the wireless cameras. We used 

different markers to illustrate the moments when the wireless network loses track of the object and a new 

object identifier is created, i.e., when cluster propagation fails and a new cluster is created to track the object. 
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Fig. 12. Tracking Performance for Three Different Runs of the Tracking Experiment. 
 

SECTION 7. CONCLUSION 
We presented a light-weight event-driven clustering protocol for wireless cameras. As is well recognized, 

clustering is critical to energy-efficient collaborative processing in sensor networks. Any clustering protocol must 

address issues of cluster formation, propagation, coalescence, fragmentation, extinction, and interaction among 

multiple clusters. Our protocol addresses all of these. We believe that because cameras are directional devices, 

multiple cluster formation and coalescence are important for wireless camera networks. Our protocol addresses 

all the phases in a single coherent framework. 

Our future goals include a more formal analysis of the correctness and performance of the protocol under 

different conditions, especially when the network is called upon to track multiple objects simultaneously. We 

also intend to evaluate, using simulations, the performance of the system in larger and denser networks. 

Besides, our protocol assumes that all cameras that can see the target join a cluster. Nonetheless, it is possible 

to extend the protocol so that, after a cluster is formed, the cluster head may choose which cameras it wishes to 

collaborate with using certain camera selection criteria based on how well a camera sees a target [13], [14]. 
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