
A LIGHT-WEIGHT MVC (MODEL-VIEW-CONTROLLER)
FRAMEWORK FOR SMART DEVICE APPLICATION

Budi Darma Laksana
Alumnus School of Information Technologies, The University of Sydney

email: blak4451@mail.usyd.edu.au

Cherry Ballangan
Faculty of Industrial Technology, Informatics Engineering Department, Petra Christian University

e-mail : cherry@petra.ac.id

ABSTRACT: In this paper, a light-weight MVC framework for smart device application is designed and
implemented. The primary goal of the work is to provide a MVC framework for a commercial smart device product
development. To this end, the developed framework presents integration between the classic design patterns, MVC
and state-of-the-art technology XAML by adapting a MVC framework of an open source XAML efforts, MyXaml
into .NET Compact Framework. As the compact framework only comprises 12% of .NET Framework library, some
design and architectural changes of the existing framework need to be done to achieve the same abstraction level.
The adapted framework enables to reduce the complexity of the smart device application development, reuse each
component of the MVC separately in different project and provide a more manageable source code as the system
architecture is more apparent from the source code itself as well as provide a commonality of the development
pattern. A prototype of simple database interface application was built to show these benefits.

Keywords: Model-View-Controller (MVC), XAML, .NET Compact Framework

INTRODUCTION

MVC pattern is one of common architecture
especially in the development of rich user
interactions GUI application. Its main idea is to
decouple the model which encapsulates the states
of the application and the view which is GUI
representation of a model. The interaction between
the view and the model is managed by the
controller.

In broad term, constructing an application
using an MVC architecture involves defining 3
classes of modules:
 - Model: The domain specific representation of
the information in which the application operates
 - View: User Interface element such as HTML
in web applications or Windows in the desktop
 - Controller: it is an event listener that responds
to an event and changes the model or the view. [13]

With the proliferation of smart devices that
have evolved from a text-based small pocket sized
organizer to a rich graphical unit interface device
that can be use for a lot of purposes e.g. games,
email, messaging or even video-streaming, it is
very beneficial to implement the pattern in the
development of smart device’s application. In the
past, the development of smart device application

required special skill of embedded operating
system and also most of them written in C/C++
programming language. The .NET Compact
Framework is Microsoft’s approach to overcome
this steep skill acquisition curve by integrating the
framework into Visual Studio .NET and providing
the developers with the same programming
languages and environment development. However
because of the limitation of the smart device such
as processing capacity and memory, .NET
Compact Framework [1] only comprises 12% of
the .NET full framework, which means the
compact framework only contains a subset of the
full framework libraries.

The current popular implementation of MVC
pattern development framework such as Spring
MVC for Java [11] and Microsoft User Interface
Application Block for .NET framework [12] are
too heavy to run on a smart device. But recently,
Microsoft is developing an XML based Markup
language called XAML[2] (pronounced
“Zammel”) ,eXtensible Application Markup
Language, the next version of Windows GUI codes
name Avalon. The usage of XAML for windows is
similar to that of HTML for web pages in which
the user controls, images and layout are defined
declaratively. This leads to separation of user

 2

interface (UI) represented by XAML and the
program codes that manage the user events; a
similar analogy can be seen in the html pages with
their associated java /asp scripts. Currently the
available XAML products for .NET are UIML
(User Interface Markup Language) [3], Microsoft
XAML, Xamlon[4] and MyXaml[5], and only
Xamlon Mobile and MyXaml are applicable for
smart devices. Unfortunately Xamlon Mobile is a
commercial product and is still in the beta release,
on the other hand, MyXaml is open source, despite
the fact that its main design is for .NET full
framework, there were some efforts from a Dutch
developer, Bertje Bier, to port MyXaml into .NET
Compact Framework (MyXamlCF), his work were
published in codeproject.com [6].The compact
version has very limited capabilities but it still
opens to further extensions.

MyXaml

XAML is a serialization format of object
graph instances with the potential for making cross
platform UI definition possible regardless of
platform and language. It allows the programmer to
separate the UI definition from underlying business
logic and offers the possibility that a single UI
definition can be used on different platforms.
Moreover, XAML allows the users to edit the
presentation layer without requiring the usual
development tool or programming language.
 MyXaml is an open source implementation of
XAML and according to its creator, Marc Clifton,
MyXaml is a general class instantiator capable of
initializing properties, wiring up event to event
handlers and drilling down into property
collections [5]. These functionalities allow to
instantiate the presentation layer components such
as forms and controls through the mark up rather
than code. Furthermore, it is able to instantiate any
objects provided with namespace declaration that
maps to the .NET assembly namespace in which
their classes’ definition reside.
 The core interpreter of MyXaml is the XAML
parser, represented by MyXaml.Parser class. At
runtime a generic class instantiator in the
MyXaml.Parser will parse the xml file, and using
reflection it will instantiate any classes declared in
the file, initialize values and object to the
properties of those classes, add items to collections

and wire up events to inline code and supplied
event target objects. Moreover, there is a
compliance rule for a class to be able to be
instantiated by MyXaml, it must have parameter-
less constructor and uses public property get/set
method to interact with the different properties of
the class.

MVC Model in MyXaml

 MyXaml provides a comprehensive
framework of MVC design pattern. The model is in
MyXaml.MxContainer assembly and the controller
is in MyXaml.MxEventPool assembly. Figure 1
shows the MyXaml MVC Model.
 The model might act as a data binder similar to
that in the windows data binding or it might be a
value object that represents the state of the
application. Below are the model main classes:
• MxProperties represents a generic the

properties of the model. It has
onValueChanged event which is fired each
time its value changes.

• MxDataContainer is the main core of the
model in a form of generic data containers that
contains a generic set and gets method.

• MxDataBindingModel is class wrapper of
windows data binding that might bind
windows’ control in the view and the model
directly.

• MxContainer is a class that generates
MxDataContainer subclass, instantiate and
initialize it during run time.

 The controller, MxEventPool class, have a
clean controller that does not maintain any states of
the view and it does not have any knowledge about
the control in which the event is generated;
consequently it is pure business logic and only
manages the model state. This creates a better
architectural pattern as the view states are not
managed by the controller. Figure 1 shows the
controller main classes:
• EventHelper is a generic and defensive event

publishing in which it can fire any kinds of
event delegate dynamically.

• MxEventPool manages many of different
delegates and their associated events as well as
event handlers. Events are abstracted by
associating the event handler with a tag. And
the events are invoked by referring to the tag

 3

(rather than the event delegate). It also support
the runtime generation of the codes when
ControlEvent is used for mapping between a
Control and a tag (refer to event).

Figure 1 MVC Framework in MyXaml

• ControlEvent is a mapping between a

reference of a Control and an event.
• Subscriber is a class that provides a unique

name for each event handler. The view will
call the event handler based on this name.

 This framework provides a clear architectural
distinction among the view, the controller and the
model.
 MyXaml compact version has subset
functionalities of the full version owing to the
limitation of .NET Compact Framework. These are
the missing features that affect the adaptation of
MyXaml into compact framework:

It is not to do any run time compilation though
it is the common way to generate code in run time
in MyXaml such as in the case of MxContainer and
MxEventPool where both relied on this mechanism
in a considerable degree.
• It does not support CreateDelegate and

DynamicInvoke, these 2 methods are the main
handler in MxEventPool and also in the Parser
for wiring the event and its event handler. And
also required by MxContainer to wire container
events to the view listeners.

• It does not support TypeConverter for
converting from one type to another.

• It does not support ISupportInitialize interface.
Most classes in the MyXaml assembly
implements this interface. As MyXaml will call

BeginInit() and EndInit() methods in the
objects initialization.

The “NET Compact Framework” [10] provides a
complete reference of its functionalities and
limitations.
 Due to this limitation, the MyXaml MVC model
needs to be adapted to be able to work properly
in .NET Compact Framework.

ARCHITECTURE AND DESIGN

The adaptation process comprises: the
assessment of existing architecture from the .NET
Compact Framework point of view, redesigning the
architecture to comply with the framework and
finally rewriting the source codes based on the new
design.

Controller

The MxEventPool consists of a dictionary
collection of event delegates in which each
delegate in it is identified by a special key (tag),
and they can be combined to create a chain of event
handlers. The events are fired through an
EventsHelper class that dynamically call the
delegate’s DynamicInvoke Method. There are 2
important fields in the pool class, which are
SubcriberList and ControlEventList.

SubscriberList is a collection of Subscriber
class that has map the event name (eventName) and
event handler method (handlerName) in the pool
object (instance), or in other words each event
handler in the pool might be identified by a unique
name. Another functionality is the ControlEvent
class to map a Control’s events such as Button’s
click or TextBox’s TextChanged to the event name
in the pool. Figure 1 shows the class diagram of the
controller framework.

To start the adaptation process, first of all it
needs to compile the existing classes in the .NET
compact framework environment. The compile
error that occurs during compilation happens in:
• The EventHelper class, the compact

framework does not support Dynamic Invoke
method to call on the delegate dynamically

• The EventPool class, the automatic code
generation part causes the compile error; and
the creation of delegate for each subscriber
also produces the error as the compact

 4

framework does not support CreateDelegate
methods.
The ‘dynamic invoke’ problem can be

addressed by replacing the delegate dynamic
invoke by calling the delegate directly as shown
but the delegate creation of each subscriber by
calling CreateDelegate methods might be
addressed by declaring a delegate directly and
creating a new class that represents its event
handler. In this case I declared a delegate named
MulticastDelegate and created DelegateHelper
class, which is passed into constructor of the
MulticastDelegate .

Figure 2 Static Diagram of compact Controller
Framework

However, the automatic code generation

requires for each defined ControlEvent object. And
the purpose of this object is to map the Control’s
event property to any subscribed event handler in
the pool declaratively. From my point of view this
mechanism of declaratively mapping controls in a
window form and their event handlers in the event
pool is not a good design approach as the event
generated by the controls might be one of two
types: an event that changes the state of the model
or an event that changes the state of the view. In
the previous case the event pool can be a bridge
between the view and the model, but in the latter
case, it is a poor design to put the handler in the
event pool. Provided there are two types of events
generated by the view, the code will be more

maintainable if both types of events are handled by
the view itself imperatively and the view will
dispatch the event of the first type to the event pool.
Based on this rationale, I did not assimilate the
ControlEvent class and its automatic code
generation into compact framework.

In addition the MyXaml Event Pool, a
controller base class is added into the framework
Figure 2. All controllers should be derived from the
base class. To use the framework, a
MVC.Controller class that derived from
ControllerBase and a Model object named
TheModel are provided. The event pool has one
event handler: PersonHandler and there are 3 event
names (AddPerson, DeletePerson and AddAddress)
that invokes the handler. The View base will use
the event name to invoke the handler in the event
pool.

Model

The model in MyXaml MVC implementation
relies heavily on runtime code generation and
compilation, in which data model is represented as
a subclass of MxDataContainer that generated on
runtime by MxContainer class.

Figure 3 the MyXaml Model framework

Unfortunately, the .NET Compact Framework

does not support run time code generation, so it
requires different approach to have the same
abstraction level as that of the full version.
Consequently, instead of implementing the code
generation, I use a Hashtable to represent the
object property-value. In this approach, the key of
the Hashtable corresponds to the property name
and its value is associated a PropertyHelper

 5

instance. It is a custom class that represents an
object and its delegate. As the each declared
property also generates an event, as an example the
Name property has its OnNameChanged event. In
Hashtable version, each key in the collection
would correspond to a PropertyHelper object, an
object that constitutes a property-value and an
event delegate.

Despite of the fact that there is no run time
generation of an object that derived from
MxDataContainer, the MxContainer class is not
required. So in the compact version
implementation, there is not MxContainer class and
the MxDataContainer can be declared directly in
the XML. The implementation of
MxDataContainer also needs to be changed, in the
full version System.Reflection facilitates all
invocations to its derived object’s property but in
the compact version the approach is simpler as all
the properties values are resided in the Hashtable.

The issue with the Hashtable version is how to
deal with the event delegates such as how to create
the delegates and fire it when there are some events.
An event in the full version is fired when a
property’s value in the container changes as well as
when the control’s property bound to the
container’s property changes. The full version uses
the window’s data binding to bind the control and
the container’s property and use System.Reflection
to changed the property values when some events
occurs. The windows data binding is not fully
supported in the compact version. So data binding
architecture in the compact framework is not a
good approach, that instead of data binding, I use
event to convey messages of property changes
between control and its data bound. This approach
produces a new complexity and requires complete
changes of the MxDataContainer implementation
as well as need some additional classes. The model
of Compact Framework is depicted in figure 4.

DataContainer is the central class of the
architecture, it has direct association to the
MxProperty class; and the delegate class,
OnValueChangedDelegate, is declared in the
namespace scope, instead of in the class scope. In
addition, there are more methods in the
DataContainer than those of the MxDataContainer.
The same case also happens in the MxProperty
class.

The MxBindingModel is replaced with Binder
class, as the previous is the sub-classed of
BindingModel that implements the windows data
binding, the latter instead of using windows’ data
binding it uses the new method, SetEventHandler
which is called from a helper class called Binder, in
the DataContainer class. The
ContainerEventDelegate is the delegate class that
handle the OnValueChanged events; this must be
declared as a separate class as MyXaml CF does
not support other event handlers than EventHandler
Delegate. In summary, all the new methods and
classes are used to deal with the event passing
between controls and PropertyHelper object in the
DataContainer.

Figure 4 the model framework for compact

version
ModelBase is the base class of the model, the

class encapsulates DataContainer and EventPool,
and so the model might interact with the event pool
through OnValueChanged method which is an
event handler for OnValueChanged events. It
handle the ContainerEventArgs and pass a generic
event to the event pool.

View

The view consists of 2 parts: the declarative part,
which is the XML file declaring all the controls in
the forms and the event handler of each controls
that declared imperatively. The declarative part is a
normal MyXaml file but the imperative one must

 6

inherit from a ViewBase class. The class provides
encapsulation of an EventPool and does a simple
interaction with the working parser. It also contains
a form property, it associates to form instance in
the object graph in the parser.

Figure 5 View Base class

Deployment View

The structure of the application deployment
consists of declarative part (XML) and imperative
part (C#). The declarative part is for initializing the
GUI controls and the framework classes; where the
declarative part is for the business logic and the
interaction among the framework classes. Figure 6
is the deployment structure of the compact MVC
model.

The Main XML only has ‘include’ statements;
it refers to View XML that declares all GUI
controls, Controller XML that declares the event
pool and Model XML that declares DataContainer
and the Binder classes. The imperative part
composes of a main application class that load the
main XML (Fig. 6). In addition View class,
Controller class, and Model class should inherit
their associated base classes. These base classes
implement the business logic based on event
handling, in which the user interaction would be
captured in the view class, and the event that
changes the state of the model class will be passed
to controller through the controller’s event pool.
And it will process the message and pass the result
to the model dealing with the data state.

������

�����

���������

��	
�

���

	�
�������

	�
�����������

��
�����
�

���

���

�������

��
�

���

����

���

���

�
���	

�
���	

�
���	
 ���
�

�����

���	

����������

Figure 6 Deployment structure of .NET CF MVC

model

The deployment structure is different from that
of MyXaml MVC model deployment because in
the existing framework it does not utilize the
Include model. For more detail implementation
will be discuss in the following chapter of using the
framework to develop a simple application.

EVALUATION AND TESTING

Application Requirement

The application is a simple interface to customer
table in the member database. User might add,
delete, and search a record in the table. User
Interface and database schema are provided in the
following section.

Table 1 Member Database Schema
Database : Member
Table: Customer
Field Data Type Remarks
CustomerId Int Primary Key,

Auto-
increment

FirstName NVarChar(20) Not null
MidName NVarchar(20) Allow Null
LastName NVarchar(20) Not Null

+BeginInit()
+EndInit()

#pool : EventPool
#form : Form
#name : string
#tag : object

ViewBase

 7

Database schema

Table 1 shows the member database schema. It has
a table named customer.

User Interface

The form enables user to interact with the customer
table. It consists of textboxes as user entries, list
view as the output as well as menu control for basic
user interaction e.g. for adding, deleting and
searching records But additional functionality
might be added in the user interface such as simple
validation, and fields clearing. Figure 8 shows the
user interface design.

Figure 7 Main XML and main application class

Development cycle

The development cycle comprises 2 stages,
Declarative development (to build the XML
documents that capture the design requirement) and
Imperative development (to build the C# code that

handle the event passed among each system
component).

Declarative Development

As mentioned in the previous section the XML
based declaration consist of 4 parts:
• View contains all controls declaration, and

their associated event handlers. It will be
parsed and rendered by the MyXamlCF engine
and as a result is a form display complies with
the user interface design. In this case, the view
will contain the declaration for 3 Labels, 3
TextBoxes, 1 ListView and 4 MenuItems. All
the control properties are set in the XML. In
addition to the control declaration, it also
contains the declaration of the event handler
class; in this application is the View class. So
each declared event will be wired to each
method in the class.

Figure 8 User Interface Design

• Controller contains declaration of the

Controller object and its EventPool object with

<?xml version="1.0" encoding="utf-8" ?>
 <MyXaml>
 <Form def:Name=frmMvc” >
 <Include Src=" View.xml"
ComponentName="view" />
 <Include Src=" Model.xml"
ComponentName="MemberModel"/>
 <Include Src=" Controller.xml"
ComponentName="MemberController"/>
 </Form>
</MyXaml>
public class MainClass
{
 public MainClass()
 {

 Parser parser = new Parser();

parser.LoadObject("Main.xml","frmMvc",null,null);
 ViewBase v = (ViewBase)
parser.GetReference("MemberView");
 Application.Run(v.Form);
 }

 public static void Main()
 {
 MainClass main = new MainClass();
 }
}

 8

its subscribers. The subscriber will match the
defined Tag to a method name in the controller
object.

• Model contains declaration of the Model
object and its container. The container object
represents the data state. In this case it
constitutes of MxProperties objects match with
the database schema and also additional data
states required by the View such as a
DataTable object as the ListView’s data
source, Row index for highlighting the
selected row, and member id for changing the
status of delete menu item. The additional
properties have onValueChanged event that
will fire when there are some property changes.
The event will be captured by the EventPool
and forward to the respective listeners in this
case is the view. Moreover, there are also
declarations for Binder objects. The Binder
will bind each TextBox’s Text property with
the data container. The binder is a custom
version of the windows data binding.

• The last XML file is the main XML as it is the
glue of all the other XML’s. In the Main XML
it is a necessity to have all namespaces
declared in the other documents and also the
form must be declared in the document. Inside
the Form element are only Include elements to
the view, the controller and the model XML
documents.

The Imperative development

As the declarative parts only instantiates the
object and assigns its properties, the imperative
code requires to handle the behaviour of the
application. It consists of 5 components:
• The Main code has main methods to instantiate

the parser and load the main XML into it.
• The View class inherits the ViewBase class

and contains the entire event handlers declared
in the view XML. The event handlers only
deal with control rendering and capturing
user’s gestures. It will pass the event that
might change model state to the controller
through EventPool object.

• The controller class must inherit the
ControllerBase class. It contains the business
logic of the application as it will call the model

methods for each received messages from the
view.

• The Model class should inherit the ModelBase
class. It interacts with the data layer directly to
change state of its data container. It has also
atomic methods that might be composed into
some business logics by the controller. In this
application it has Add, Delete, Search and
Clear methods.

• The Data Layer objects is a component that
communicates directly with the database. It
opens connection to the database and doing the
query or update commands. In this application,
the data layer is represented by DBHelper
class.

Evaluation Criteria

The framework would be evaluated qualitatively
based on these 2 criteria:
• The development point of view explains how

the software is packaged and how it can be
developed as well as contrasting it with the
traditional development process.

• The architectural point of view explains how
the framework adheres to the traditional MVC
pattern particularly and design principle in
general.

The Development View

From development point of view, a framework
should ease the development process, simplify the
software management and enable reuse and
commonality. Therefore, the framework will be
assessed based on these properties:
• Reduce complexity. This is achieved by

separating the domain representation and its
behaviour. The domain model is declared in
the XML documents and their behaviour is
coded imperatively. This division simplifies
the development process especially in a
complex system as the design properties are
very obvious in the XML declaration. For
examples: the view XML only contains the
control declarations and the view C# codes
contain the controls’ behaviour in regard of the
user’s events. In contrast with the traditional
approach when the domain model and its
behaviour are coded imperatively. It was hard

 9

to have an architectural view from the codes
itself.

• Reusability. The loose-coupling between the
domain model and its behaviour enable to
reuse both components separately. In the toy
application, it is possible to reuse the GUI (the
View XML) in other application with different
behaviour. Or reuse the model declaration for
different database schema. The reusability of
traditional approach is very limited as the GUI
or the model is tightly couple with the event
handler or the database schema.

• Manageability. Although in this development
framework there are more managed entities
(XML and C#) than those in the traditional
approach, it does not imply that the new
approach is less manageable. In contrary, the
separation of XML declaration and its C#
behaviour brings more clarity of the
application architecture in the codes level
resulting in better codes readability. In a
complex system this advantage will undermine
the inconvenience of maintaining more
application entities.

• Commonality. It will accelerate the
development process and have more assurance
of quality design as developers follow the
same proven development patterns and styles.
In this thesis, the toy application complies to
the MVC pattern providing by the framework
from the beginning of the development process

Architectural point of view

In this section, the contrast between MVC
architectural point of view of the traditional .NET
approach and MyXaml approach is presented.

In .NET, the wiring up of the event requires
that the code has both knowledge of the Control
class (the view) and the instance (the controller)
that handles the event. Any changes in the
controller will also change the view and vice versa.
In this framework approach, the Control is wired to
an event pool that dispatching the user event to any
subscriber that is declared in the Controller XML.
So the wiring between the event’s source and its
sink is centralized in one XML file and it can be
changed or rewire without affecting the View.

The controller represents a set of methods that
manages the model states. In .NET implementation,

as the event handler is tightly coupled with the
view, it is impossible to implement MVC pattern,
results in code rewrites when the View changes,
impede the flexibility of the application.

In .NET there is no difference between the
event handlers that change the view’s states and
those that change the model states because the view
call the controller method directly. But in this
framework the view consume any control events
and provide the controller with a common type of
event as it does not have any reference directly to
the controller. In other words, the view and
controller can be totally separated.

In .NET, it will result in a complex architecture
when it requires separating the model that has some
events wired back to the view. But in this
framework the event wiring between model-
controller is the same as that of view-controller. So
there is only one point of change for wiring up
events and their listeners no matter of their sinks
and sources.

VALIDATION

The current version of the overall project,
including developments listed above, has been
extensively tested and validated, and as a result
scheduled for commercial release during the first
quarter of 2006.

CONCLUSION

The primary goal of this paper is to implement
a lightweight MVC framework with the .Net
Compact Framework for a smart device product.
Consequently, the MyXaml MVC framework had
been adapted to be fully functional in a limited
resource environment.

This concluding chapter presents the
contributions of the developed framework and
followed by a discussion of future work.

Contribution

The paper makes the following contributions:
• First and foremost, it presents a MVC

application development framework for .NET
Compact Framework.

• It integrates the new development software
paradigm based on state of the art technology,
XAML, into .NET Compact Framework.

 10

• It demonstrates the developed framework by
building a toy application which incorporates
use interface, business logic, and data
representation as well as data access layer.

• It shows some benefits of the framework in
term of reducing application complexity, code
manageability, component reusability and
development commonality.

Future Work

Although the framework provides an adequate
separation between Model-View-Controller, it can
be enhanced and furthered in various ways:
• Workflows framework. One of the advantages

of the declarative programming is a workflow
or script representing logic of an application. It
simplifies the development process of complex
business logic. Thus it is obvious that porting
this framework to .NET Compact Framework
would decrease the lines of codes requires in
the Model and Data Layer.

• Adaptation of state machine framework that
able to create an event based state machine
declaratively. An advantage of this framework
is the ability to manage application’s states out
of the code, in other words, separating the
application states from the logic that
determines the state transition. This would
provide a more manageable application.

• Optimization. As the .NET Compact
Framework has limited resources in terms of
memory and processor speed, benchmarking is
beneficial and performance improvement
might be achieved by investigating the parser
implementation.

REFERENCES

[1]. Smart device project: .NET Compact
Framework.
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dv_evtuv/
html/etconNETCompactFramework.asp

[2]. eXtensible Application Mark-up Language
(XAML) resources.
http://msdn.microsoft.com/msdnmag/issues/04/01/
Avalon/default.aspx

[3]. User Interface Mark-up Language (UIML)
resources. http://www.uiml.org/specs/

[4]. Xamlon web site. http:// Xamlon.com

[5]. Project MyXaml: open source XAML web
site. http://myxaml.com

[6]. MyXaml Compact Framework
implementation.
http://www.codeproject.com/netcf/UsingMyXamlC
F.asp
http://msdn.microsoft.com/library/default.asp?url=/
library/en-
us/dv_evtuv/html/etcondifferenceswithnetframewo
rk.asp

[8]. Imperative programming style.
http://en.wikipedia.org/wiki/Imperative_programmi
ng

[9]. XAML definitive guidance.
http://blogs.msdn.com/seangrimaldi/archive/2004/0
6/12/154446.aspx

[10]. Wheelwright A., Wigley S, ”.NET Compact
Framework” . Microsoft Press, RedMond,
Washington. 2003

[11] Java Spring MVC
http://www.chariotsolutions.com/slides/Intro_to_S
pring_MVC.pdf;jsessionid=1F4239D0E68D5ED91
EC74B7443E8BF18

[12] Microsoft User Inteface Application Block
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnbda/html/uip.asp

[13] Model-View-Controler from Wikipedia
http://en.wikipedia.org/wiki/Model_view_controlle
r

