
A Light-Weight Wireless Handshake

Kate Ching-Ju Lin
Research Center for IT

Innovation
Academia Sinica

katelin@citi.sinica.edu.tw

Yuan-Jen Chuang
Research Center for IT

Innovation
Academia Sinica

johnnyc2277@citi.sinica.edu.tw

Dina Katabi
CSAIL

MIT
dk@mit.edu

ABSTRACT
In many wireless systems, it is desirable to precede a data transmis-
sion with a handshake between the sender and the receiver. For ex-
ample, RTS-CTS is a handshake that prevents collisions due to hid-
den terminals. Past work, however, has shown that the overhead of
such handshake is too high for practical deployments. We present
a new approach to wireless handshake that is almost overhead free.
The key idea underlying the design is to separate a packet’s PLCP
header and MAC header from its body and have the sender and
receiver first exchange the data and ACK headers, then exchange
the bodies of the data and ACK packets without additional headers.
The header exchange provides a natural handshake at almost no ex-
tra cost. We empirically evaluate the feasibility of such lightweight
handshake and some of its applications. Our testbed evaluation
shows that header-payload separation does not hamper packet de-
codabilty. It also shows that a light handshake enables hidden ter-
minals, i.e., nodes that interfere with each other without RTS/CTS,
to experience less than 4% of collisions. Furthermore, it improves
the accuracy of bit rate selection in bursty and mobile environments
producing a throughput gain of about 2x.

Categories and Subject Descriptors C.2.2 [Computer Systems
Organization]: Computer-Communications Networks
General Terms Design, Experimentation
Keywords Handshake, Testbed

1. INTRODUCTION
Wireless networks would benefit from a lightweight handshake

that enables a sender and its receiver to exchange control infor-
mation before data transmission. Such a handshake can prevent
packet collisions caused by hidden terminals in a manner similar
to RTS-CTS, but without incurring the high overhead of today’s
RTS-CTS [5]. A lightweight handshake can also provide the sender
with the most up-to-date receiver feedback, which is desirable in
many wireless systems. For example, bit rate adaptation requires
the transmitter to learn the channel state from the receiver. Exist-
ing schemes rely on past ACK packets (or their loss) to learn this
information [4, 16, 18, 14, 10]. However, if the traffic has a low
duty cycle or is highly bursty, the most recent ACKs may be too
old to reflect the channel state at the time of transmission. The
problem of stale feedback is exacerbated by mobility which causes
the channel quality to vary quickly over tens of milliseconds [18].
A low-overhead handshake allows the sender to learn the channel
quality on a per-packet basis; it can then pick the optimal bit rate
for each packet. A similar problem appears in MIMO systems that
use beamforming [20, 3] or interference alignment [8]. These sys-
tems require the receiver to inform the sender of the channel coeffi-
cients, which the sender uses for pre-coding. However, when traffic
is bursty or the user’s ACKs are infrequent because they are inter-

spersed with traffic from other streams, the ACK feedback may not
reflect the instantaneous channel coefficients. Stale channel state, in
this case, leads to inaccurate beamforming and hence inter-stream
interference [17]. A light handshake on the other hand can convey
the most up-to-date channel state at the time of transmission.

Most of the overhead in a wireless handshake stems from the in-
troduction of control frames. Even if the sender and receiver want
to exchange only one bit, embedding a bit in a control frame leads
to excessive overhead because the frame needs a physical layer
(PLCP) header and a MAC header. Wireless headers are relatively
large because they need to contain sufficient information for packet
detection, channel estimation, carrier frequency estimation, sender
and receiver IDs, etc. Furthermore, those control frames need to
be sent at the lowest bitrate to ensure correct reception. For ex-
ample, multiple prior works have shown that enabling RTS-CTS
handshake in 802.11 results in a significant overhead and reduces
the throughput by as much as 50% [5, 15].

This paper aims to develop a low-overhead handshake that does
not require the sender or receiver to transmit additional control
frames. Our approach is based on the observation that one can
separate the transmission of a packet from its header without ham-
pering packet decodability. Specifically, we propose a light-weight
handshake where the sender and receiver first exchange the data
packet header followed by the ACK header, and then the data packet
body followed by the ACK body, without any additional headers,
as shown in Fig. 1(b). The header exchange plays the role of a
handshake. For example, the header exchange can play the role
of RTS-CTS to prevent hidden-terminal collisions. Yet, since the
nodes have to transmit the headers anyway, the overhead of such a
handshake is minimal.

Supporting such a lightweight handshake requires addressing a
few practical issues to ensure that the data and ACK payloads con-
tinue to be decoded correctly despite being detached from their
headers. This includes frame detection, oscillator offset correction
and channel estimation, which are discussed in detail in the rest of
the paper.

We implement the above lightweight handshake in software ra-
dios and empirically demonstrate both the feasibility and benefit of
such approach. Our evaluation focuses on three questions:

• Can header separation harm packet decodability increasing the
packet loss rate? Our empirical results show that the impact of
header separation on packet decodability is negligible. In partic-
ular, a separation as large as 500 µs causes an average increase in
loss rate of 0.0005, which is insignificant for wireless channels.

• Does the design address the hidden terminal problem? We em-
pirically show that a light handshake like the one in Fig. 1(b) can
reduce collisions caused by hidden terminal from 60–100% to
less than 4%.

ACM SIGCOMM Computer Communication Review 29 Volume 42, Number 2, April 2012

(a) Standard DATA-ACK exchange in 802.11

(b) Lightweight handshake

data
header

SIFS
ACK

header

DIFS SIFS SIFS

data
header data

SIFS
ACK

header

DIFS

timeACK

ACKdata time

Figure 1—Format of packet exchange: (a) a DATA-ACK ex-
change in 802.11; (b) a light handshake that does not send control
frames. It rather separates the headers from the packets and sends
all headers early on.

• Does it improve rate adaptation in bursty and mobile environ-
ments? We focus on a mobile transmitter that sends a stream
of packets, where consecutive packets (and hence consecutive
ACKs) are separated by 50 ms. This scenario arises when the
transmitter has a low duty cycle or the medium is congested and
hence a user’s packets are interspersed with packets from other
flows. Our results show that a handshake-based rate adaption
protocol doubles the throughput in comparison with SampleR-
ate, which relies on the ACK stream for its feedback [4].

We anticipate that the introduction of a low-overhead handshake
can facilitate many wireless applications that benefit from fresh re-
ceiver feedback.

2. LIGHTWEIGHT HANDSHAKE
Handshaking in 802.11 is considered an expensive process be-

cause it requires transmitting additional control frames, like the
RTS and CTS frames shown in Fig. 2(a). The overhead of such
802.11 handshake stems from the following components:

• Most of the overhead stems from the headers of the control frames.
Every wireless frame is required to be transmitted with a physical-
layer (PLCP) header, which includes information for packet de-
tection, channel estimation, and carrier offset correction, and a
MAC header, which includes node addresses, the used bit rate,
and other control information. Furthermore, the PLCP header
and these control frames are sent at the lowest bit-rate to ensure
correct reception and last for hundreds of microseconds.

• There is some overhead involved in sending the feedback itself.
This overheard depends on the application but in most cases is
negligible in comparison with the header overhead. For example,
in bitrate adaptation, the receiver needs to send the preferred bi-
trate. Similarly, to protect against hidden terminal collisions, the
receiver can send exchange duration measured in OFDM sym-
bols. These information requires only a few extra bits, which is
less single OFDM symbol.

• Finally, switching between transmission and reception requires a
SIFS interval. A SIFS in 802.11g is 10 µs, and hence is minimal
in comparison with the headers.

Since most of the overhead is due to the headers, a low-overhead
handshake requires amortizing the cost of the headers.

2.1 Header-Payload Separation
This paper aims to enable light handshaking before data trans-

mission. To do so, we adopt a design that does not send control
frames. Our design is based on the observation that 802.11 channel
coefficients do not change for periods shorter than a few millisec-
onds [17]. Thus, it is not necessary to send a PLCP and MAC head-
ers and re-estimate the channel for every control frame because the

(b) 802.11 with RTS-CTS disabled

data
header data

SIFS
ACK

header

DIFS

time
RTS

header RTS

SIFS

ACKCTS
header CTS

SIFS

data
header data

SIFS
ACK

header

DIFS

timeACK

(a) 802.11 with RTS-CTS enabled

Figure 2—Packet format of RTS-CTS exchange: (a) a RTS-
CTS exchange followed by DATA-ACK exchange in 802.11; (b)
a DATA-ACK exchange in 802.11 with RTS-CTS disabled.

period of one packet transmission is usually shorter than the chan-
nel coherence time.

Instead, one can split a packet’s headers from the packet’s body,
and make the sender and receiver first exchange the data and ACK
headers and then exchange the data and ACK bodies without addi-
tional headers, as illustrated in Fig. 1(b). A node can then estimate
the channel and the carrier frequency offset from the data or ACK
header and use the estimates from the header exchange to predict
the channel coefficients of the symbols in the body of the data and
ACK packets. However, we note that the ACK packet actually con-
sists of only the PLCP header and MAC header, without any other
payload. Hence, we only move the PLCP header and the address
field in the MAC header of an ACK packet before data exchange,
and leave the rest of the MAC header acting as the real ACK and
send it after the data packet. Such header-payload separation pro-
vides a natural handshake, at a minimal cost. Any receiver feed-
back, e.g., the optimal bit rate, can be concatenated with the ACK
header.

2.2 Practical Issues
For the above design to work correctly, we need to ensure that the

decodability of a packet’s body is unharmed despite header-payload
separation. This involves supporting the following functions:

Frame Detection: The PLCP header contains a preamble that is
used for packet detection. In random access networks, packets can
arrive anytime. Hence, an 802.11 receiver detects a new packet
using a combination of a power detector and preamble correla-
tion [11]. In the proposed light handshake, the header which con-
tains the preamble is separated from the packet’s body. Hence,
a node needs to detect the beginning of the body frame without
any known preamble. The same challenge occurs for a node that
needs to detect the body of an ACK that is separated from the ACK
header. The solution to this challenge is however simple. The rea-
son standard 802.11 packets/frames need a special preamble for de-
tection is that they can arrive at any time. In contrast, in the light
handshake, a packet’s body arrives at a specific time relevant to the
beginning of its header. Specifically, once a node detects the header,
it does not need to perform packet detection again for the body of
the data or ACK packets. Instead, the node can compute the arrival
time of the data packet body to be the airtime occupied by the head-
ers and SIFS (measured in OFDM symbols). Similarly, the arrival
time of the ACK can be computed given the SIFS duration and the
duration of the data payload, which can be computed based on the
selected bitrate and the packet length embedded in the data header.
All of these estimates are accurate up to the clock resolution of the
802.11 transceiver which is significantly smaller than the margin of
error in packet detection.

Phase Tracking: In wireless systems, it is unlikely that the oscil-
lators on the transmitter and receiver are tuned to exactly the same
frequency. The difference between their center frequency is called
the carrier frequency offset (CFO), Δf . The CFO causes the signal

ACM SIGCOMM Computer Communication Review 30 Volume 42, Number 2, April 2012

 0

 20

 40

 60

 80

 100

6 9 12 18 24 36 48 54

T
hr

ou
gh

pu
t R

ed
uc

tio
n

[%
]

Transmission Bitrate [Mb/s]

802.11 with RTS-CTS enabled
Lightweight Handshake

Figure 3—In 802.11g, the throughput overhead of the light-
weight handshake is less than 3.5%, whereas the overhead of
RTS-CTS is 20%-50%, depending on the bitrate.

at the receiver to keep rotating with respect to the transmitter’s sig-
nal. This rotation translates to a linear increase of the signal’s phase
over time, which accumulates over the period between the arrival
of a packet header and its body. Thus, the receiving node has to
correct this phase change before it can correctly decode the body
of the packet. To compensate for this rotation, the node has to esti-
mate the CFO, Δf , from the packet header, as it does today [11]. It
then compensates for the phase rotation by multiplying each signal
sample, i, in the packet body by ej2πΔfTi , where Ti is the interval be-
tween computing the CFO from the packet’s header and the arrival
of sample i in the packet body. Similar to standard phase tracking
in 802.11 PHY [11], one can refine the phase compensation further
by leveraging the OFDM pilot bins, which are special subcarriers
that carry a known data pattern and are embedded in every 802.11
OFDM symbol. Since the pilots carry known signals, they receiv-
ing known can compare the received signal after phase compensa-
tion with the expected signal to compute any residual phase error
and correct for it.

The Impact of Tx/Rx Switching on the CFO: In some hardware,
switching between transmission and reception may disturb the car-
rier frequency and change the CFO. This will introduce errors in
phase tracking, described above. We counter this effect as follows.
Off-the-shelf radios such as the USRP [1] have both a receive and
a transmit chain connected to the same antenna; Typically, there is
a switch that turns the transmit chain off while receiving. How-
ever, to prevent oscillator disturbance, we use the technique in [7].
Specifically, we keep both chains always on and set the power of the
transmitted signal to zero whenever the radio is in reception mode,
so that no switching is needed. This can be done even with USRP
radios.

Sender and Receiver Identification: In the light handshake, the
transmissions of data header, ACK header, data body and ACK
body are separated by SIFS. This means that the channel is never
left idle for a DIFS period and hence no other nodes would inter-
rupt the data-ACK exchange. Consequently, a node pair can get
the identification of each other from the header exchange without
additional identification exchange before the data and ACK bodies.

CRC Check: To ensure that the information in the headers can be
decoded correctly, we add an extra CRC check in the tail of each
header. If a node pair misses or incorrectly decodes one of the data
or ACK headers, it needs to contend for the medium again.

2.3 Overhead of Light Handshake
The total overhead from the light handshake is two SIFS’s, two

CRC checks and the receiver feedback in the ACK header. For
rate adaptation, the feedback is 4 bits, which is sufficient to iden-
tify one of the available 802.11g bit rates. Hidden terminal de-

tection requires sending the duration of the transmission measured
in OFDM symbols, which can be expressed using 12 bits. Fig. 3
shows a comparison between throughput reduction caused by RTS-
CTS and the light handshake in 802.11g. All the airtime that is not
occupied by the frames and IFS, as shown in the top graph of Fig.
1, is considered as the overhead. We compute the throughput of
1500-byte data packets with respect to different bit rates according
to the 802.11 specifications, in which the PLCP header with a long
preamble occupies 192 µs, the ACK is sent at the lowest rate 6 Mb/s
and the MAC header is sent at the same rate with the data packet.
We exclude the airtime occupied for random backoff.1 The fig-
ure shows that our light-weight handshake reduces the throughput
overhead from 20%-50% to 1%-3.5%, which can be compensated
by the benefit of enabling handshaking.

3. EXPERIMENTAL ENVIRONMENT
(a) Testbed: We evaluate the light handshake in the testbed shown
in Fig. 4. For each experiment, we place two nodes randomly in
the marked locations in Fig. 4. These locations include both line-
of-sight (LOS) and non-line-of-sight (NLOS) scenarios and span
an SNR range of 5 to 25 dB, which is the SNR range spanned by
802.11 [16].

(b) Hardware: Each node in the testbed is a 3.07GHz Intel i7 ma-
chine equipped with a USRP2 board [1] and a RFX2400 daughter-
board, which communicates on a 10 MHz channel and has a central
frequency of 2.43GHz.

(c) Software: We implement the light handshake using a software
radio. Since software radios process the signal in the user mode on
the PC, they cannot support realtime events, i.e., they cannot sup-
port the timing of the 802.11 MAC, nor can they detect a header and
turn around to transmit within a SIFS interval. To work around the
lack of realtime support in software radios, we implement header-
body separation for the data packet and the ACK packet separately.

(d) Physical Layer: We implement the main functions of the 802.11
PHY layer, including OFDM, QAM modulation, convolutional codes,
and the Viterbi decoder. In particular, we leverage the GNURa-
dio OFDM code base, which provides different 802.11 modulations
(BPSK, 4QAM, 16QAM, and 64QAM) and the corresponding con-
volutional codes [2]. However, unlike 802.11, which operates over
a 20MHz channel, USRP2 operates over a 10MHz chanel. Hence,
USRP2 supports data rates between 3MB/s and 27 Mb/s. The op-
timal bit rate in this range depends on the instantaneous channel
quality. Our implementation uses the same number of OFDM data
and pilot subcarriers as 802.11 (a total of 64 subcarriers). The im-
plementation also supports packet detection, carrier frequency off-
set estimation, channel estimation, and phase tracking [11].

(e) TX/RX Switching: To make header-body separation work prop-
erly, we need to ensure that a node keeps synchronized between
the arrival of a header and its body. However, as explained in §2
switching the transmit and receive chains on and off can perturb the
CFO. To avoid such perturbations, we turn off the TX/RX switch in
USRP, which leaves both the transmit and receive chains connected
to the antenna all the time. During reception, we simply set the
transmitted signal samples to zero.

1Due to the space limit, we only plot the overhead of the default
802.11g with the long preamble enabled. However, even when the
optional short preamble is used, our scheme can decrease the over-
head from 16.69%-44.74% to 1.05%-4.84%. In 802.11a, which has
a much shorter PLCP header (20 µs), our scheme can still reduce
the overhead from 5.17%-25.89% to 1.7%-10%. For a 2x2 mimo
system in 802.11n, the overhead is reduced from 14.3%-39.1% to
5.8%-19.2%.

ACM SIGCOMM Computer Communication Review 31 Volume 42, Number 2, April 2012

Figure 4—The testbed. Dots refer to node locations.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.001 -0.0005 0 0.0005 0.001

C
D

F
s

Loss in packet delivery rate

Data packets
ACKs

Figure 5—Reduction in packet delivery rate due to header-
body separation. The figure shows that the impact of separating a
packet header from its body as required by our light-weight hand-
shake is negligible.

4. EMPIRICAL STUDY
We use testbed evaluation to study the feasibility of the light

handshake and its potential benefits.

4.1 Feasibility of Header-Payload Separation
We start by examining the impact of header separation on packet

decodability, and hence the feasibility of such design.

Method: We make the transmitter send a stream of normal pack-
ets, followed by a stream of packets where the header is separated
from the data by 500 µs, which is strictly larger than the separation
required in our scheme (2 SIFS’s + an ACK header). We repeat the
same experiment for ACK packets. ACK headers however are sep-
arated from ACKs’ payload by 12.5 ms which is strictly larger than
the separation in our design (2 SIFS’s + 1500B data at the lowest
rate.) ACKs are also sent at the lowest bit rate as in 802.11. The
receiver decodes these packets offline using a standard OFDM and
Viterbi decoder. If the header is separated from the packet body,
the receiver decodes the header, jumps by the inserted separation
period, compensates for the channel rotation as described in §2
and continues decoding the packet body. We randomly assign two
nodes to the marked locations in Fig. 4. We repeat the experiment
with 150 different random assignments of node locations, and en-
sure that the results span the entire 802.11 operational SNR range.

Result: Fig. 5 shows the CDFs of reduction in packet delivery rate
due to header-payload separation. The figure shows that for data
packets the reduction in delivery rate is on average 0.0005 packet,
which is negligible. The reduction is even lower for ACK packets
despite that they suffer a longer separation. This is because ACKs
are sent at the lowest bit rate. They are also much shorter than data
packets and hence have a lower packet loss rate for the same bit
error rate.

4.2 Application to the Detection of Hidden Ter-
minals

Next, we investigate whether light handshakes can prevent col-
lisions caused by hidden terminal scenarios. In this case, the data

s1

s3
rx

route 1route 2

route 3

tx
r1s5s2r2

s4

Figure 6—The testbed for hidden terminal and rate adaptation
experiments. Blue nodes refer to hidden terminals. Red lines il-
lustrate three movement paths.

20

40

60

80

100

s1-s2-r1 s1-s3-r1 s3-s4-r2 s4-s5-r2

P
er

ce
nt

ag
e

of
 c

ol
lis

io
n

(%
)

Hidden terminal scenarios

Collision due to the lack of handshaking
Collision with a lightweight handshake

Figure 7—Hidden terminals: The figure shows the percentage of
collisions with and without the light handshake.

header plays the role of RTS. The receiver uses the packet size em-
bedded in the data header and its selected bit rate to compute the
duration of the data transmission, and includes this information in
its ACK header. The ACK header plays the role of CTS; senders
that hear the ACK header abstain from transmitting for the dura-
tion of the data-ACK exchange, specified in the ACK header. We
would like to check whether this application of the light handshake
is effective at preventing collisions caused by hidden terminals.

Method: We consider four different hidden terminal scenarios il-
lustrated in Fig. 6, where transmitters s1 and s2 transmit to receiver
r1 in the first scenario, s1 and s3 transmit to r1 in the second sce-
nario, s3 and s4 transmit to r2 in the third scenario, and s4 and s5
transmit to r2 in the forth scenario. In each scenario, the two trans-
mitters are located such that they cannot sense each other’s signal
and therefore might transmit simultaneously, resulting in a colli-
sion. To capture the actual number of collisions in these scenarios,
we put 802.11 nodes in those hidden terminal positions, measure
how often they have collisions, and then force the USRPs to have
exactly as many collisions as the 802.11 nodes in their locations.

To work around the lack of realtime support in software radios,
we run each experiment in three phases: First, one sender, say s1,
transmits 10,000 packets, while the other sender, say s2, computes
the percentage of packets (preambles) it cannot detect and as a re-
sult can cause collisions at the receiver. Second, reversely, s2 trans-
mits, while s1 computes how many packets cannot be detected.
Last, one sender transmits a data header, the receiver transmits an
ACK header, and the second sender tries to detect the ACK header
if it fails detecting the preamble from the first sender. We compute
the percentage of collisions as the percentage of ACK headers that
the second sender failed to detect.

Results: We show the percentage of packet collision in Fig. 7. The
figure shows that, without handshaking, the two senders in the four
hidden terminal scenarios in our testbed are very likely to transmit
simultaneously resulting in collisions because most of packets sent
by one sender cannot be detected by the other sender. Instead, our
light-weight handshake, which operates similarly to RTS-CTS, can
prevent two senders from transmitting their packets simultaneously,

ACM SIGCOMM Computer Communication Review 32 Volume 42, Number 2, April 2012

 0

 2

 4

 6

 8

 10

 12

 14

route 1 route 2 route 3

T
hr

ou
gh

pu
t [

M
b/

s]

Moving Pattern

SampleRate
Handshake-based protocol

Figure 8—Rate adaptation. The figure shows that light-weight
handshaking can pick the best rate for each packet and as a result
can adapt to the high variability of mobile channels. In contrast,
traditional rate selection algorithms, like SampleRate, which use
past receiver feedback cannot track the channel state if the flow
transmits at a low packet rate and hence has a low ACK rate.

reducing the percentage of packet collisions from 60-100% to less
than 4%.

4.3 Application to Rate Adaptation
We examine whether the proposed light handshake can improve

the performance of rate adaptation. We study its potential use by fo-
cusing on the scenarios where such a handshake is beneficial. That
is, we let a mobile transmitter sends a stream of packets, where
consecutive packets (and hence consecutive ACKs) are separated
by 50 ms. This scenario arises when the transmitter has a low duty
cycle or the medium is congested and hence a user’s packets are
interspersed with packets from other flows. This scenario is chal-
lenging for existing rate adaptation algorithms because they all rely
on ACK packets for receiver feedback [4, 16, 18, 14, 10] and be-
come ineffective if the channel changes faster than the ACKs arrive.

We compare two rate selection protocols: The first protocol is
SampleRate, the default autorate algorithm implemented in Atheros
Madwifi driver (version v0.9.4) [4]. SampleRate periodically sam-
ples the throughput of different bitrates every 10th packet, and picks
the bitrate with the highest average throughput [4]. The second
protocol leverages the light handshake and is based on the effec-
tive SNR rate selection protocol introduced in [10]. The effective
SNR (ESNR) is similar to the SNR but it takes into account the im-
pact of frequency selectivity. In this protocol, the receiver uses the
data header to compute the ESNR and selects the optimal bitrate
by looking up the ESNR-to-rate mapping table as in [10]. 2 The
receiver sends the optimal bitrate to the sender in the ACK header,
hence allowing the sender to transmit the data packet at the optimal
bitrate selected by the receiver. The rate adaptation protocol can
thus be performed on a per-packet basis.

Method: We set up the receiver in one corner, and move the trans-
mitter along one of the three paths indicated by the red lines in
Fig. 6. During the movement, the transmitter sends a stream of
packets for 2 minute. The packet interarrival time is set to 50 ms.
The packet stream cycles between transmitting at each of the 802.11
bitrates, and for each rate it sends an 1000-byte packet followed a
packet where the header and payload are separated.3 A whole cy-
cle is completed every 50 ms. We repeat each experiment multiple
2It is typical to the receiver chain to make computation and act
immediately. For example, the receiver computes CFO and channel
coefficients from the first few symbols and applies their value to
correct all subsequent data symbols. Hence, it can similarly real-
time compute the SNR of the first few symbols and select the best
rate by looking up the mapping table.
3Cycling all transmission bit-rates (from 3 Mb/s to 27 Mb/s) re-
quires 2 ∗ 1000 ∗ 8 ∗ (1/3 + 1/4.5 + 1/6 + 1/9 + 1/12 + 1/18 +

times. We collect the received packets and process them offline
with both SampleRate and the proposed handshake-based proto-
col. We make SampleRate pick the best rate based on whether the
packet was decoded correctly. For the handshake-based protocol,
we make it pick the rate based on the ESNR of the data header of
each packet.

Results: Fig. 8 shows a comparison between the throughput ob-
tained with SampleRate and the handshake-based protocol. The
figure shows that SampleRate produces a low throughput because
it might select an inappropriate rate based on the out-of-date ACK
feedback. The handshake-based protocol however can select the
best bitrate according to the up-to-date feedback in the handshake
ACK header, and as a result almost doubles the throughput of Sam-
pleRate. Note that the throughput difference between the three
paths is due to that SNR decreases with distance. It is also inter-
esting to note that the gains of the handshake protocol are highest
for the third path. This is because the third path spans non-line-
of-sight locations and experiences more SNR variations, and hence
benefits more from up-to-date feedback.

5. RELATED WORK
Past work has empirically or analytically estimated the overhead

of enabling RTS-CTS, and reported a throughput reduction of up to
50% for 802.11g [5] and MIMO systems [15]. Several systems [13,
19] try to leverage such handshake, while optimize its overhead
by grouping multiple RTS frames as a GRTS (group RTS) [13] or
by dynamically disabling RTS-CTS when a node detects no colli-
sion [19].

Some prior work proposes alternative solutions to the hidden ter-
minal problem, such as ZigZag [6] or interference cancellation [9].
In comparison to these schemes, the lightweight handshake is sig-
nificantly simpler and does not require changing the basic packet
decoding algorithms in the 802.11 PHY.

Additionally, there is a large literature on rate adaptation includ-
ing proposals for mobile scenarios. Some protocols use an opti-
mized version of RTS-CTS [12, 13]. Others including SampleR-
ate [4], SoftPHY [18], SNR-based [14, 10] and BER-based proto-
cols [16, 18] do not use RTS-CTS, but rely on receiver feedback
from the ACK stream. The approach in this paper is significantly
lower overhead than schemes that use RTS-CTS. In comparison,
with schemes that rely on ACK feedback, the approach in this paper
can track channel variations even when ACKs are infrequent either
because the flow sends a low packet rate or it shares the medium
with many other flows and hence it is forced to a low rate by the
MAC and the congestion control protocol. In contrast, protocols
that rely on ACK feedback may be unable to track channel varia-
tions in such scenarios.

6. CONCLUSION
This paper introduces a light-weight per-packet handshake for

802.11 networks. Our approach is based on separating the data and
ACK headers from their payloads and having the sender and re-
ceiver first exchange the header then the payload without headers.
We show that such header separation does not hamper the packets’
decodability. We empirically demonstrate two potential applica-
tions of such light handshake: hidden terminal detection and rate
adaptation in for low rate mobile flows. We believe that such a light
handshake is beneficial in a variety of additional scenarios where
the receiver needs to send frequent feedback to the sender. This in-
cludes beamforming, multi-user MIMO systems, and interference
alignment.

1/24 + 1/27)µs = 16.8ms.

ACM SIGCOMM Computer Communication Review 33 Volume 42, Number 2, April 2012

7. REFERENCES
[1] Ettus Inc., Universal Software Radio Peripheral.

http://ettus.com.
[2] IEEE Std 802.11-1997, pages i –445, 1997.
[3] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly.

Design and experimental evaluation of multi-user
beamforming in wireless lans. In ACM MobiCom, 2010.

[4] J. Bicket. Bit-rate selection in wireless networks. 2005.
[5] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M.

Voelker, and S. Savage. Jigsaw: solving the puzzle of
enterprise 802.11 analysis. In ACM SIGCOMM, 2006.

[6] S. Gollakota and D. Katabi. Zigzag decoding: Combating
hidden terminals in wireless networks. In ACM SIGCOMM,
2008.

[7] S. Gollakota and D. Katabi. Physical layer wireless security
made fast and channel-independent. In IEEE INFOCOM,
2011.

[8] S. Gollakota, S. D. Perli, and D. Katabi. Interference
Alignment and Cancellation. In ACM SIGCOMM, 2009.

[9] D. Halperin, T. Anderson, and D. Wetherall. Taking the sting
out of carrier sense: interference cancellation for wireless
lans. In ACM MobiCom, 2008.

[10] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable
802.11 packet delivery from wireless channel measurements.
In ACM SIGCOMM, 2010.

[11] J. Heiskala and J. Terry. OFDM Wireless LANs: A
Theoretical and Practical Guide. Sams Publishing, 2001.

[12] G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive mac
protocol for multi-hop wireless networks. In ACM MobiCom,
2001.

[13] Z. Ji, Y. Yang, J. Zhou, M. Takai, and R. Bagrodia.
Exploiting medium access diversity in rate adaptive wireless
lans. In ACM MobiCom, 2004.

[14] G. Judd, X. Wang, and P. Steenkiste. Efficient channel-aware
rate adaptation in dynamic environments. In ACM MobiSys,
2008.

[15] T. H. Kim, J. Robert W. Heath, and S. Choi. The hidden cost
of overhead in MIMO wireless LANs. Technical report, Feb.
2007.

[16] K. C.-J. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing
partial packets in 802.11 networks. In ACM MobiCom, 2008.

[17] D. Tse and P. Vishwanath. Fundamentals of Wireless
Communications. Cambridge University Press, 2005.

[18] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer
wireless bit rate adaptation. In ACM SIGCOMM, 2009.

[19] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust
rate adaptation for 802.11 wireless networks. In ACM
MobiCom, 2006.

[20] T. Yoo, S. Member, and A. Goldsmith. On the optimality of
multiantenna broadcast scheduling using zero-forcing
beamforming. IEEE J. Select. Areas Commun, 24:528–541,
2006.

ACM SIGCOMM Computer Communication Review 34 Volume 42, Number 2, April 2012

	Introduction
	Lightweight Handshake
	Header-Payload Separation
	Practical Issues
	Overhead of Light Handshake

	Experimental Environment
	Empirical Study
	Feasibility of Header-Payload Separation
	Application to the Detection of Hidden Terminals
	Application to Rate Adaptation

	Related Work
	Conclusion
	References

