
A lightweight approach for embedded reconfiguration of FPGAs

Brandon Blodget
Xilinx Research Labs

2100 Logic Drive, San Jose, CA, 95124, USA
brandon.blodget@xilinx.com

Scott McMillan
Xilinx Inc.

2100 Logic Drive, San Jose, CA, 95124, USA
scott.mcmillan@xilinx.com

Patrick Lysaght
Xilinx Research Labs

2100 Logic Drive, San Jose, CA, 95124, USA
patrick.lysaght@xilinx.com

Abstract

This paper presents a lightweight approach for embed-
ded reconfiguration of Xilinx Virtex IItm series FPGAs. A
hardware and software infrastructure is reported that en-
ables an FPGA to dynamically reconfigure itself under the
control of a soft microprocessor core that is instantiated on
the same array. The system provides a highly integrated,
lightweight approach to dynamic reconfiguration for em-
bedded systems. It combines the benefits of intelligent con-
trol, fast reconfiguration and small overhead.

1. Introduction

Dynamic reconfiguration and self-reconfiguration are
two of the more advanced forms of FPGA reconfigurabil-
ity. Dynamic reconfiguration implies that an active array
may be partially reconfigured, while ensuring the correct
operation of those active circuits that are not being changed.
Self-reconfiguration extends the concept of dynamic recon-
figurability. It assumes that specific circuits on the array
are used to control the reconfiguration of other parts of
the FPGA. Clearly the integrity of the control circuits must
be guaranteed during reconfiguration, so by definition self-
control is a specialized form of dynamic reconfiguration.

Both dynamic reconfiguration and self-reconfiguration
rely on an external reconfiguration control interface to boot
an FPGA when power is first applied or the device is re-
set. Once initially configured, self-control requires an inter-
nal reconfiguration interface that can be driven by the logic
configured on the array. On Xilinx Virtex IItm parts, this
interface is called the internal reconfiguration access port
(ICAP). We have interfaced the ICAP to Xilinx’s MicroB-
laze, a 32-bit RISC soft microprocessor core, to provide in-

telligent control of device reconfiguration at runtime. The
integration of this functionality is especially attractive for
embedded systems. This lightweight approach maximizes
flexibility while minimizing additional external circuitry.

In the next section, we review the details of the ICAP and
the reconfiguration mechanisms of the Virtex IItm FPGAs.
This provides the background necessary for an appreciation
of the hardware and software subsystems of the reconfigu-
ration control infrastructure that are described in sections 3
and 4. Section 5 describes a novel application of the new
controller in telecommunications switching. Section 6 con-
cludes the paper.

2. Virtex IItm Reconfiguration Mechansim

Virtex IItm devices are configured by loading application
specific data into configuration memory. On the Virtex IItm

the configuration memory is segmented into ”frames”. Vir-
tex IItm devices are partially reconfigurable and a frame is
the smallest unit of reconfiguration. The number of frames
and the bits per frame is different for the different devices
in the Virtex IItm family. The number of frames is pro-
portional to the CLB width of the device. The number bits
per frame is proportional to the CLB height of the device.
For example an XC2V40 has 404 frames and 104 bytes per
frame. The XC2V6000 has 2508 frames and 984 bytes per
frame.

The Virtex IItm has an internal reconfiguration access
port (ICAP). ICAP provides an 8 bit input data bus and an
8 bit output data bus which can be used by internal logic
to reconfigure and readback configuration memory. As an
example to reconfigure/readback a LUT requires 2 frames
of data. On a XC2V40 at 50 MHz this would take 4us. On
a larger device like the XC2V6000 it would take 40us.

1530-1591/03 $17.00 2003 IEEE

MicroBlaze

Dual-port
Block
RAM

CoreConnect OPB

Control
Logic

ICAP
FPGA
Config.
Memory

Figure 1. Block diagram of the hardware com-
ponents of the system

2.1. Hardware Subsystem

The hardware subsystem of our reconfiguration control
infrastructure sits on the on-chip peripheral bus (OPB).
The MicroBlaze microprocessor communicates with this
peripheral over the OPB bus. The hardware peripheral is
designed to provide a lightweight solution to reconfigura-
tion. In order to do this it employees a read/modify/write
strategy. Only one frame of data is worked on at one time.
This way external memory is not needed to store a com-
plete copy of the configuration memory. Figure 1 shows a
block diagram of this peripheral. The MicroBlaze program
request a specific frame, then the control logic of the periph-
eral uses the ICAP to do a readback and loads the config-
uration data into a dual-port block RAM. One block RAM
can hold an XC2V8000 data frame easily. When the read-
back is complete the MicroBlaze program directly modifies
the configuration data stored in the bram. Finally the ICAP
is used to write the modified configuration data back to the
device.

2.2. Software Subsystem

The software subsystem is implemented using a layered
approach. This allows us to change the implementation of
the lower layers without affecting the upper layers. This
layered approach proved useful for debugging the Level 2
API in that we were able to test the API in a purely soft-
ware environment to make sure the partial reconfiguration
packets were getting created correctly.

The Level 2 API provides useful functions for embed-
ded applications requiring reconfiguration. There are func-
tions for downloading partial bitstreams stored in external
memory. There are functions for copying regions of config-
uration memory, and pasting it to a new location. Finally
there are JBits like API calls for reconfiguring select FPGA
resources.

It is foreseen that a Level 3 could sit between the Level

Application Code

Tools

API

Device Drivers

ICAP
Controller

Emulated ICAP
Device Drivers

Level 0

Level 1

Level 2

Level 3

Embedded MicroBlaze External
(Window/Unix)

Hardware
Independent

Hardware
Dependent

Figure 2. Software subsystem architecture

2 API and the embedded application. This level could en-
force user defined design rules. For example the user could
define certain regions that are static and should not be re-
configured.

2.3. Work in progress

Several extensions and applications of the system are in
progress. The first of these is to produce a variant of the
original system on a Virtex VII Pro device in which a Pow-
erPC, hard microprocessor, will replace the MicroBlaze soft
processor. The new system will be used to control the op-
eration of a dynamically reconfigurable crossbar switch, re-
ported previously. The result will be the first, fully inte-
grated, dynamically reconfigurable, crossbar switch on an
FPGA.

2.4. Conclusions

We have described an intelligent subsystem for
lightweight reconfiguration of Xilinx Virtex IItm FP-
GAs in embedded systems. The system enables self-
reconfiguration under software control within a single
FPGA. The reconfiguration subsystem has a layered hard-
ware and software architecture that permits a variety of dif-
ferent interfaces to maximize flexibility and ease-of-use.
The first application of the controller is to integrate the con-
trol of the operation of a dynamically reconfigurable cross-
bar switch for telecommunications applications.

2.5. Acknowledgements

It is a pleasure to acknowledge the contributions made
to this work by Xilinx Research Labs members Phil James-
Roxby, Eric Keller and Prasanna Sundararajan.

