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Abstract: Plant diseases pose a significant challenge for food production and safety. Therefore, it
is indispensable to correctly identify plant diseases for timely intervention to protect crops from
massive losses. The application of computer vision technology in phytopathology has increased
exponentially due to automatic and accurate disease detection capability. However, a deep convo-
lutional neural network (CNN) requires high computational resources, limiting its portability. In
this study, a lightweight convolutional neural network was designed by incorporating different
attention modules to improve the performance of the models. The models were trained, validated,
and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various
attention modules in plant disease classification was compared in terms of the performance and
computational complexity of the models. The performance of the models was evaluated using the
standard classification accuracy metrics (precision, recall, and F1 score). The results showed that
CNN with attention mechanism improved the interclass precision and recall, thus increasing the
overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parame-
ters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However,
amongst the proposed lightweight models, the model with attention mechanism nominally increased
the network complexity and parameters compared to the model without attention modules, thereby
producing better detection accuracy. Although all the attention modules enhanced the performance
of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%),
followed by the self-attention (SA) mechanism (average accuracy 99.34%).

Keywords: attention module; convolutional neural networks; lightweight network; tomato disease;
disease detection

1. Introduction

Tomato is a ubiquitous crop with high nutritional values in the world. More than
180 million tons of tomatoes were produced worldwide in 2018, and Asia is the biggest
market and producer of tomatoes [1]. However, it is affected by many diseases and pests,
and the precise identification of those diseases is a challenging task for agronomists [2].
Traditionally, farmers have utilized their experience and visual inspection to identify plant
diseases, but this comes with some serious cost, efficiency, and reliability issues [3]. Some-
times, even an experienced farmer and agronomist might fail to correctly identify a plant
disease due to the large variety of species and similar disease symptoms. Furthermore, an
increase in global temperature due to climate change has increased the chances of diseases
occurring and spreading quickly [4]. Therefore, automatic detection of plant diseases is
of utmost necessity for timely intervention in order to prevent massive losses. Convolu-
tional neural network (CNN) is a powerful deep learning algorithm for image detection
and classification that automatically extracts and analyzes image features. Therefore, the
application of CNNs is soaring in most domains. Although CNN was introduced by
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Neocognitron [5] and LeNet [6] in the 1980s, the application of CNN skyrocketed after it
successfully classified ImageNet 1000 datasets by AlexNet [7] using graphical processing
unit (GPU).

The computer vision technique is widely used for agricultural domains such as prod-
uct quality inspection, disease identification, and crop monitoring and management [8].
Phytopathology is one of the prominent fields of agriculture for computer vision appli-
cation. Moreover, accurate and automatic detection of plant diseases is a complex and
challenging task due to the clutter background, multiple simultaneous disorders, nuances
in some disease characteristics, variations in symptoms, etc. [9]. With efficient hardware
and software development, the implementation of deep CNNs for plant disease detection
has steadily increased. Besides disease detection and classification, CNN is used for pixel-
level segmentation of diseased and healthy regions, allowing the measurement of disease
severity [10]. Toda and Okura [11] designed a CNN based on InceptionV3 architecture us-
ing publicly available datasets, which had 54,306 images in which 26 classes were diseased
images and 12 classes were healthy images from 14 different plants. They also visualized
the internal performance of the CNN by exposing the output of the intermediate layer into
a human interpretable form. Moreover, they investigated how CNN extracts the color and
texture features of the lesion region using the semantic dictionary method. By visualizing
the intermediate layer’s output, they could reduce the network parameters by 75%.

The conventional CNN, a stack of convolutional and activation layers, learns global
features from input images and trains the model accordingly. However, the background
features sometimes overpower the foreground leaf and diseased regions, thus drastically
reducing the performance of the model for test images of different scenarios [12,13]. Inte-
grating the attention mechanism to CNN allows the model to focus on significant features
rather than global features [14,15]. After the persuasive performance of the attention
mechanism on many image classification datasets, various researchers have adapted it
for plant disease classification [16–20]. Zeng and Li [16] designed a lightweight residual
network (ResNet) incorporating a self-attention module in the base network with four
residual blocks with 13 convolutional layers. They empirically tested the best locations of
the attention module in the base network and obtained the highest classification accuracy
at the 8th convolutional layer. In addition, the various channel reduction ratios (1/2 to
1/16) were tested, and the best result was obtained at 1/8. In contrast, Lee et al. [17] used
attached an attention module with recurrent neural network (RNN) and trained it using
features extracted from input images. They used a pretrained GoogleNet CNN, Mountain
View, CA, USA, for global feature extraction and applied attention mechanism on the
features before applying it to the gated RNN and classifying 20 disease classes and one
healthy class of plant diseases. The model with attention mechanism showed significant
improvement, even for the unseen test datasets. Zhao et al. [18] and Yilma et al. [19] also
applied attention-based deep CNN to classify tomato diseases. Zhao et al. [18] used a
squeeze-and-excitation network (SENet), also called channel attention module, and inte-
grated it into each stage of the ResNet50 architecture to build a proposed model called
SE-ResNet50. Then, the performance of the proposed model was evaluated with some
baseline models without the SENet module for tomato and grape disease classification.
On the other hand, Yilma et al. [19] used attention augmented residual (AAR) network
that mixed the features from a residual block and element-wise multiplied features from a
residual block and an attention block to discriminate global features of tomato diseases.
Moreover, they used a conditional variation generative adversarial network (CVGAN)
to generate synthetic image data for increase in training and testing datasets. Moreover,
various researchers have utilized openly available tomato disease datasets to validate the
performances of conventional CNNs without the attention modules [2,21–23]. All the above
mentioned works used standard CNN architectures with deep and substantial training
parameters that were designed for large image datasets, such as ImageNet-1K, MS COCO,
and VOC-7. Although a deep and heavy network produces better detection accuracy, it
needs high-performance hardware and massive training datasets. Therefore, it is vital to
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study the performance of lightweight CNNs with improved image recognition algorithm
(attention modules) for detection of a few classes of plant diseases.

In this study, a lightweight CNN with 20 layers and reduced trainable parameters was
designed using the ResNet topology [24]. Then, the commonly used attention modules,
namely the convolutional block attention module (CBAM) [15], self-attention module [16],
squeeze-and-excitation module [25], and the dual attention module [26], were integrated
into the base network to observe the impact of different attention mechanisms on con-
ventional CNN. Moreover, the performance of the models with and without attention
mechanisms was assessed by employing well-known classification metrics (accuracy, preci-
sion, recall, and F1 score). All the models were trained, validated, and tested using tomato
disease datasets split at a ratio of 8:1:1 for training, validation, and testing. Furthermore,
the productive number of attention modules and their locations in the base network were
comprehensively assessed through an ablation study. Finally, the computational complexity
of the models, the training and testing time per image, network parameters, and sizes were
calculated and compared parametrically. Therefore, the main objectives of this study were
to design a lightweight and computationally efficient network for classification of a few
classes of plant diseases, improve the performance of conventional CNN by amending it
with an attention mechanism, and identify an effective and efficient attention module for
plant disease detection.

2. Materials and Methods
2.1. Data Collection and Preprocessing

Ten classes of tomato leaf images (9 disease and one healthy) that were part of the
PlantVillage public datasets [27] were collected. The Fusarium wilt diseased images were
captured from the greenhouse located at Gyeongsang National University, South Korea. In
this way, a total of 19,510 images from 10 distinct disease classes and one healthy class were
used to train, validate, and test the models. Most of the field-captured images were taken
nondestructively, but few leaves were detached from the plant and captured on a white
background. A sample of images from each class is presented in Figure 1. Similarly, Table 1
shows various information about the dataset, such as class assignment, the common and
scientific name of the tomato diseases [13], the number of images per class, and the source
of data collection. As image data preparation is very crucial in the deep learning model,
different image preprocessing functions were carried out before applying to the model. The
main preprocessing functions were labeling, resizing, rescaling, and augmentation of the
raw images. Then, the images were split into training, validation, and testing sets at the
ratio of 8:1:1 [12]. The larger the number of input images, the better the learning of the deep
model. Thus, the image augmentation technique was performed to the training datasets.

2.2. Lightweight Attention-Based Network Design

A lightweight attention-based CNN model was designed using ResNet topology. It
consisted of 20 layers, and the attention modules were embedded between the residual
blocks 3 and 4 (after the 16th layer) [16]. Figure 2 shows the block diagram of the proposed
model, and the detailed parameters of the base model are given in Table 2. The kernel
filters of each layer of the base network were four times lower than the standard ResNet
architecture, lowering the total network parameters to make it lighter and portable. In
addition, the number of convolutional layers was limited to 20 to decrease the network
complexity [28]. Conv1 layer had 16 kernel filters of large patch size (7 × 7) followed by a
batch normalization layer, a rectifier linear unit (ReLU) activation layer, and a maximum
pooling layer (Max. pooling), which reduced the size of feature maps to half of the input
image size. Residual blocks 1 and 4 comprise a convolutional block containing three
convolutional layers (conv.) accompanied by a batch normalization (BN) layer and an
activation (ReLU) layer. Whereas Residual blocks 2 and 3 have a convolutional block
followed by an identity block. The structure of the identity block was similar to the
convolutional block except for the shortcut path. Finally, a global average pooling (Global
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Avg. Pooling) layer converted 2D feature maps to 1D before a dense output layer. The
various attention modules were inserted into the base network at the same location, as
shown in Figure 2. The necessary zero padding and maximum pooling layers were added
to adjust the spatial dimension of the input and output feature maps.

2.2.1. Convolutional Block Attention Module (CBAM)

CBAM uses two attention modules (channel attention and spatial attention) in series,
followed by the spatial attention module [15], as shown in Figure 3. The channel attention
module was used to generate two feature maps using average and maximum pooling layers
from the intermediate layer. Then, both feature maps were input to the shared multilayer
perceptron (MLP), and the output feature maps were added before normalizing using
the sigmoid function. The multiplied features between the channel attention module and
convolutional layer were applied to the spatial attention module to determine the position
of the important features in the image. The final feature maps from the channel and spatial
attention modules are given in Equations (1) and (2).

CA(x) = σ(MLP(AvgPool(x)) + MLP(MaxPool(x))) (1)

SA(x) = σ
(

f 7×7
([

Fs
avg; Fs

max

]))
(2)

where CA(x) represents the channel attention feature maps, SA(x) is the spatial attention
feature maps, σ represents the sigmoid function of the feature maps, f 7×7 represents
the 7 × 7 convolutional operation, MLP is multilayer perceptron, AvgPool(x) is average
pooling of input x, MaxPool(x) is the maximum pooling of input x, Fs

max is the feature maps
obtained from maximum pooling operation, and Fs

avg is the feature maps from maximum
pooling operation.

Figure 1. Sample image of the dataset. (a) Bacterial spot, (b) early blight, (c) Fusarium wilt, (d) healthy,
(e) late blight, (f) leaf mold, (g) mosaic virus, (h) Septoria leaf spot, (i) spider mites; (j) target spot,
(k) yellow leaf curl virus.

2.2.2. Squeeze-and-Excitation (SE) Attention Module

The dimension of the input feature map was squeezed to 1 × 1 × C by global pooling
operation, and two fully connected (FC) layers followed by a rectifier linear unit (ReLU)
and sigmoid activation layers were attached to build an excitation block [25], as shown in
Figure 4. The squeeze-and-excitation (SE) feature maps were element-wise multiplication,
with the input feature maps forwarding to the next layer. The computational operation
of the SE module is expressed mathematically in Equation (3). Finally, a mathematical
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multiplication was carried out to incorporate the SE features maps to the main network’s
feature maps.

SE(x) = Fex(x, W) = σ(W2δ(W1x)) (3)

where SE(x) represents the squeeze-and-excitation feature maps, Fex is squeezed or global
pooled features, x is the input feature maps, W is the weight of the SE networks, σ is
sigmoid operation, δ is ReLU operation, and W1 and W2 are the weights of the first and
second dense layer, respectively.

Table 1. Details of tomato disease datasets, including assignment of class label, common and scientific
names of diseases, number of images per class, and the source of data collection.

Class
Label

Disease Common Name Scientific Name Images (No.) Source (%)

Public Field

0 Bacterial spot Xanthomonas campestris
pv. vesicatoria 2127 100

1 Early blight Alternaria solani 1000 100

2 Fusarium wilt Fusarium oxysporum
f.sp. lycopersici 1350 - 100

3 Healthy - 1591 100
4 Late blight Phytophthora infestans 1909 100
5 Leaf mold Fulvia fulva 952 100
6 Mosaic virus Tomato mosaic virus 373 100
7 Septoria leaf spot Septoria lycopersici 1771 100
8 Spider mites Tetranychus urticae 1676 100
9 Target spot Corynespora cassiicola 1404 100

10 Yellow leaf curl virus Begomovirus (Fam.
Geminiviridae) 5357 100

Total 19,510

Figure 2. Block diagram of the proposed lightweight model. The attention modules were embedded
between residual block 3 and 4, allowing the models to focus on high-level features. In addition,
a convolutional layer and a batch normalization layer were attached to the shortcut path. Where,
Conv1: Convolutional layer 1, Conv: Convolutional layer, BN: Batch Normalization, and Global Avg.
Pooling: Global average pooling.

2.2.3. Self-Attention (SA) Module

Figure 5 represents the embedding of a self-attention module into the network and its
architecture [16]. It consisted of three parallel convolutional and ReLU activation layers to
extract the discriminating features from the input images. The output of the two convolutional
layers was multiplied element-wise and fed to a softmax layer to generate an attention map.
Then, the attention maps were multiplied by the transpose of the feature maps generated from
the third convolutional branch to obtain self-attention feature maps. Finally, scaled attention
maps were added to the input feature maps to generate output feature maps, as shown in
Equation (4).
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Out(x) = µSA(x) + In(x) = µ(S(x).T(x)) + In(x) = µ
(

So f t(P(x).Q(x)).R(x)T
)

+ In(x) (4)

where out(x) is output features maps after the self-attention (SA) module, SA(x) is the
feature maps after self-attention module, In(x) is the input feature maps, So f t is softmax
operation, µ is a scaling factor, P(x), Q(x), and R(x) are the feature maps generated from
the three parallel convolutional paths of the SA module, S(x) is the feature maps after
softmax operation, and T(x) is the transposed feature maps of the P(x).Q(x).

Table 2. Detailed architectural parameters of the lightweight ResNet20 base network.

Block Sub-Block Layer Kernel Size, Stride
and Number Output Shape

Input image Input 256 × 256 × 3
Conv1 Convolutional 7 × 7, 2, 16 128 × 128 × 16

Residual block1 Convolutional block
” 1 × 1, 2, 16

63 × 63 × 64
” 3 × 3, 1, 16
” 1 × 1, 1, 64

Shortcut ” 1 × 1, 2, 64

Residual block2

Convolutional block
” 1 × 1, 2, 32

32 × 32 × 128

” 3 × 3, 1, 32
” 1 × 1, 1, 128

Shortcut ” 1 × 1, 2, 128

Identity block
” 1 × 1, 1, 32
” 3 × 3, 1, 32
” 1 × 1, 1, 128

Residual block3

Convolutional block
” 1 × 1, 2, 64

16 × 16 × 256

” 3 × 3, 1, 64
” 1 × 1, 1, 256

Shortcut ” 1 × 1, 2, 256

Identity block
” 1 × 1, 1, 64
” 3 × 3, 1, 64
” 1 × 1, 1, 256

Residual block4 Convolutional block
” 1 × 1, 2, 256

8 × 8 × 1024
” 3 × 3, 1, 256
” 1 × 1, 1, 1024

Shortcut ” 1 × 1, 2, 1024
Global average pooling Global average pooling 1024

Dense Output 11

” represents the same content as the above row (convolutional).

2.2.4. Dual Attention (DA) Module

The authors of [26] proposed a dual attention mechanism with two attention networks,
namely position attention (PA) and channel attention (CA) networks for scene segmenta-
tion. The position attention network is similar to the self-attention module except for the
activation layers and the use of some different strategies for attention map generation, as
shown in Figure 6. The DA module also contains a channel attention network that performs
two multiplication operations, softmax, and an addition operation. Equation (5) shows the
overall mathematical operations carried out in the dual attention module, and Equations
(6) and (7) provide the mathematical operation performed in the PA and CA networks.

DA(x) = PA(x) + CA(x) (5)

PA(x) = U(x) + In(x) = R(x).S(x) + In(x) = So f t(P(x)T .Q(x)).S(x) + In(x) (6)

CA(x) = N(x) + In(x) = so f t(M(x)).In(x) + In(x) = So f t(In(x)T .In(x)).In(x) + In(x) (7)
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where DA(x) is the dual attentions’ feature maps, PA(x): position attentions’ feature maps,
CA(x): channel attentions’ feature maps, In(x): input feature maps, P(x), Q(x), and R(x):
feature maps of three parallel convolutional operations, T(x): transposed P(x).Q(x), S(x):
feature maps after the softmax operation of T(x), U(x): multiplied feature maps of S(x)
and R(x), CA(x): channel attention feature maps, N(x): multiplied feature of softmax(M(x))
and input feature maps, M(x): multiplied feature maps of reshaped and transposed and
reshaped input feature maps, and . and + are the element-wise product and multiplication
of the feature maps.

Figure 3. Convolutional block attention module (CBAM) architecture and embedding to the main
network. (a) Application of the CBAM in the main network, (b) Channel attention (CA) module
architecture, and (c) Spatial attention (SA) module architecture. Where H: Height of the feature map,
W: Width of the feature map, C: number of channels or feature maps, and MLP: Multilayer Perceptron.

Figure 4. Squeeze-and-excitation (SE) architecture and placement into the main network. (a) Place-
ment of the SE module in the main network and (b) squeeze-and-excitation (SE) module architecture.
Where H: height of the feature map, W: width of the feature map, C: number of channels, r: channel
reduction ratio (8), FC: fully connected layer, and ReLU: Rectifier linear Unit.
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Figure 5. Self-attention (SA) architecture and its integration into the main network. (a) Integration of
the SA module in the main network and (b) self-attention (SA) module architecture. Where Conv.
layer: convolutional layer and ReLU: rectifier linear unit, H: height of the feature map, W: width
of the feature map, C: number of channels, r: channel reduction ratio, In(x): input feature maps,
P(x): feature maps after the first branch convolutional and ReLU operations, Q(x): feature maps after
the second branch convolutional and ReLU operations, R(x): feature maps after the third branch
convolutional and ReLU operations, T(x): transposed feature maps of P(x).Q(x), S(x): softmax output
of transposed feature maps, SA(x): self-attention feature maps, µ: scaling factor, and Out(x): output
feature maps after the SA module.

Figure 6. Dual attention (DA) architecture and its application into the main network. (a) Application
of the DA module in the main network, (b) position attention (PA) network architecture, and
(c) channel attention (CA) network architecture. Where Conv. layer: convolutional layer, P(x),
Q(x), and R(x) are the feature maps from the three parallel convolutional operations, H: height of the
feature map, W: width of the feature map, C: number of channels, T(x): transposed feature maps
of P(x).Q(x), S(x): feature map after the softmax operation of T(x), U(x): reshaped feature maps of
S(x).R(x), PA(x): position attention feature maps, In(x): input feature maps of the modules, M(x):
feature maps after the multiplication of reshaped and transposed and the input feature maps, N(x):
feature maps after the element-wise multiplication of the softmax output of M(x) and reshaped input
feature maps, and CA(x): channel attention feature maps.

2.3. Network Training and Evaluation

The lightweight base network and all the models with the various attention modules
were trained, validated, and tested using the same image datasets. Moreover, the same
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training hyperparameters and evaluation strategies were applied to fairly compare their
performance. As the deep CNN performance improves for a large number of training
datasets, we used several data augmentation algorithms, as shown in Table 3. The data
augmentation approaches were executed only on training datasets after splitting the whole
images into training, validation, and testing sets. The increase in training image count
due to the data augmentation process is provided in Table 4. Thus, the training images
increased massively after the augmentation (8 times). Furthermore, the Adam optimizer
with default learning rate was chosen as training hyperparameter to effectively converge
the network [29]. Although the models were trained for a fixed 100 epochs, the optimally
trained model was saved for testing purpose in every epoch to ensure minimum validation
loss. Furthermore, an Adam optimizer that effectively converges the network [29] was
chosen. Then, all the trained models were evaluated using the same testing datasets. The
performance of the models was quantified by adopting the standard classification metrics,
as shown in Equations (8)–(11) [30]. In addition, the size of the models was determined
by counting the total number of network parameters and the memory space usage. On
the other hand, the computational complexity was determined using the floating point
operations (FLOPs), the total mathematical operations required to complete a forward and
backpropagation of an input image.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 − score = 2 × Precision × Recall
Precision + Recall

(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP stands for true positive, TN for true negative, FP is false positive, and FN is false
negative of the predicted class.

Table 3. Training hyperparameters and details of data augmentation.

Particular Description

Batch size 32
Optimizer Adam
Learning rate 0.001 (default)
Epoch 100
Data augmentation:

Image zooming 0.2
Vertical shearing 0.2
Horizontal shearing 0.2
Vertical flip True
Horizontal flip True
Vertical shift 0.2
Horizontal shift 0.2
Image rotation 45◦

The training, validation, and testing of all the models were done in the same hardware
and software environment. A workstation with Intel Core 10th generation i9-10900K
processor, an NVIDIA RTX 2070 GPU (8 GB dedicated memory), and 64 GB DDR4 RAM
with Windows 10 Pro, Redmond, WA, USA, operating system was used. Keras with
TensorFlow 2.4.1, Santa Clara, CA, USA, running at the backend, CUDA Toolkit 11.0,
Santa Clara, CA, USA, cuDNN v8.2.0, Santa Clara, CA, USA, and Python 3.8.3, Wilmington,
DE, USA, were used in this study.
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Table 4. Statistics of training, validation, and testing datasets with data augmentation.

Class Name
Training

Validation * Testing *
Original Count After Augmentation

Bacterial spot 1701 15,309 212 214
Early blight 800 7200 100 100

Fusarium wilt 1080 9720 135 135
Healthy 1272 11,448 159 160

Late blight 1527 13,743 190 192
Leaf mold 761 6849 95 96

Mosaic virus 298 2682 37 38
Septoria leaf spot 1416 12,744 177 178

Spider mites 1340 12,060 167 169
Target spot 1123 10,107 140 141

Yellow leaf curl virus 4285 38,565 535 537
Total count 15,603 140,427 1947 1960

* Data augmentation was applied only for training datasets; therefore, the validation and testing data records are
not changed.

3. Results
3.1. Training, Validation, and Testing Accuracy of the Models

All the models were trained and validated with the same dataset, training, and
validation parameters. Figure 7 shows the training and validation accuracy and loss
plots of the different models. The base model without attention module (lw_resnet20)
trained relatively slower (indicated by a black line) than the model with attention modules.
The model with SE attention module (lw_resnet20_se, represented by a blue line) showed
quick training ability, as shown in Figure 7a,b. The validation accuracy and loss of all the
models provided a significant fluctuation in each epoch. The best training accuracy and
loss were obtained from the base model, followed by the lw_resnet20_se model. However,
the highest validation accuracy and loss results were achieve by the lw_resnet20_cbam
model, followed by the lw_resnet20_da model, as shown in Table 5.

Figure 7. Cont.
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Figure 7. Training and validation accuracy and loss of the models. (a) Training accuracy, (b) training
loss, (c) validation accuracy, and (d) validation loss.

Table 5. Top-1 training and validation loss and accuracy obtained from different models.

Model
Training Validation

Loss Accuracy Loss Accuracy

lw_resnet20 0.0155 0.9954 0.0194 0.9936
lw_resnet20_cbam 0.0186 0.9942 0.0155 0.9951
lw_resnet20_se 0.0169 0.9942 0.0300 0.9905
lw_resnet20_sa 0.0205 0.9938 0.0198 0.9947
lw_resnet20_da 0.0205 0.9925 0.0191 0.9947

3.2. Network Parameters and Efficiency

The deeper the network, the more network parameters there are, thus increasing the
size and computational complexity of the network [31]. The network parameters, size,
training and testing efficiency, FLOPs, and the average accuracy on the test dataset are
presented in Table 7. The proposed models had almost 16 times fewer network parameters
and were 23 times less complex than the standard ResNet50 model [15]. The base model
was found to be comparatively efficient and lightweight due to fewer network parameters
but showed poor performance on the test dataset. The SE and CBAM modules are the
lightest attention modules compared to SA and DA. Moreover, the channel attention of
CBAM and the module structure of SE are somewhat similar except for the maximum
pooling layers. The training time of the models was not significantly different amongst
the various attention modules. The test time per image of the model was calculated by
averaging the time taken to detect 1960 test images. The SA and DA modules are heavier
than CBAM and SE, increasing the computational complexity.
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Figure 8. Cont.
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Figure 8. Confusion matrices provided by various models on the test dataset. (a) Lightweight base
model (lw_resnet20), (b) lightweight model with CBAM (lw_resnet20_cbam), (c) model with SE
attention module (lw_resnet20_se), (d) SA-based model (lw_resnet20_sa), and (e) DA-based model
(lw_resnet20_da).

Table 6. Precision, recall, F1 score, and average accuracy, obtained from the base model and models
with different attention modules.

* Class
Label

lw_resnet20 lw_resnet20_cbam lw_resnet20_se lw_resnet20_sa lw_resnet20_da

prec. rec. F1 Score prec. rec. F1 Score prec. rec. F1 Score prec. rec. F1 Score prec. rec. F1 Score

0 0.98 1.00 0.99 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1 0.96 0.97 0.97 1.00 0.99 0.99 0.97 0.98 0.98 1.00 0.97 0.98 0.95 0.99 0.97
2 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
3 1.00 0.97 0.99 0.99 1.00 1.00 1.00 0.97 0.98 1.00 0.99 1.00 1.00 0.97 0.99
4 0.99 0.95 0.97 0.99 1.00 0.99 0.96 1.00 0.98 0.99 1.00 0.99 0.98 0.96 0.97
5 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 1.00 0.98 0.99 0.99 0.98 0.98
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 0.96 1.00 0.98 1.00 0.99 1.00 0.99 0.99 0.99 0.98 1.00 0.99 0.97 1.00 0.99
8 1.00 0.97 0.98 1.00 0.99 1.00 0.99 0.99 0.95 0.99 0.98 0.99 0.99 0.99 0.99
9 0.95 0.96 0.96 0.99 0.99 0.99 0.97 0.93 0.95 0.97 1.00 0.99 0.99 0.98 0.98
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Avg. acc. 0.9858 0.9969 0.9885 0.9932 0.9890

* 0: bacterial spot, 1: early blight, 2: Fusarium wilt, 3: healthy, 4: late blight, 5: leaf mold, 6: mosaic virus, 7: Septoria
leaf spot, 8: spider mites, 9: target spot, 10: yellow leaf curl virus. prec.: precision, rec.: recall, avg. acc.: average
accuracy; lw_resnet20: lightweight ResNet20 base model, lw_resnet20_cbam: lightweight convolutional block
attention module (CBAM) model, lw_resnet20_se: lightweight squeeze-and-excitation (SE) model, lw_resnet20_sa:
lightweight self-attention (SA) model, lw_resnet20_da: lightweight dual attention (DA) model. The bold face
average accuracy is the highest accuracy.

Table 7. Network parameters, training and testing efficiency, network size, and FLOPs of
different models.

Model Network
Parameters

Training Time
(h:m:s)

Test Time per
Image (ms) Size on Disk (MB) GFLOPs Average

Accuracy (%)

lw_resnet20 1,424,043 3:42:47 0.795 16.6 0.439 98.58
lw_resnet20_cbam 1,440,813 3:45:16 0.914 16.8 0.440 99.69
lw_resnet20_se 1,440,715 3:43:24 0.927 16.8 0.440 98.85
lw_resnet20_sa 1,572,075 3:44:14 0.961 18.3 0.553 99.32
lw_resnet20_da 1,505,963 3:46:27 0.984 17.6 0.587 98.90

Standard
ResNet50 23,610,251 3:45:51 1.591 270 10.10 98.74
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4. Discussion
4.1. Tomato Disease Detection

The low interclass variance, high intra-class variance, and mixed symptoms of two or
more diseases on the same leaf are some of the serious challenges for plant disease detection
using computer vision techniques [9]. As all the images were of tomato leaves, the chances
of producing false positive (FP) and false negative (FN) were higher due to lower interclass
variance. Moreover, some of the images of late blight and target spot disease were in
the preliminary stage, so there was marginal difference between diseased images and
healthy images or mistakenly labeled ones, as shown in Figure 9. Therefore, most of the
models poorly detected early blight, healthy, late blight, and target spot leaf images. In
contrast, all the models perfectly identified the Fusarium wilt diseased images because of
the distinction in datasets. The majority of the Fusarium wilt images were captured directly
on the plant (nondestructively), which made them unique with the background and leaf
position (Figure 1). The precision, recall, and F1 score of the target spot class were minimum
for all the models due to higher FPs and FNs. All models wrongly detected some healthy
images as late blight, bacterial spot, and target spot diseases except the lw_resnet20_cbam
model, which falsely identified 1% of target spot images as healthy leaves because some
diseased images at a very early stage were almost visually indistinguishable from healthy
leaves. Therefore, all the models failed to achieve 100% correct classification of healthy
and diseased images. However, lw_resnet20_cbam and lw_resnet20_sa models performed
well except for giving 1% FPs and FNs, respectively. On the other hand, almost all the
models precisely identified bacterial spot, leaf mold, mosaic virus, and yellow leaf curl
virus diseased images.

Figure 9. Sample images of different classes with visually similarity. (a) Healthy leaf image, (b) late
blight diseased image, and (c) target spot diseased image.

4.2. Performance Evaluation of the Models

The attention modules allow the network to identify the discriminative features and
their location in the input images to emphasize key features during training. The channel
attention module determines the salient features available in the input images. At the same
time, the spatial or position attention reveal the spatial location of those key features. The
number of attention modules and their place in the network is same for all. We fixed the
position of the attention module between blocks 3 and 4 to permit the network to focus
on specific high-level features because the datasets were of the same plant (tomato). The
lw_resnet20_cbam outperformed in terms of classification accuracy and model lightness.
The additional maximum pooling layer in the channel attention module of the CBAM
provide even minute details of the salient features to the network, boosting the network’s
performance. DA also uses two attention modules (channel and position), but it failed
to perform as well as the CBAM model. One reason for the lower performance might
be the parallel combination of channel and position attention. As [15] suggests, series
combination results are better than parallel. Moreover, the module structure is bulkier than
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other attention modules due to three parallel convolutional layers for position attention
and three branching matrix operations of input feature maps for channel attention. In
contrast, CBAM uses maximum, average pooling, and convolutional layers in the spatial
attention module, which is computationally more efficient than matrix operations.

The performance of our proposed model (lw_resnet20_cbam) was compared with
models that were previously studied by various researchers. Some studies utilized the
same tomato disease datasets with different deep CNN architectures. Some of them also
implemented attention-based CNN to improve detection accuracy. Table 8 demonstrates the
performance comparison of various CNN architectures used for the same tomato disease
datasets. Only [2] used more tomato disease datasets (12 classes) than ours (11 categories).
In addition, most researchers applied a generic model designed for a large number of image
classification datasets, which is computationally inefficient for a small number of plant
datasets. Moreover, the majority of generic models were used as transfer learning. From
the table, it can be seen that none of the previous studies achieved better detection results
than ours in such a large number of tomato leaf images with such a lightweight model.
Therefore, this study will be helpful for future researchers to design efficient and effective
networks for portable devices.

Amongst the various attention modules, the SA module also showed competitive
results although it came at the cost of more network complexity and size. Its architecture
is almost similar to the position attention module of the DA network except for an addi-
tional ReLU activation layer in each convolutional branch. In addition, the SA model’s
performance superseded the DA model but could not match up to the CBAM model. The
SE network utilizes a similar principle as CBAM’s channel attention module, although it
only uses global average pooling operation in contrast to the maximum and global pooling
operations in CBAM. Nevertheless, its performance was similar to the DA model. How-
ever, the SE module is the lightest and most efficient attention module. Thus, it is equally
important to identify key features and their locations in the input images. Furthermore,
the channel and spatial attention module should be in series so that the model can detect
dominant features and their place in the input images.

Table 8. Performance comparison of the proposed model with previous studies on tomato
disease classification.

Reference Deep CNN Architecture Datasets Accuracy (%) Summary

[2] Improved YOLOV3 12 classes of tomato
leaf images 92.39

Applied feature fusion
technique for tiny disease

spot detection.

[18]
ResNet50 with

squeeze-and-excitation (SE)
attention module

10 classes of tomato
leaf and 4 classes of
grape leaf images

96.81 for tomato and
99.24 for grape

datasets

SE attention module was
implemented into a generic

ResNet50 model.

[19] Attention augmented
ResNet (AAR)

10 classes of tomato
leaf images 98.91

Synthetically generates
tomato leaf images to

increase training datasets.

[22] AlexNet and VGG16
(pretrained)

7 classes of
tomato leaf images

97.49 for AlexNet and
97.29 for VGG16 model

Applied transfer learning
strategy to swallow and
medium deep models.

[32] DenseNet121 (pretrained) 5, 7, and 10 classes of
tomato leaf images

99.51, 98.65, and 97.11
for 5, 7, and 10 classes,

respectively

Used transfer learning with
original and synthetically

generated images.

[33]
AlexNet, GoogleNet,

Inception V3, ResNet18,
and ResNet50

10 classes of tomato
leaf images

98.93, 99.39, 98.65,
99.06, and 99.15,

respectively

Compared the performances
of some standard models.
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Table 8. Cont.

Reference Deep CNN Architecture Datasets Accuracy (%) Summary

[34] AlexNet, GoogleNet, and
ResNet50

9 classes of tomato
leaf images

95.83, 95.66, and 96.51,
respectively

Used only the diseased
images of tomato leaves with

generic model.

[35] Customized 11 layer CNN 10 classes of tomato
leaf images 98.49 Used a swallow network

with 3000 images only.

[36]
MobileNetV2,

NASNetMobile, Xception,
MobileNet V3 (pretrained)

” 75, 84, 100, and 98,
respectively

Used lightweight generic
models to deploy in

Raspberry Pi.

[37] Attention embedded
ResNet

4 classes of tomato
leaf images 98

Applied an attention-based
swallow ResNet model for

small datasets.

Our model

Lightweight CBAM
attention module-based

ResNet20
(lw_resnet20_cbam)

11 classes of tomato
leaf images 99.69

Reduced the network
parameters and complexity
of backbone network and

improved performance using
an effective

attention module.

CNN: Convolutional Neural Network, YOLO: You Looks Only Once, ResNet: Residual Network, VGG: Visual
Geometry Group, MobileNet: Mobile Network, NASNetMobile: Neural Architecture Search Network Mobile,
and CBAM: Convolutional Block Attention Module. ” represents the same content as the above row.

5. Conclusions

This study experimented with various attention modules and analyzed their perfor-
mance in tomato disease classification. Attention modules used for different purposes were
employed. The network architecture, computational complexity, and performance were
comprehensively compared. From the results, it can be concluded that the determination
of key features and their location in the input images is crucial to enhancing classification
performance. Moreover, identifying key feature regions is wiser than finding essential
features. The determination of critical features and their position should be sequential
because merging these features will lead to loss of crucial information. Our proposed model
outperformed the prevailing generic models used for plant disease detection in terms of
accuracy and efficiency.
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