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+e wide application of wireless sensor networks (WSN) brings challenges to the maintenance of their security, integrity, and
confidentiality. As an important active defense technology, intrusion detection plays an effective defense line for WSN. In view of
the uniqueness ofWSN, it is necessary to balance the tradeoff between reliable data transmission and limited sensor energy, as well
as the conflict between the detection effect and the lack of network resources. +is paper proposes a lightweight Intelligent
Intrusion Detection Model for WSN. Combining k-nearest neighbor algorithm (kNN) and sine cosine algorithm (SCA) can
significantly improve the classification accuracy and greatly reduce the false alarm rate, thereby intelligently detecting a variety of
attacks including unknown attacks. In order to control the complexity of the model, the compact mechanism is applied to SCA
(CSCA) to save the calculation time and space, and the polymorphic mutation (PM) strategy is used to compensate for the loss of
optimization accuracy. +e proposed PM-CSCA algorithm performs well in the benchmark functions test. In the simulation test
based on NSL-KDD and UNSW-NB15 data sets, the designed intrusion detection algorithm achieved satisfactory results. In
addition, the model can be deployed in an architecture based on cloud computing and fog computing to further improve the real-
time, energy-saving, and efficiency of intrusion detection.

1. Introduction

Wireless sensor networks (WSN) provide the necessary
underlying support for the Internet of +ings and also build
a landing platform for artificial intelligence (AI). Both of
them have achieved deep integration and active promotion
in WSN. +e research and application of WSN have been
involved in many fields, from the initial military recon-
naissance to many aspects of social life, such as smart city,
medical health, industrial production, environmental
monitoring, and disaster warning [1]. WSN is a kind of
wireless communication network that is composed of a large
number of sensor nodes in a certain topological structure
through self-organization. +e sensor node monitors the

target area or object and transmits the collected sensor data
to the user along the network route [2]. WSN can break
through the limitations of traditional monitoring methods,
which not only significantly reduces the cost of detection,
but also greatly simplifies the cumbersome process. With the
rapid development of sensor technology, wireless commu-
nication technology, big data, computing intelligence, etc.,
the low-cost and easy-to-deploy WSN can satisfy our urgent
desire to learn more about the surrounding environment or
ourselves. +is technology will greatly enhance the breadth
and depth of our perception of the world [3].

+e application scenarios of WSN are complex and
changeable. Compared with the traditional wired network, it
faces many unique problems and challenges. First of all, the
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computing power and storage capacity of a single sensor
node are quite limited, and the communication ability between
nodes is weak. Furthermore, the sensor nodes are often
scattered in awide range or in a complex or even harsh physical
environment, whichmakes it difficult or impossible to perform
maintenance tasks such as energy supply. In addition, it is an
open network with dynamic and random topology. So, it is
necessary to carry out a series of targeted research to ensure the
real-time, energy-saving, reliability, and other operational re-
quirements of WSN [4]. As a data-centric network, more and
more sensitive data are collected, stored, transmitted, and
processed in WSN. Its security problem has become increas-
ingly serious [5]. Due to the limitations and characteristics of
WSN itself, the data is easy to be destroyed, stolen, or tampered
with. How to protect network security effectively in the face of
various network attacks is an important research topic. Un-
fortunately, passive defense only through firewalls, access
control, and other means is not enough to prevent all the
network attacks. Intrusion detection is a proactive security
protection technology that can monitor the operating status of
network systems and detect intrusions such as internal attacks,
external attacks, or misoperations, so that the network system
can intercept and respond as necessary [6]. Wired network
intrusion detection technology has been relatively mature and
can be divided into two types: misuse-based and anomaly-
based. +e prerequisite of misuse detection is that the
knowledge of attack method has been acquired, and the in-
trusion mode has been defined in advance. Intrusion is de-
tected by judging whether the collected data characteristics
match the intrusion pattern database. +erefore, it only has a
high detection rate for specific attackmethods and is invalid for
unknown attacks. In order to cope with the endless emergence
of various attacks, anomaly detection method can be consid-
ered. +is method assumes that cyber attacks are uncommon
compared to normal behaviors. By comparing the captured
network behavior with normal patterns, it can be judged
whether an intrusion has occurred. Anomaly detection can deal
with unpredictable attacks, but it needs to learn a lot of his-
torical data for training [7]. In order to improve the detection
efficiency, the introduction of AI is expected. Many scholars
have tried to apply artificial neural network [8, 9], machine
learning [10], evolutionary computing [11–13], etc. to the field
of intrusion detection and have achieved constructive research
results [14]. However, WSN has its own characteristics and
limitations in terms of network scale, computing power,
storage space, energy supply, communication bandwidth, and
networkingmode, whichmakes it impossible to directly use the
traditional intrusion detection system (IDS) architecture. AI
technology generally requires high computing power and
consumes relatively large amounts of running time, storage
resources, and energy. +erefore, it is necessary to make
modifications and adjustments to theWSN intrusion detection
model according to the actual application scenarios and user
requirements and seek the balance between security, energy
consumption, real-time, and other objectives [15, 16].

Obviously, WSN intrusion detection is a technical
problemwith multiple constraints. How to provide a feasible
and effective solution is an important issue to be solved
urgently. Many scholars have done fruitful work in this field

[17]. Feature selection is an important and practical strategy
for lightweight intrusion detection. Dimension reduction
can improve the generalization performance and detection
efficiency of intrusion detection. Literature [18] proposed a
novel feature selection algorithm named DRFSA, combining
an intelligent extension to the decision tree algorithm and
convolution neural networks, to classify large volume of data
in WSN. +is model provides better intrusion detection
accuracy, packet delivery ratio, and network throughput,
while it reduces the network delay and false negative rate.
+e researchers also introduced a cryptographic mechanism
to ensure the confidentiality and integrity of the data in the
WSN and achieved encouraging results [19]. Literature [20]
proposed a detection scheme for SQL injection attacks,
which does not require access to the source code of the
application, so it can be directly applied to the cloud en-
vironment. Literature [21] proposed a certificate-based ag-
gregate signature scheme in WSN, which can resist forgery
attacks. In addition, various machine learning and deep
learning technologies are increasingly used to solve theWSN
intrusion detection problem [22, 23].

+is paper proposes a lightweight intelligent intrusion
detection model for WSN.+is model implements detection
based on abnormal traffic data and can quickly and accu-
rately discover attack behaviors in WSN. +e k-nearest
neighbors algorithm (kNN) is selected as the classifier. kNN
is simple to implement and easy to understand. It supports
nonlinear problems well and can provide relatively robust
recognition results. +e time complexity of the kNN is lower
than that of the support vector machine (SVM) [24, 25].
Compared with naive Bayes algorithm [26], kNN has no
hypothesis on data and is not sensitive to outliers. +erefore,
compared with other machine learning algorithms, KNN
meets the requirements of lightweight data classification. In
order to further improve the classification effect, this paper
uses evolutionary algorithm to optimize kNN. +e selected
evolutionary algorithm is the sine cosine algorithm (SCA).
Among many metaheuristic optimization algorithms, SCA
has low computational complexity, simple parameters, and
good optimization performance. Taking into account the
many limitations of WSN intrusion detection, the compact
mechanism is applied to SCA (CSCA), which greatly reduces
the time and space occupied in the optimization process. In
order to ensure that the accuracy requirements are met, a
polymorphic mutation strategy (PM) is designed, and an
improved version of SCA is proposed (PM-CSCA). +e
organic combination of kNN and PM-CSCA constitutes a
lightweight intelligent intrusion detection model for WSN.
On the one hand, the intelligent detection is realized by
means of evolutionary computation and machine learning;
on the other hand, the computational burden of evolu-
tionary algorithm is greatly reduced, so as to ensure the
lightweight of the designed intrusion detection model.

+is article is organized as follows: the second part is
related work, introducing the SCA and kNN used in the
intrusion detection algorithm proposed in this paper. +e
third part introduces the architecture of the intrusion de-
tection system. +e fourth part is the design of intrusion
detection algorithm, including the improvement of SCA,

2 Security and Communication Networks



and how to combine it with kNN. +e fifth part is the
simulation results and discussion. +e last part is the con-
clusion and future work.

2. Related Works

2.1. Sine Cosine Algorithm (SCA). SCA is a metaheuristic
swarm intelligence optimization algorithm. +e algorithm
has a concise structure, has fewer parameters, and is easy to
understand and implement. +e search trajectory for the
optimal solution is mainly affected by the sine and cosine
functions [27–29].

+e algorithm first initializes the populationX, that is, to
create N random candidate solutions Xi(i � 1, 2, . . . , N).
+ey are then guided tomove through the search space using
mathematical models based on sine and cosine functions.
+e optimization process is divided into two stages: global
exploration and local exploitation. +e formula for updating
the position of the solution is as follows:

Xt+1
i � Xt

ir1 ∗ sin r2( )∗ r3Pti − Xt
i

∣∣∣∣ ∣∣∣∣, r4 ≥ 0.5,
Xt+1
i � Xt

ir1 ∗ cos r2( )∗ r3Pti − Xt
i

∣∣∣∣ ∣∣∣∣, r4 < 0.5,
 (1)

where t is the current number of iterations, Pti is the position
of the current optimal solution in the i − th dimension, and
|·| represents the absolute value. +ere are only four pa-
rameters involved here: r1, r2, r3 and r4. r2 ∈ [0, 2π], which
controls the distance the solution moves each time.
r3 ∈ [0, 1], which gives a random weight to the current
optimal solution. r4 ∈ [0, 1], which controls the switching
between the sine and cosine update modes to ensure the
same probability of using both. +e above three parameters
are random numbers that obey a normal distribution within
their respective ranges. +e parameter r1 determines the
direction of movement. When r1 < 1, the solution will move
to the area between the current position and the target
position to exploit the local potential space. When r1 > 1, the
solution is to move away from the current optimal position
to explore a larger search space. r1 decreases linearly as the
number of iterations increases, realizing the transition from
exploration to exploitation. +e updated formula of r1 is
shown in equation (2). Generally, a � 2, andT represents the
maximum number of iterations.

r1 � a − t
a

T
. (2)

2.2. 0e k-Nearest Neighbors Algorithm (kNN). kNN algo-
rithm is commonly used in data mining and machine
learning. As one of the simplest classification algorithms,
kNN is widely used in many fields. +e core idea is that, in
the feature space, if most of the k samples closest to a sample
belong to a certain category, then this sample also belongs to
this category and has all its characteristics. So, only the
category of the k most similar samples is used to determine
the category of the pending sample when making a classi-
fication decision [30, 31]. +e implementation method is
that all samples are mapped to points in D-dimensional
space; k known samples nearest to the unknown sample are

selected as reference, and the distances between them are
calculated, respectively; according to the majority voting
rule, the unknown sample is classified into the category of
most of its k-nearest neighbors. Obviously, kNN algorithm
mainly considers three elements: the value of K, the way of
distance measurement, and classification decision rules. +e
majority voting method is usually used to make decisions.
+e focus is usually on the choice of k value and the
measurement of distance.

As the only parameter, the value of k has a crucial impact
on the prediction results of kNN [32]. If k is relatively small,
the approximate error of learning will decrease, but the
estimation error will increase, and it is easy to learn noise. In
severe cases, the model becomes complicated, and over-
fitting occurs. Similarly, if the k is large, the model will
become too simple and underfit, which will also lead to
inaccurate predictions. In actual engineering practice, k is
generally selected by cross-validation. +ere is no fixed
experience to guide the setting of k [33]. +is has caused
inconvenience in using the kNN algorithm.

We also need to pay attention to the distance mea-
surement in the sample space. +e shorter the distance, the
higher the similarity between the two sample points, and
conversely, the lower the similarity. +e commonly used
distance measurement methods are Minkowski Distance,
Euclidean Distance, Manhattan Distance, Chebyshev Dis-
tance, Mahalanobis Distance, etc.

Suppose that there are two samples xi and xj in the
D-dimensional feature space, which are expressed as xi �
(xi1, xi2, . . . , xi D) and xj � (xj1, xj2, . . . , xj D).+e distance
between the two samples is denoted as d(xi, xj). kNN
classifiers generally use Euclidean distance to measure the
similarity between samples, as shown in

d xi, xj( ) �
������������
∑D
k�1

xik − xjk( )2
√√

. (3)

But in the process of classification, the importance of
features is often different. Some features are strongly cor-
related with the classification results, some are weakly
correlated, and some are even negatively correlated. If the
distance between samples is largely dominated by weakly
correlated or irrelevant features, it will easily lead to con-
fusion in classification. To solve this problem, a certain
weight wk(k � 1, 2, . . . , D) can be assigned to each feature
dimension to express its importance. So, the distance be-
tween samples can be transformed into the following
formula:

d xi, xj( ) �
���������������
∑D
k�1
wk xik − xjk( )2

√√
. (4)

As a popular machine learning algorithm, kNN has been
successfully applied in many fields [34, 35]. Some literatures
try to improve it, mostly around the adjustment of pa-
rameter k [36, 37]. In fact, there is no universal experience in
the determination of k, the selection of distance function, or
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the setting of distance weight. All of these should be based on
the distribution of samples, the characteristics of data, and
the needs of analysis. +is can be regarded as a typical
optimization problem. With the help of the optimization
ability of metaheuristic algorithm, a more reasonable and
effective kNN classification model can be constructed [38].

3. WSN Intrusion Detection
System Architecture

Intrusion detection is a security mechanism that collects
information from several key nodes in the network system
and analyzes it to try to find out whether there is any be-
havior that violates the security policy or signs of being
attacked.+e data inWSN shows an explosive growth trend.
+is requires high data processing capabilities, and intrusion
detection also requires sufficient computing power.

+e cloud computing platform has powerful computing
and storage capabilities, as well as open, flexible, and shared
characteristics, which provides a new research idea for WSN
to break through the bottleneck restricting its development.
In order to reduce the burden of importing and exporting
data from the cloud and relieve the pressure of bandwidth
shortage, fog computing can be further introduced. As a new
generation of distributed computing, fog computing is closer
to the edge of the network, providing space for a wider range
of nodes to access. Comprehensive utilization of cloud
computing and fog computing can achieve efficient col-
laborative computing. +e powerful data processing and
storage capabilities of the cloud computing platform provide
technical support for big data analysis of WSN.

+e intrusion detection system designed in this paper is
deployed in the network architecture that combines cloud
computing and fog computing, which can give full play to its
advantages and better meet the data security requirements of
WSN.+e intrusion detection model can be deployed on the
cloud server. Fog computing can be implemented by sink
nodes with rich resources, which can independently assist
the cloud to complete data processing, storage, and other
tasks. WSN generally adopts hierarchical network structure
and is divided into several clusters. +e common sensor
nodes in the cluster collect data and send it to the cluster
heads, which transmit the data to the fog computing virtual
network composed of sink nodes in a multihop manner.
Figure 1 shows the architecture of the above WSN intrusion
detection system.

4. Proposed Works

4.1. 0e Improvement of SCA. SCA is less computationally
expensive compared with many other optimization algo-
rithms. It is a reasonable choice for solving optimization
problems that require low computational complexity and
high real-time performance. In order to further improve the
convergence speed of SCA, this paper uses the compact
mechanism to make the algorithm more lightweight.
Compact SCA (CSCA) can greatly reduce the computing
load, but it will inevitably lose optimization accuracy to a
certain extent. To solve this problem, a polymorphic

mutation strategy (PM) is proposed to enrich the diversity of
population and compensate for the loss of precision. +e
framework structure of PM-CSCA is shown in Figure 2. In
this part, the main ideas and implementation schemes of the
proposed PM-CSCA are described in detail.

4.1.1. Compact SCA (CSCA). Compact is an optimization
mechanism of swarm intelligence algorithm. After compact
processing, the memory requirement of the algorithmwill be
significantly reduced [39, 40]. Because this technology will
greatly alleviate the computational burden of the pop-
ulation-based metaheuristic algorithm, it is particularly
suitable for devices with limited computing power and
scarce storage space, such as sensor nodes, wearable devices,
and embedded devices. SCA is an intelligent optimization
algorithm based on population. +e optimization process is
as follows: N solutions are randomly generated in the
D-dimensional space, and the positions of the solutions are
constantly updated in the iterative process to realize the
evolution of the population and finally find the global op-
timal solution. When the number of solutions is large, or the
dimensionality is high, this calculation mode consumes
more computing power. In application scenarios with high
real-time requirements or limited storage space, the opti-
mization algorithm needs to make necessary adjustments.
+e main idea of compact technology is to transform the
original population into the form of a probability model that
reflects its distribution characteristics. All operations on the
original population are also transferred to its probability
model [41, 42]. Since the number of variables and storage
space required by the probabilistic model are far less than the
original population, the algorithm runs more efficiently in
time and space. +e data structure of perturbation vector
(PV) is usually used to describe the macroscopic probability
distribution of the population: PVt � [μt, σt]. Here, µ and σ
are the mean and standard deviation of PV, respectively, and
t represents the current iteration number. Each pair of µ and
σ in PV corresponds to a probability density function (PDF)
[43] and is updated with the iteration of the algorithm.
Generally, PDF is a truncated normal distribution in the
interval [-1, 1], and the calculation formula is as follows:

PDFi(x) �
���
2/π

√
e − x− μi( )2/2σ2i( )

δ erf μi + 1/
�
2

√
σi) − erf μi − 1/

�
2

√
σi)( ).(( (5)

It can be seen that PDF is a function of µ and σ. Among
them, x ∈ [− 1, 1], erf represents error function, and imeans
dimension. Next, the cumulative distribution function
(CDF) corresponding to the PDF can be obtained. +e
calculation method is as follows:

CDF � ∫x
− 1

PDFdx

� ∫x
− 1

���
2/π

√
e − (x− μ)2/2σ2( )

σ(erf(μ + 1/
�
2

√
σ) − erf(μ − 1/

�
2

√
σ))

dx.

(6)
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Since PDF is a truncated normal distribution in the
interval [− 1, 1], the CDF range is from 0 to 1. With the
inverse function of CDF, a virtual solution y can be obtained
by using PV:

y �
�
2

√
σerf − 1 − erf μ + 1�

2
√

σ
( ) − xerf μ − 1�

2
√

σ
( )(

+xerf μ + 1�
2

√
σ

( )) + μ,

(7)

where y ∈ [− 1, 1], erf − 1 is the inverse function of erf , and x
is a random number between [0, 1]. It is necessary to map
the virtual solution y to the solution yds of the decision
space. Assuming that, in the D-dimensional decision space,
the upper and lower limits of a certain dimension are ub and
lb, respectively. y can be mapped to yds using

yds � y ×
1

2
(ub − lb) + 1

2
(ub + lb), (8)

yds then attempts to move using equation (1). Evaluate the
quality of the position before and after the movement, and
record them as winner and loser, which are used to update
the PV. Please see equations (9) and (10) for details.

μt+1i � μti +
1

Np

winneri − loseri( ), (9)

σt+1i �
�������������������������������������
σti( )2 + μti( )2 − μt+1i( )2 + 1

Np

winneri − loseri( )2
√

.

(10)
Among them, Np is the number of solutions in the

virtual population. In the process of updating PV, the global
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optimal position is updated synchronously, and then the
next iteration is carried out. With the help of compact
mechanism, the original population is greatly reduced in
size, and considerable benefits are achieved in both time and
space [44–46]. However, due to the use of approximate
probability distribution to simulate the real distribution of
data, it is inevitable to bring the risk of loss of optimization
accuracy, resulting in the occurrence of local traps or
missing the global optima.

4.1.2. Polymorphic Mutation Strategy (PM). In order to
make up for the possible loss of precision in compact SCA, a
polymorphic mutation strategy (PM) is proposed. Based on
the SCA initial population, a variety of distribution functions
are introduced to realize polymorphic variation, and then
the population with better quality is obtained through
greedy selection. +is can effectively increase the diversity of
the population and create more opportunities for covering
potential search areas, thereby improving the optimization
accuracy. +ree distribution functions are used here:
Gaussian distribution, Cauchy distribution, and Levy′ dis-
tribution. Gaussian distribution is a kind of thin-tailed
distribution, which is an important probability distribution
in statistics. It is often used to represent an uncertain
random variable. Cauchy distribution belongs to fat-tailed
distribution, and the possibility of extreme values is greater
than that of Gaussian distribution. Among all the distri-
butions, the generalized Cauchy distribution has the largest
spreading characteristic. Levy′ distribution can be approx-
imated as heavy-tailed distribution. It can be used to gen-
erate Levy′ flight, that is a random walk with relatively high
probability of having a larger stride. So, the search efficiency
of Levy′ flight is better in the unknown environment or in
large space [47].

In PM strategy, the population X initialized by SCA is
randomly divided into three subpopulations: X1, X2, X3.
Generate three variables between [0,1]: G, C, L, which obey
different probability distributions: G ∼ N(μ, σ2),
C ∼ C(μ, σ2), L ∼ Levy′(λ)(Levy′ ∼ u � t− λ, 1< λ≤ 3). Per-
form mutation based on Gaussian distribution on X1 to
obtain a new subpopulation XG, as shown in equation (11).
In the same way, mutations based on Cauchy distribution
and Levy′ distribution are applied to X2 and X3, respec-
tively; and XC and XL are obtained according to equations
(12) and (13).

XG � X1 +X1 ⊗ G, (11)

XC � X2 +X2⊗C, (12)

XL � X3 +X3⊗ L, (13)

Here, G ∼ N(0, 1), C ∼ C(1, 0), L ∼ Levy′(λ)
(Levy′ ∼ u � t− 1.5). +e product ⊗ means entry-wise
multiplications. According to the fitness value obtained by
the evaluation function f (·), all solutions from the pop-
ulation X, X1, X2 and X3 are sorted, and the better pop-
ulation X∗ is obtained by greedy selection.

+e computational complexity of the proposed PM-SCA
depends on the following processes: initial population,
polymorphic mutation, fitness evaluation, greedy selection,
update population, and compact mechanism. Suppose that
the number of solutions is n, the dimension is d, and the
number of iterations is t. +e computational complexity of
initializing n d-dimensional solutions is O(n × d). +e
computational complexity of evaluating all solutions is
O(t × n). +e complexity of greedy selection is
O(n × log n). +e computational complexity of updating all
solutions is O(t × n × d). Among them, the computational
complexity of polymorphic mutation is O(1), and the
compact mechanism hardly brings about an increase in
computational complexity. In general, the computational
complexity of PM-SCA is the same as that of original SCA.

+e pseudocode of PM-CSCA is shown in Algorithm 1.
When the maximum number of iterations max iter is
reached, or other termination conditions are met, the global
optimal solution xgbest and its corresponding fitness value
fgbest are output.

4.1.3. Experiment Results. In order to test the performance
of the algorithm, this part uses benchmark functions to carry
out comparative experiments in the five algorithms of PM-
CSCA, CSCA, SCA, Particle Swarm Optimization (PSO),
and Whale Optimization Algorithm (WOA). 12 typical
benchmark functions are selected here, including 3 uni-
modal functions (F1 ∼ F3), 3 multimodal functions
(F4 ∼ F6), and 6 complex functions (F7 ∼ F12), as shown in
Table 1.

For the purpose of measuring the performance of the
algorithm in a comprehensive and objective way, the al-
gorithm runs independently 30 times in each experiment,
recording the best value, average value (Avg), and standard
deviation (Std), respectively. Please refer to Table 2 for
specific data, and the best results have been marked in bold.
+e convergence curves of the benchmark functions are
shown in Figure 3.

In the test of the three types of benchmark functions,
PM-CSCA has achieved an absolute advantage in the al-
gorithms participating in the comparison. +e performance
is particularly prominent in the optimization of complex
functions. All indicators of the 6 complex functions
(F7 ∼ F12) have got the first place. PM-CSCA shows good
optimization strength and reliable stability.

4.2. Combination of PM-CSCA and kNN. kNN parameter k
and distance weight wk determine the classification effect to
a large extent. However, these aspects usually depend on the
subjective decision of users, which brings great uncertainty
to the performance of the algorithm. +e PM-CSCA pro-
posed in this article can be used to optimize the relevant
parameters of kNN to obtain the best or approximately best
configuration of the classifier.

+e samples in the D-dimensional feature space corre-
spond to the N solution vectors of the evolutionary algo-
rithm: Xi(i � 1, . . . , N), the specific form is shown in
equation (14). +e first dimension represents the
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parameter K of kNN, which can be set as a random integer
within a certain range as required. wij ∈ [0, 1], the random
number represents the j − th distance weight in the i − th
solution. Evolutionary algorithm will continuously search
and iterate under the guidance of the objective function and
finally output the optimal solution or the approximate best
[48–51], that is, the most suitable related parameters of kNN.

Xi � ki, wi1, wi2, . . . , wij, . . . , wi D[ ], i � 1, . . . , N, j � 1, . . . , D.

(14)

5. Simulation Results and Discussion

Machine learning usually uses the following four criteria to
evaluate the performance of the model: the true positive
(TP), true negative (TN), false positive (FP), and the false
negative (FN). In the field of intrusion detection, their
specific meanings are as follows: TP is the number of actual
attack records classified as attacks, TN is the number of
actual normal records classified as normal, FP is the number

of actual normal records classified as attacks, and FN is the
number of actual attack records classified as normal. +ey
are also used to calculate a variety of performance evaluation
indicators, such as detection rate (DR), false alarm rate
(FAR), and accuracy rate (ACC). +e calculation methods
are as shown in the equations (15)–(17).

DR � TP

(TP + FN), (15)

FAR � FP

(FP + TN), (16)

ACC � (TP + TN)
(TP + FN + FP + TN), (17)

DR represents the probability of positive prediction among
samples with normal real value. FAR is the probability of
positive prediction among samples with abnormal real
values. ACC is to divide the number of samples with correct
prediction by the total number of samples, indicating the

Initialize the parameters related to the algorithm: ub, lb, Dim, max_iter, PV(μ, σ);
Generate initial population X containing N individual Xi(i � 0, 1, 2, 3, . . . , N);
Divide X into three subpopulations X1, X2, X3;
Realize the mutation of three subpopulations by using equations (11)–(13), respectively;
Evaluate each individual by the objective function;
Greedy selection: select N individuals from X, X1, X2 and X3 using greedy strategy, and get new population X∗;
Do

Update SCA parameter: r1, r2, r3 and r4;
Get y1 from PV by equations (5)–(8);
Update the y1 by SCA to get y2;
Evaluate y1 and y2 by the objective function to get [winner, loser];
for i� 1:Dim

Update PV via by equations (9) and (10);
if fwinner <fgbest

Update the best solution obtained so far;
end

while (t<max iter) or (get the expected function value);
Return the best solution obtained so far as the global optimum;

ALGORITHM 1: Pseudocode of PM-CSCA.

Table 1: Benchmark functions for testing.

Function Dimension Range Fmin

F1(x) � ∑π
i�1 x

2
i 20 [− 100,+100] 0

F2(x) � maxi |xi|, 1≤x≤ n{ } 20 [− 100,+100] 0
F3(x) � ∑n

i�1 ix
4
i + random[0, 1) 20 [− 1.28,+1.28] 0

F4(x) � ∑n
i�1[x2i − 10 cos(2πxi) + 10] 20 [5.12,+5.12] 0

F5(x) � (1/4000)∑π
i�1 x

2
i − ∏n

i�1 cos(xi/
�
i

√
) + 1 20 [− 32,+32] 0

F6 (x) � (∑5
i�1 i∗ cos(i + 1)x1 + i)∗ (∑25

i�1i∗ cos((i + 1)x2) + i) 20 [− 5.12,+5.12] 0
F7(x) � ((1/500)∗∑25

i�1(1/i +∑2
i�1(xj − xij))) 20 [− 65, 65] 0

F8 � 4∗x21 − 2.1∗ (x61/3 + x1 ∗x2) − 4∗x22 + 4∗x42 2 [− 5,+5] 0
F9(x) � [1 + (x1 + x2 + x3)2 ∗ (19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]
×(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)

2 [− 2,+2] 3

F10(x) � − ∑4
i�1 [(X − ai)(X − ai)

T + ci]− 1 4 [− 10,+10] − 10.1532
F11(x) � − ∑7

i�1 [(X − ai)(X − ai)
T + ci]− 1 4 [− 10,+10] − 10.4028

F12(x) � − ∑10
i�1[(X − ai)(X − ai)

T + ci]− 1 4 [− 10,+10] − 10.5363
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Table 2: Results of PM-CSCA, CSCA, SCA, PSO, and WOA on 12 benchmark functions.

Function Algorithm Best value Avg Std

F1

PM-CSCA 1.49E − 95 1.62E − 94 3.62E − 21
CSCA 6.02E − 19 4.07E − 03 9.37E+ 02
SCA 7.04E − 17 1.70E − 19 4.03E − 19
PSO 201.2388 8.30E+ 01 3.00E+ 01
WOA 7.91E − 20 7.41E − 19 1.03E − 17

F2

PM-CSCA 2.79E − 08 5.91E − 08 3.93809E − 07
CSCA 1.70E − 06 3.22E − 01 7.330382517
SCA 0.00010521 4.39E − 07 3.81943E − 07
PSO 6.0981 5.82E+ 00 1.426012414
WOA 10.1124 9.35E − 02 0.004428296

F3

PM-CSCA 0.0024941 0.000918692 0.000285841

CSCA 0.0030472 0.811201 0.429978878
SCA 0.010223 0.000496352 0.000630681
PSO 0.076345 0.01382486 0.002997254
WOA 0.0032755 0.000493716 0.007144592

F4

PM-CSCA 1.97E − 11 1.74E − 04 4.49035E − 05
CSCA 4.58E − 09 6.23E − 02 20.2012566
SCA 3.52E+ 01 3.72E+ 00 0.40291051
PSO 42.6913 2.75E+ 01 8.681105181
WOA 0 0.00E+ 00 0.000095952

F5

PM-CSCA 0 0.070084961 0.234385246
CSCA 0.55431 0.4014294 16.96738349
SCA 0.35735 0.018086667 0.171485471
PSO 3.0755 2.14161 0.388616247
WOA 0.12531 0.0712398 0.019007278

F6

PM-CSCA 0.022866 0.0694455 0.015782176

CSCA 0.10923 0.115816364 1738716.553
SCA 0.10679 0.0784325 0.022381946
PSO 8.9794 4.19622 1.311501322
WOA 0.14293 0.001379359 0.000136212

F7

PM-CSCA 0.99867 0.998402 0.59335955

CSCA 1.0924 1.70102 0.966604051
SCA 2.9821 1.401698 0.792971048
PSO 1.993 0.998402 9.2957E − 05
WOA 2.9821 1.791716 0.907953884

F8

PM-CSCA 0.00076939 0.001097476 0.000323742

CSCA 0.0015264 0.00461873 0.003881268
SCA 0.0015936 0.000929303 0.00040039
PSO 0.001016 0.001423611 0.0004534
WOA 0.0014995 0.001104929 0.000151675

F9

PM-CSCA 3 3 2.22045E− 16
CSCA 3.0003 3.88066 0.007128226
SCA 3.0001 3.0003 4.58258E − 05
PSO 3.0033 3.00784 0.000652993
WOA 3.0001 3 3.68258E − 05

F10

PM-CSCA − 3.8499 − 3.85357 0.000224499

CSCA − 3.8544 − 3.80696 0.854785298
SCA − 3.8317 − 3.83598 0.000801249
PSO − 3.6506 − 3.79914 0.006526132
WOA − 3.8074 − 3.75664 0.001567945

F11

PM-CSCA − 4.9998 − 4.35345 0.000961301

CSCA − 2.9376 − 3.68698 0.077142766
SCA − 4.5372 − 3.8552 0.002753834
PSO − 1.9555 − 3.81817 0.046047219
WOA − 3.7214 − 3.86085 0.010410014
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Figure 3: Continued.

Table 2: Continued.

Function Algorithm Best value Avg Std

F12

PM-CSCA − 4.9514 − 4.80574 0.201138842

CSCA − 0.94657 − 1.89185 0.998811381
SCA − 4.7207 − 3.995813 1.204583359
PSO − 1.4388 − 2.313657 0.934009458
WOA − 2.4202 − 2.24961 0.706751911

Statistics of the number of wins

PM-CSCA 11 10 10

CSCA 0 0 0
SCA 0 0 0
PSO 0 0 0
WOA 1 2 2
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accuracy of prediction results. Obviously, the DR and ACC
of intrusion detection should be high enough, while the FAR
should be as low as possible. +is article uses the ACC
indicator as the fitness function fit(·), as shown in

fit � TP + FN

TP + TN + FP + FN
. (18)

In order to verify the performance of the intrusion
detection model, this paper used the NSL-KDD and UNSW-
NB15 datasets commonly used in WSN intrusion detection
to conduct simulation experiments. Each sample in the NSL-
KDD dataset consists of 34 numerical features, 7 symbol
features, and one-dimensional labels. +ere are five types of
samples including normal data and 4 types of attack data.
+e four types of attacks are denial of service (DoS), sniffing
(Probe), illegal access to superuser privileges by ordinary
users (U2R), and illegal access from remote machines (R2L).
NSL-KDD includes two training data sets (KDDTrain+,
KDDTrain+_20%) and one test data set (KDDTest+). +e
training data set contains 21 types of attacks, and the test set
adds 17 new attacks.

UNSW-NB15 is a more recent dataset than NSL-KDD,
so it is more representative of real network traffic. It includes
100GB of original network traffic and a total of 2540044 data
samples. +e features of this dataset are different from NSL-
KDD and are more in line with the current network protocol
model. It contains 10 categories, a normal category and 9
attack categories (i.e., Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worm).

Before the implementation of the algorithms, the
datasets are preprocessed, including numerical, normali-
zation, and other operations. +e detection performance of
five intrusion detection models was tested, respectively
(SVM, kNN, PSO+ kNN, SCA+ kNN, and PM-
CSCA+kNN). +e experimental results are shown in

Table 3 and the average results of 10 independent experi-
ments are recorded. +e population size of the three evo-
lutionary algorithms of PSO, SCA, and PM-CSCA is set to
30, and the number of iterations is 120. +e model PM-
CSCA+kNN achieved the best results on the three indi-
cators of ACC, DR, and FAR (indicated in bold), which
means that the model can identify most WSN attack be-
haviors and distinguish different types.

+is paper introduces evolutionary algorithms in the
intrusion detection model. Figure 4 shows the iterative
process of the four optimization schemes. It was found that
the result of optimizing kNN by SCA is always better than
that of PSO; although CSCA has a great advantage in
convergence speed, the accuracy is not stable, and some-
times it will fall into the local optimum; PM-CSCA has the
best optimization effect on kNN, showing strong compet-
itiveness both in accuracy and speed.

+e confusion matrix is used to evaluate the accuracy of
the four detection models on NSL-KDD, as shown in Fig-
ure 5.+e horizontal axis represents the predicted value, and
the vertical axis represents the true value, which visually
shows the misclassification of each category. It can be seen
that PM-CSCA+kNN has the best detection effect.

For WSN intrusion detection systems, reducing the false
alarm rate is a challenge. We conducted five independent
experiments (E1∼E5) on two data sets. Figure 6 Intuitively
shows the comparison result of the false alarm rate of four
different detection algorithms. It can be seen that the false
alarm rate of PM-CSCA+kNN is extremely stable at a low
level. For the convenience of showing the relationship be-
tween DR and FAR, the Receiver Operating Characteristics
(ROC) curves based on two datasets are drawn, as shown in
Figure 7. +e ROC curves corresponding to the algorithm
proposed in this article are all closest to the upper left
boundary, so the effect of this prediction model is the best.
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Figure 3: Convergence curves of 12 benchmark functions.
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Figure 5: Continued.

Table 3: Performance indicators comparison of five intrusion detection models (SVM, kNN, PSO+ kNN, SCA+KNN, and PM-
CSCA+kNN) on NSL-KDD and UNSW-NB15 datasets.

Model
NSL-KDD UNSW-NB15

ACC (%) DR (%) FAR (%) ACC (%) DR (%) FAR (%)

SVM 92.116 92.459 9.3684 92.6 91.82 8.73
kNN 94.100 95.370 8.1300 86.64 85.35 11.48
PSO+ kNN 95.890 96.078 4.2105 90.64 89.86 10.08
SCA+ kNN 97.952 97.321 1.6575 93.84 93.28 7.95
PM-CSCA+kNN 99.327 99.206 0.5848 98.27 97.94 5.82
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Figure 6: Comparison of the false alarm rate of kNN, PSO+ kNN, SCA+ kNN, and PM-CSCA+kNN. (a) Based on NSL-KDD dataset. (b)
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Figure 5: Confusion matrices of four intrusion detection models on NSL-KDD. (a) kNN. (b) PSO+ kNN. (c) SCA+ kNN. (d) PM-
CSCA+kNN.

12 Security and Communication Networks



6. Conclusion and Future Works

Intrusion detection is one of the key issues that need to be
solved urgently in practical applications of WSN. With the
continuous expansion of the service area and the rapid rise
of data volume, the threat and consequences of network
attacks in WSN cannot be ignored. Most of the existing
intrusion detection systems can only deal with specific types
of attacks, and they are powerless against unknown attacks
[52]. And while protecting the network security, it inevitably
increases the energy consumption and transmission delay.
+ese problems need to be paid more attention inWSN.+is
paper proposes a lightweight and intelligent intrusion de-
tection model for WSN, which comprehensively considers
security, energy saving, and real-time. Intelligent anomaly
detection is realized through the joint use of kNN and SCA.
+e introduction of evolutionary algorithms makes the kNN
classifier change from lazy learning to active optimization in
the setting of its parameters, which significantly improves
the detection accuracy. kNN and SCA are both algorithms
with less computation and easy implementation, which meet
the requirements of lightweight model. In order to be more
efficient, this article proposes an improved version of SCA:
PM-CSCA. Two technologies are integrated: compact
mechanism greatly reduces the time and space required for
algorithm, and PM strategy ensures the optimization ac-
curacy, and these have been verified in tests based on
benchmark functions. PM-CSCA shows good optimization
ability in the benchmark function test. In simulation ex-
periments on public data set, the intrusion detection model

proposed in this paper has also been proved to be feasible
and effective. In addition, the intrusion detection system for
WSN is deployed in the hybrid computing mode. Cloud
computing, fog computing, and AI work together to provide
a feasible and efficient solution for maintaining data security
in WSN.

We will do further research on the lightweight and in-
telligent WSN intrusion detection model, for example, how
to use unsupervised machine learning techniques to deal
with unpredictable cyber attacks [53]. Furthermore, more
core technologies of evolutionary computing can be applied
to solve big data or large-dimensional problems encountered
in intrusion detection [54, 55].

+e following abbreviations are used in this manuscript:

Abbreviations

WSN: Wireless sensor networks
kNN: k-nearest neighbor algorithm
SCA: Sine cosine algorithm
CSCA: Compact SCA
PM: Polymorphic mutation
AI: Artificial intelligence
IDS: Intrusion detection system
SVM: Support vector machine
PV: Perturbation vector
PDF: Probability density function
CDF: Cumulative distribution function
PSO: Particle swarm optimization
WOA: Whale optimization algorithm.
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Figure 7: ROC curves of three classification algorithms on two datasets.
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