
A Lightweight, Scalable Grid Computing
Framework for Parallel Bioinformatics Applications

Hans De Sterck
Department of Applied Mathematics

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Email: hdesterck@uwaterloo.ca

Rob Markel
Scientific Computing Division

National Center for
Atmospheric Research

Boulder, Colorado 80307, USA
Email: markelrs@ucar.edu

Rob Knight
Department of Chemistry and Biochemistry

University of Colorado at Boulder
Boulder, Colorado 80309, USA
Email: rob@spot.colorado.edu

Abstract— In recent years our society has witnessed an un-
precedented growth in computing power available to tackle
important problems in science, engineering and medicine. For ex-
ample, the SHARCNET network links large computing resources
in 11 leading academic institutions in South Central Ontario, thus
providing access to thousands of compute processors. It is a con-
tinuous challenge to develop efficient and scalable algorithms and
methods for solving large scientific and engineering problems on
such parallel and distributed computers. If the computing power
available in such computational grids can be unleashed effectively
in a scalable way, large scientific problems can be solved that
would otherwise be hard to solve using the machines available in
a stand-alone way. This paper describes techniques and software
developed that allow to apply the power of computational grids to
large-scale, loosely coupled parallel bioinformatics problems. Our
approach is based on decentralization and implemented in Java,
leading to a flexible, portable and scalable software solution for
parallel bioinformatics. We discuss advantages and disadvantages
of this approach, and demonstrate seamless performance on an
ad-hoc grid composed of a wide variety of hardware for a real-
life parallel bioinformatics problem. The bioinformatics problem
described consists of virtual experiments in RNA folding executed
on hundreds of compute processors concurrently, which may
establish one of the missing links in the chain of events that
led to the origin of life.

I. INTRODUCTION

‘Computational grids’ [1] (for example, Ontario’s SHARC-
NET, see http://www.sharcnet.ca/about.php) are spatially dis-
tributed heterogeneous collections of computing resources. If
the computing power available in such grids can be unleashed
effectively in a scalable way, large scientific problems can
be solved that would otherwise be hard to solve using the
machines available in a stand-alone way. Loosely coupled
problems are especially suitable for grid computing. In par-
ticular, many loosely coupled bioinformatics problems pose
a dire computational challenge, both because the amount of
data to be processed can be huge, and because the processing
algorithms can be extremely complex. In this paper, we
describe the TaskSpaces [2] software framework for scientific
computing on computational grids, and its application to par-
allel bioinformatics problems. Some of the technical aspects
of this work are described in more detail in [2], [3], and more
detailed biology results are presented in [4].

Since a few years, computational grids [1] are being built
in many places in the world, including the US (e.g., the
TeraGrid, see http://www.teragrid.org), Europe (e.g. the En-
abling Grids for E-science in Europe project, see http://egee-
intranet.web.cern.ch/egee-intranet/gateway.html), and Canada.
SHARCNET, at present, links 11 leading academic institutions
in South Central Ontario. Loosely coupled problems can be
solved on grids in a cross-platform manner, distributed in
space and time. Many efforts to realize the concepts of grid
computing at the software level are now underway [1], both in
academic and industry settings (e.g., the Globus project, see
http://www.globus.org).

In recent years, parallel and distributed computing tech-
niques have steadily been gaining popularity for tackling dif-
ficult bioinformatics problems. Two important reasons for the
use of parallel techniques can be identified easily. First, bioin-
formatics problems involve increasingly large datasets. Sec-
ond, the algorithms used in many bioinformatics applications
can be computationally prohibitive. For many bioinformatics
problems it is therefore clear that computations limited to a
single CPU cannot deliver the required computing power, and
that parallel and distributed computing approaches are there-
fore necessary. A large class of bioinformatics problems can be
parallelized easily, with minimal or no interprocess communi-
cation. These types of problems are called loosely coupled,
and they are especially suitable for distributed processing.
More tightly coupled problems require intensive interprocess-
communication. Efficient parallel and distributed computing is
typically more challenging for this type of problems. In the
present paper we discuss both types of problems.

Consider, for example, the case of a university researcher
who is confronted with a complex bioinformatics problem. The
researcher typically has access to a wide range of computa-
tional resources on different scales. These resources include
desktop machines that may be available in the researcher’s
own lab (of the order of 10 CPUs or so), PC clusters that may
be available at the department level (order 100 CPUs), parallel
computers that may be available in the university’s computer
center (order 100-1000 CPUs), and pools of large clusters and
parallel supercomputers (up to several thousand CPUs) that
can be accessed through networks like SHARCNET, or at

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

national supercomputer centers such as the US National Center
for Supercomputing Applications (NCSA) and the San Diego
Supercomputer Center (SDSC). In this paper, we propose an
approach to parallel bioinformatics that, ideally, allows the
researcher to develop the bioinformatics software locally on
a single PC. Then, depending on the size of the problem at
hand, the task can be distributed seamlesly over any or all of
the wide variety of machines available.

This ‘universal computing dream’ is hard to realize for sev-
eral reasons. The hardware, operating systems (and versions of
operating systems), supporting software, and queueing systems
may all vary among available machines. The researcher will
wonder how to install and maintain code on all these machines,
how to distribute tasks and data, how the results will be
collected and centralized, and so forth. Scripts that automate
some of these tasks will be brittle when software is upgraded,
or machines are added or removed. In the light of these
obstacles, the ‘universal computing dream’ seems little more
than an ever-receding mirage.

However, in this paper we describe TaskSpaces, a system
we developed that demonstrates that many components of
the ‘universal computing dream’ can be realized on today’s
infrastructure using grid computing. The grid computing con-
cept can be easily understood by considering the analogy
with a power grid. A power grid user accesses the grid in
order to obtain electrical power, which is an interchangeable
commodity. Indeed, the user’s machines do not care where
or how the power they use is produced (the user may have
ethical concerns that affect the desirability of particular power
sources, but, to the hardware, all electricity is equivalent).

Two crucial properties make the power grid work:
1) The grid can be accessed through a standard interface.

In the case of a power grid, the standard interface
is simply the electrical plug, which gives access to
the power grid that operates at standard voltages and
frequencies.

2) The grid is scalable.
This scalability works both from the user’s side (the
user can access more power as needed), and from the
power producer’s side (the grid operator can switch in
additional power generators as demand rises).

Ideally, grid computing would work in exactly the same
way: a user accesses the geographically distributed grid in
order to obtain CPU cycles, which are considered an inter-
changeable commodity (the user does not care where the
computing cycles are produced) (Fig. 1). Unfortunately, ac-
cessibility through a standard interface (the first of the two
essential properties of a grid) can be difficult to achieve with
computers. In TaskSpaces, the standard interface is provided
by the Java virtual machine, which is almost universally
available. Java behaves almost exactly in the same way on all
those machines, and Java’s ‘executable byte-code’ is, in theory,
fully interchangeable between machines. In TaskSpaces, the
second essential grid property, scalability, is realized through
the concepts of ‘bag-of-tasks’ computing and tuple spaces.
Consequently, each user can submit many tasks concurrently,

Fig. 1. Analogy between a power grid (top) and a computational grid
(bottom). Both exhibit scalability from the user’s and the producer’s sides,
and need to be accessible through a standard interface.

and the grid operator can switch in additional compute farms
when demand is high.

The analogy between computational and power grids is not
perfect: computing cycles and data are more complex than
electrical power units. We can identify the following additional
requirements for computing grids, some essential and others
pragmatic.

3) Information is not interchangeable, and must often be
kept confidential (unlike electrical power). The grid must
allow secure resource sharing.

4) Information is not easily replaceable (unlike electrical
power). The grid must provide fault-tolerance mecha-
nisms such as transactions.

5) Parallel computers use many different queueing systems.
The grid must provide resource allocation and schedul-
ing.

6) Large problems may require deployment on heteroge-
neous hardware and software. The grid must provide a
mechanism for distributing the application code trans-
parently to the machines on which calculations are
ultimately performed.

7) Many problems require interprocess communication.
The grid must allow efficient communication between
processes.

8) Computing resources are expensive. The grid must allow
users to be billed according to cycle usage.

9) Some problems require specific turnaround time, data

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

transfer bandwidth, fault-tolerance, etc. The grid may
need to provide quality-of-service guarantees.

10) Problems must be connected with computing resources.
Either the grid must allow the user to discover resources,
or the grid must be able to discover tasks as they are pre-
sented (TaskSpaces uses the latter approach, resembling
a real power grid).

Many efforts to realize the concepts of grid computing
are now underway. Some projects, such as Globus, try to
define standards for what eventually may become a worldwide,
unified, computational grid (‘The Grid’), very much along
the lines of ‘The Internet’ and ‘The World Wide Web’.
However, many of the difficulties summarized above are
still far from being resolved in a general, satisfactory way,
and it is not clear that generally usable standards for grid
computing will become available and accepted soon. There-
fore, we have developed TaskSpaces, a software framework
for a smaller-scale computational grid. TaskSpaces is based
on the design criteria of decentralization, provided by an
underlying tuple space concept, and platform independence,
provided by implementation in Java. Our goal was to produce
a lightweight grid environment that is easy to install and
operate, and to demonstrate that it can be used efficiently
for real-world parallel bioinformatics problems. In this effort,
we have attempted to deal with some, but not all, of the
challenges listed above. Besides providing an environment
for solving real bioinformatics problems on small, ‘privately
operated’ grids, we hope that our experiences may reveal
some methods of overcoming the challenges mentioned above,
and that these methods may become more generally useful in
guiding standards adopted for larger grids. At present, many
different approaches are being tested on small-scale, privately
operated grids, both in research and commercial settings. The
successful approaches will survive, and, driven by demand and
cost savings through efficiency gains, these privately run grids
may eventually become connected to form a World Wide Grid,
very much like national power grids are presently connected
to neighboring grids throughout most of the world.

The rest of this paper is organized as follows. The next
Section describes TaskSpaces, our prototype software frame-
work for grid computing, which we based on tuple space
concepts and implemented in Java. Section III describes a
loosely coupled parallel bioinformatics application that we
investigated on a computational grid, namely the problem
of finding correctly folded RNA motifs in sequence space.
Section IV describes our experience with operating the soft-
ware framework on a computational grid composed of local
workstations and parallel clusters at supercomputer centers.
Brief results for the RNA motif problem are presented in
Section V. The paper concludes with a Section on future work,
and a summary.

II. THE TASKSPACES FRAMEWORK

TaskSpaces is a prototype lightweight grid computing
framework for scientific computing characterized by two major
design choices: decentralization, provided by an underlying

tuple space concept, and object-orientation and platform-
independence, provided by implementation in Java. The
TaskSpaces framework has been described in full detail in [2];
in this Section we summarize its main properties.

task

task

task

task
result result

result

worker worker

workerapplication

result bag

task bag

...
...

...

Fig. 2. The tuple space paradigm for distributed computing.

Tuple spaces were pioneered in the late 1970s, and were first
realized in the Linda system and language [5]. In a tuple space
distributed computing environment, processes communicate
solely by adding tuples to and taking them from a tuple
space, a form of independent associative memory. A tuple is
a sequence of fields, each of which has a type and contains a
value. Fig. 2 shows conceptually how distributed computation
works in a tuple space environment. An application program
places subtasks resulting from the partitioning of a large
computational problem into a tuple space (which in the Bag-
of-Tasks paradigm is called a ‘task bag’ [6]), in which each
subtask is represented as a tuple. ‘Worker processes’ take
the task objects from the task bag, execute the tasks, and
place the result in a ‘result bag’ as another tuple. The tuple
space concept allows tasks to be decoupled both in space
and time. The distributed computing process is decoupled in
space, as the application, task and results bags, and the various
worker processes may reside on a heterogeneous collection of
machines that are connected by a network but that are other-
wise widely geographically distributed. This decoupling allows
flexible topology for the computation, permitting automatic
configuration based on the availability of worker processes.
The distributed computing process is also decoupled in time:
since spaces are persistent, tuples are persistent while resident
in the space, and processes can access tuples long after the
depositing process has completed execution.

Fig. 3 shows a conceptual deployment diagram of the
TaskSpaces framework. TaskSpaces uses an event-driven
model. On startup, worker processes register with a task bag.
The application process sends subtask objects to the task bag,
and the task bag sends those task objects to available workers.
The task bag acts as a ‘superqueue’, and thus alleviates the
problem of scheduling when multiple supercomputers with
different unsynchronized queueing systems are used. Scala-
bility is inherent because users may put several applications
in the task bag at the same time, and the grid operator can
add ‘worker farms’ when needed. After a task is processed,

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

the worker puts a result object in the result bag, from which
the result objects are collected for final assembly by the
application. TaskSpaces is implemented in Java, providing a
standard, platform-independent interface to the grid system
and exploiting Java’s built-in networking and security features.

The TaskSpaces code consists of several classes. All classes,
except for the Runner class, are served to participant machines
via HTTP servers. Configurable properties files which contain
system information and parameters are also served by HTTP
servers. For a more detailed description of the class structure
of the TaskSpaces framework, see [3] and [2]. Application
code need not be installed and maintained on workers, because
it is downloaded from a central server when task objects
arrive at each worker. Installing and executing a Java bytecode
executable of size < 2kB allows any worker host to participate
in the grid. Thus, installation and maintenance of TaskSpaces
is extremely lightweight and easy. In fact, the complete
TaskSpaces codebase is extremely small and compact, due to
the simplicity of the design, and the availability of Java’s built-
in networking and object manipulation capabilities.

TaskSpaces can be used in taskfarming mode for prob-
lems that do not require interprocess communication, such
as independent folding of many RNA sequences (see below).
It can also be used for other applications that do require
interprocess communication, handling such communication in
a scalable way by transmitting serialized Java objects over
sockets. TaskSpaces scales well on large grids composed of
supercomputers at NCSA, SDSC, and other supercomputer
centers, connected over the internet, for a parallel computing
problem in numerical linear algebra [2]. This problem requires
neighbor-neighbor interprocess communication, and it is thus
surprising that the scalability for this problem in the hetero-
geneous grid environment is so good.

Looking back at the prerequisites we set out in the previous
Section for the ‘universal computing dream’ we pursue, it is
instructive to consider how our prototype grid implementation

application
host

configuration and class
server

task
task

task

result
result

result
task

application

worker worker worker worker worker

task bag result bag

worker host 2 worker host 3worker host 1 (parallel)

task/result host

...
...

...

configuration file

application_task.class

Fig. 3. TaskSpaces framework deployment diagram.

performs with respect to our aspirations. Some of the func-
tionality is only present in a rudimentary way in our prototype
implementation, but more sophisticated versions based on the
general concepts presented can easily be imagined.

1) Standard interface: YES.
Through implementation in Java. In the strict sense this
limits the applications to code written in Java, but, with
limited sacrifices in generality, application code in other
languages can be used as well (see below).

2) Scalable: YES.
Through the tuple space concept. Scalability from the
producer side is currently performed ‘by hand’, but
automated strategies can easily be imagined. Also, bags
can in principle be replicated when access loads become
high and bottlenecks arise, and automatic strategies to
this end can be considered as well.

3) Secure resource sharing: not implemented yet in
TaskSpaces.
But definitely feasible using Java’s built-in mechanisms
of digital signatures and public-private key cryptography.

4) Fault-tolerance: not implemented yet in TaskSpaces.
But, for instance, automatic duplication of bags for
backup reasons could easily be achieved via simple
cloning of Java objects.

5) Resource allocation and scheduling: YES.
The task bag acts as a ‘superqueue’.

6) Automatic distribution of application code to worker
machines: YES.
By downloading Java objects from the task bags. The
objects contain both the data and references to the
application code, which is downloaded automatically
from the class server upon first use by a worker.

7) Scalable interprocess communication: YES.
Through direct exchange of serialized Java objects over
sockets between workers, see also [2]. Efficient collec-
tive communications would require additional features
such as multi-level communication schemes (see below).

8) User charging algorithms: not implemented yet in
TaskSpaces.
Simple charging strategies are straightforward to imple-
ment.

9) Quality-of-service: not implemented yet in TaskSpaces.
This may require thorough study of the particular grid
environments considered, and instrumentation of objects
and worker machines with performance measures and
priority mechanisms.

10) Resource discovery: YES.
Computing resources discover tasks by making them-
selves available to the task bags, rather than the other
way around. Compute farms are presently assigned to
task bags by hand, but automatic, multi-level assignment
strategies are feasible.

The overview above shows that the TaskSpaces design,
despite its simplicity, is quite effective in realizing many of
the conceptual aspirations of the ‘universal computing dream’.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

In the following Sections, we illustrate how the framework,
with minimal effort, can be used for a practical, real-life
parallel bioinformatics application on ad-hoc computational
grids composed of a variety of widely available hardware
types.

III. APPLICATION: FINDING CORRECTLY FOLDED RNA
MOTIFS IN SEQUENCE SPACE

Fig. 4. The RNA world hypothesis: if a small number of random RNA
molecules, say a pool of 106 to 109 sequences, has a reasonable probability
of containing molecules with various chemical functions, then primitive
metabolisms would be expected to have arisen many times on the early Earth.

We have applied the TaskSpaces framework to the following
problem, which is relevant both to natural evolution and to
a process of artificial evolution called SELEX that has been
widely used to select new molecular functions from random
pools of RNA. Given a pool of random RNA molecules
of a specified length (typically 50-200 bases), what is the
probability that the random pool contains molecules that have
the right sequence and are folded into the right structure
needed for a particular chemical function? This question is
critical for the RNA world hypothesis: if molecules that can
catalyze a particular reaction are especially common, the
idea that the tiny amounts of RNA that would be produced
by prebiotic synthesis could produce an RNA metabolism
becomes more plausible (Fig. 4) [7]. Chemically active RNA
molecules are also routinely synthesized, in SELEX laboratory
experiments, from intially random pools of RNA molecules
[4]. Specifically, we have focussed on determining the abun-
dance of isoleucine and hammerhead RNA motifs in random
molecules [4]. The isoleucine motif is the shortest RNA motif
capable of binding specifically to the amino acid isoleucine,
while the hammerhead motif cuts RNA at specific locations
and has been found both in cells and through SELEX. It has
been determined experimentally that chemical function of a
certain type appears when the random RNA molecule contains
a prescribed motif, which is composed of several modules
with partially specified sequence, and has a prescribed folding
structure (see Fig. 5). The probability that a random molecule
matches both the prescribed sequence and the structure,
P (seq, struct), is calculated in two steps as P (seq, struct) =

P (seq) P (struct|seq). The sequence probability P (seq) can
be approximated accurately by combinatorial formulas [7],
[4]. The conditional probability of obtaining the right folding
structure, given a partially random molecule that contains the
right sequence, cannot be approximated analytically. In stead,
we approximate this probability by computational folding of
large samples of RNA molecules (a sample size of 10,000
is typically used): the probability is approximated by the
number of partially random molecules that fold into the correct
structure, divided by the total number of molecules in the
sample. One important question of interest is the variation
of the probability P (seq, struct) as the composition of the
random pool changes, since the composition of RNA pools
may have varied widely on the primitive earth and since mod-
ern genomes vary widely in composition, possibly affecting
the evolution of specific functions. We set out to investigate
whether specific kinds of chemical function arise more often in
pools with overall composition biases in particular directions.
This required the computational folding of many samples in
{A,C,G,U} composition space. We used 5% intervals in
composition space, leading to 969 different compositions to
be tested. Varying the length of the random molecules (we
have considered lengths of 50, 100, and 150 nucleotides),
further increased the number of foldings required. For the
results to be discussed briefly below (see [4] for a more
detailed discussion), we performed about hundred million
computational foldings. This constitutes a computational prob-
lem of moderately large size, which would require weeks to
months on a single fast workstation. We decided to use a
grid computing approach, mainly for flexibility, portability and
scalability reasons.

We used the Vienna RNA folding package [8], which is
written in C, for folding individual sequences. The RNAfold
executable is called by the Java application on each worker
node as needed. Non-Java executables must be compiled in
advance for each worker architecture, and can be downloaded
from the code server by the workers upon first use. Thus,
although reliance on code written in other languages increases
the effort required for cross-platform operation, it is still
feasible.

IV. CASE STUDY: OPERATING THE FRAMEWORK ON A

COMPUTATIONAL GRID

We simulated the RNA function probability problem on a
grid composed of the NCSA IA32 Linux Platinum Super-
cluster and various P4 Linux workstations at CU Boulder,
Colorado. The Platinum machine features 968 P3 compute
processors (1GHz). For code development and execution of
some smaller subproblems, only the local workstations were
used, while for larger problems the local workstations were
combined with up to 200 Platinum processors concurrently.
The total computing time used for this project so far, including
extensive initial runs for exploring the problem and determin-
ing the right approach and questions to be answered, amounts
to approximately 10,000 Platinum processor hours.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

(c) Hammerhead

(b) Isoleucine

SSU Archaea

(a) Sequences

make random
sequences that
contain sites:
unpaired ∈ {U,C,A,G}
paired ∈ {UA, AU, CG,

GC, GU, UG}

predict
structures

(d) P(seq) (e) P(struct|seq) (f) P(struct,seq)

5' NNGGU GNNN
3' NNCCG CNNN

AC

G
G

U U
U

A

1

2

1

3 2

 5' NNNN U N NNNN
 3' NNNN NNNN

C
G

GNG

U
A

A

A
A
A

N N
N N
N N

identif y
sites

required
paired region

X

X
X

Fig. 5. Procedure for determining the effects of folding and sequence
composition on motif abundance. (a) the motifs are identified by comparing
sequences with the same function. The isoleucine aptamer (b) and the
hammerhead ribozyme (c) both consist of modules that must have an exact
sequence, and flanking helices that must base pair but need meet no other con-
straints. These diagrams show the exact sequence and structure requirements
that were used in the calculations: base pairs are indicated by connecting
lines. We calculate Pr(sequence) (d) from the sequence requirements, and
Pr(structure|sequence) (e) by constructing large samples of random sequences
that contain the motif and computationally predicting their structures. The
overall probability of finding a correctly folded sequence (f) is obtained by
multiplying the probabilities from (d) and (e).

The framework was easy to install on candidate worker
machines. Even though Java is normally not thought of very
much as a language for supercomputing, it is actually available
on all machines we obtained access to, even the largest parallel
supercomputers. In fact, Java is catching up fast in execution
speed with other languages, and the advantages in ease of use
and portability may actually give it a good future in scientific
computing. Locating the Java executable (which is typically
not included in the standard path), copying the Java worker
bytecode to the worker machine, and starting the workers, was
typically very fast: for most machines it did not take more
than 15 minutes to make them participate in the grid. On
parallel computes, the standard queueing systems were used.
Varying queue delays on concurrently participating machines
did not cause a problem, because the taskbag (typically located
on a workstation in Boulder) acts as a superqueue, and the
RNA folding tasks are loosely coupled and do not require any
interprocess communication and synchronization. The Internet
was used as network connection between the grid machines,
and network performance was adequate at all times.

A major obstacle in constructing ad-hoc grids like this
is security, which will become increasingly important as
research networks and institutions are increasingly targeted
by malicious intruders. Under pressure from malicious attacks,
potential worker machines will often be protected by firewalls.
Participation in a grid then requires additional firewall config-
uration, as our framework requires at present worker nodes
with externally accessible IP addresses. Security is another
reason why we expect, as argued before, that grids will develop

as ‘islands’ for the foreseeable future, further delaying the
concept of a ‘World Wide Grid’. Another inconvenience in
operating a grid is the variety of queueing systems operating
on parallel computers and clusters. If machines were available
where TaskSpaces workers would be the only, continuously
running processes, then much of the queueing considerations
could be dealt with in more efficient ways that decrease
turnaround times, for instance by extending the use and
functionality of task bags as superqueues.

We can summarize our experiences with operating the grid
framework for a real problem on a real moderately sized grid,
by saying that the framework mostly delivered the promised
flexibility, portability and scalability. TaskSpaces is currently
being deployed on SHARCNET, applied to the bioinformat-
ics problem described here, and to additional bioinformatics
applications.

V. RESULTS FOR THE RNA MOTIF PROBLEM

We estimated the abundance of two motifs, the hammerhead
ribozyme and the isoleucine aptamer, in random-sequence
pools of many compositions and several lengths. These two
well-studied motifs provide test cases for our code on the
TaskSpaces framework, with which we plan to analyze dozens
to hundreds of motifs. Knowing where particular kinds of
RNA sequences are most likely to be found in the space of
possible compositions, and where these sequences are most
likely to fold into the correct structure if they are found, will
provide striking new insight into the conditions under which
particular RNA activities can evolve.

To test the effects of nucleotide composition on the proba-
bility of meeting the sequence requirements and the probability
of correct folding, we generated 10,000 random sequences at
each of the 969 possible 5% intervals of sequence compo-
sition. The sequences were of total length 50, 100, and 150
nucleotides, meeting the sequence requirements for each of the
hammerhead and isoleucine motifs. We repeated the analysis
for sequence length 50 allowing G-U base pairs (a weaker type
of pairing than the more familiar ‘Watson-Crick’ G-C and A-
U base pairs, which are found at a small but not negligible
frequency in biological RNA structures). Thus we folded a
total of 77,520,000 sequences for this experiment.

We found that the composition of the randomized sequences
had a striking effect on both the probability of finding each
motif and the probability of correct folding. Table I compares
the estimates, including folding, from this work with our
previous estimates of the abundance of the same motifs [7]
based on a simplified, not computationally intensive approach.
For a more detailed description of our results, see [4].

Our results demonstrate striking relationships between nu-
cleotide composition and the probability of finding specific
sequences, and suggest that we may be able to predict which
kinds of random-sequence pools (for SELEX or in organisms)
might be most able to evolve particular functions. The proba-
bility of finding the specific functions we searched for (10−8 to
10−12) are rather lower than we had predicted from previous
work, demonstrating that the effects of folding are important

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

TABLE I

SINGLE-SEQUENCE MATCH PROBABILITIES AND POOL SIZES REQUIRED

FOR 50% ABUNDANCE COMPARED BETWEEN THIS ANALYSIS AND OUR

PREVIOUS CALCULATIONS [7].

Motif New Old
Ile Probability 1.7 × 10−10 3.3 × 10−6

Num Seqs 4.5 × 109 2.1 × 105

HH Probability 3.4 × 10−11 6.2 × 10−11

Num Seqs 2.1 × 1010 1.1 × 1010

and cannot be ignored. These figures are consistent with the
observation that new RNA activities are routinely isolated in
the laboratory from random-sequence pools of 1012 to 1015

molecules, although they do not provide support for the idea
that an RNA metabolism could have arisen from only a few
hundred thousand random RNA molecules as might have been
present on the prebiotic Earth. Due to the chemical problems
in synthesizing large amounts of RNA without enzymes,
it has often been suggested that a simpler self-reproducing
system preceded the RNA World. However, once RNA was
first synthesized (perhaps for an entirely different reason),
our results show that catalytic activity would soon be likely
to emerge: 1015 100-nucleotide RNA molecules is about 50
micrograms of RNA, less than the amount of RNA found in
a single gram of modern tissue.

VI. FUTURE WORK

There are many interesting ways in which the framework
can be extended. First of all, we are planning to build full
Python language functionality into the framework to allow
researchers familiar with that language to scale their single-
CPU tasks easily to the grid. Python is becoming increas-
ingly popular as a language for bioinformatics, mirroring
its success for other scientific computing tasks. Second, as
indicated in the enumeration in Section II, the framework
implementation needs to be extended with regards to scalabil-
ity, fault-tolerance, security, charging algorithms, and quality-
of-service. For example, fault-tolerance may be enhanced by
cloning of objects and bags, and transaction-type communi-
cation. Third, we plan to add more extensive functionality, in
terms of support for complex parallel workflows, connection
with databases for data furnishing and result collection, and
multi-level tree-based collective communication for tightly-
coupled parallel applications.

On the parallel bioinformatics application side, additional
loosely coupled parallel bioinformatics applications will be
studied, including variants of the previously considered RNA
folding statistics problem (for instance, investigation of the
effect of the length of the molecules on correct folding), and
an examination of whether certain compositional features of
ribosomal RNA are universal across organisms or across RNA
molecules. We are also considering more challenging appli-
cations, including proteomics workflows and tightly coupled
problems such as building large phylogenies.

VII. CONCLUSION

We have described a software framework for scientific
computing on computational grids that is based on tuple-space
principles and implemented in Java, and we have demonstrated
that seamless simulation on an ad-hoc grid composed of
a wide variety of hardware is feasible for real-life parallel
bioinformatics problems. The language and general approach
we used is most appropriate in cases in which flexibility
and ease of configuration outweigh concerns about extracting
maximal performance on a given architecture for a given,
fixed, application with fixed, large problem size that must be
executed repeatedly. In this latter situation, it is often a good
investment to develop specific optimized software solutions
of ‘high-performance computing’ type. Also, when a single,
large computing platform is available that fulfills all computing
resource needs and remains in a stable configuration over a
long time, a project may not need simulation software that can
be deployed on a heterogeneous, distributed network. In many
situations, however, research is dynamic, available computing
resources may be heterogeneous and spatially distributed, and
research goals and directions may change continuously. In
such a rapid-prototyping environment with wide variations in
problem sizes, with complex changing workflows, and with
fast variations in application code, a platform-independent
‘high-throughput computing’ grid solution of the type pro-
posed in this paper may be most appropriate, because of the
gains in flexibility, portability and cross-platform scalability.
The performance and applicability of the TaskSpaces frame-
work within the SHARCNET environment is currently being
evaluated, and results will be reported in future work.

ACKNOWLEDGMENT

This work was partially supported by the US National
Computational Science Alliance under grant MCB020011 and
utilized the NCSA IA32 Linux Supercluster Platinum.

REFERENCES

[1] I. Foster and C. K. (eds.), The Grid: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann, 1998.

[2] H. De Sterck, R. Markel, T. Pohl, and U. Rüde, “A lightweight Java
Taskspaces framework for scientific computing on computational grids,”
in Proceedings of the ACM Symposium on Applied Computing, Track on
Parallel and Distributed Systems and Networking, 2003, pp. 1024–1030.

[3] H. De Sterck, R. Markel, and R. Knight, “Taskspaces: A software
framework for parallel bioinformatics on computational grids,” in Parallel
Computing in Bioinformatics and Computational Biology, A. Zomaya,
Ed. John Wiley and Sons, 2005.

[4] R. D. Knight, H. De Sterck, R. S. Markel, S. Smit, A. Oshmyansky, and
M. Yarus, “Abundance of correctly folded RNA motifs in sequence space,
calculated on computational grids,” Nucleic Acids Research. Submitted,
2004.

[5] D. Gelertner, “Generative communication in Linda,” ACM Transactions
on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112, 1985.

[6] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming. Boston: Addison Wesley, 2000.

[7] R. Knight and M. Yarus, “Finding specific RNA motifs: function in a
zeptomole world?” RNA, vol. 9, no. 2, pp. 218–30, 2003.

[8] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and
P. Schuster, “Fast folding and comparison of RNA secondary structures,”
Monatshefte Fur Chemie, vol. 125, no. 2, pp. 167–188, 1994.

Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)

1550-5243/05 $20.00 © 2005 IEEE

