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Abstract Community networks (CNs) have gained

momentum in the last few years with the increasing

number of spontaneously deployed WiFi hotspots and

home networks. These networks, owned and managed

by volunteers, offer various services to their mem-

bers and to the public. While Internet access is the

most popular service, the provision of services of

local interest within the network is enabled by the

emerging technology of CN micro-clouds. By putting

services closer to users, micro-clouds pursue not only
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a better service performance, but also a low entry

barrier for the deployment of mainstream Internet ser-

vices within the CN. Unfortunately, the provisioning

of these services is not so simple. Due to the large and

irregular topology, high software and hardware diver-

sity of CNs, a “careful” placement of micro-clouds

services over the network is required to optimize ser-

vice performance. This paper proposes to leverage

state information about the network to inform ser-

vice placement decisions, and to do so through a

fast heuristic algorithm, which is critical to quickly

react to changing conditions. To evaluate its perfor-

mance, we compare our heuristic with one based on

random placement in Guifi.net, the biggest CN world-

wide. Our experimental results show that our heuristic

consistently outperforms random placement by 2x

in bandwidth gain. We quantify the benefits of our

heuristic on a real live video-streaming service, and

demonstrate that video chunk losses decrease signif-

icantly, attaining a 37% decrease in the packet loss

rate. Further, using a popular Web 2.0 service, we

demonstrate that the client response times decrease

up to an order of magnitude when using our heuris-

tic. Since these improvements translate in the QoE

(Quality of Experience) perceived by the user, our

results are relevant for contributing to higher QoE, a

crucial parameter for using services from volunteer-

based systems and adapting CN micro-clouds as an

eco-system for service deployment.
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1 Introduction

Since early 2000s, community networks (CNs) or

“Do-It-Yourself ” networks have gained momentum in

response to the growing demands for network con-

nectivity in rural and urban communities. The main

singularity of CNs is that they are built “bottom-up”,

mixing wireless and wired links, with communities

of citizens building, operating and managing the net-

work. The result of this open, agglomerative, organic

process is a very heterogeneous network, with self-

managing links and devices. For instance, devices are

typically “low-tech”, built entirely by off-the-shelf

hardware and open source software, which communi-

cate over wireless links. This poses several challenges,

such as the lack of service guarantees, inefficient use

of the available resources, and absence of security, to

name just a few.

These challenges have not precluded CNs from

flourishing around. For instance, Guifi.net,1 located in

the Catalonia region of Spain, is a successful example

of this paradigm.

Guifi.net is a “crowdsourced network”, i.e., a net-

work infrastructure built by citizens and organiza-

tions who pool their resources and coordinate their

efforts to make these networks happen [7]. In this

network, the infrastructure is established by the par-

ticipants and is managed as a common resource [5].

Guifi.net is the largest and fast growing CN world-

wide. Some measurable indicators are the number of

nodes (> 34,000), the geographic scope (> 50,000 km

of links), the Internet traffic etc. Regarding the Inter-

net traffic, Fig. 1 depicts the evolution of the total

inbound (i.e., pink color) and outbound (i.e., yellow

color) traffic from and to the Internet for the last

two years. A mere inspection of this figure tells us

that Guifi.net traffic has tripled (i.e., 3 Gbps peak).

Traffic peaks correspond to the arrival of new users

and deployment of bandwidth-hungry services in the

network. Actually, a significant number of services,

including GuifiTV, graph servers, mail and game ser-

vices, are running within Guifi.net. All these services

1http://guifi.net/

have been provided by individuals, social groups, and

small non-profit or commercial service providers.

Guifi.net ultimate aim is to create a full digital

ecosystem that covers a highly localized area. But this

mission is not so simple. A quick glance at the type

of services that users demand reveals that the percent-

age of the Internet services (e.g., proxies) is higher

than 50% [13, 30]. This confirms that Guifi.net users

are typically interested in mainstream Internet ser-

vices, which imposes a heavy burden on the “‘thin”

backbone links, with users experiencing high service

variability. The main reasons why the local services

have not been developed within CNs or have not

gained traction among the members, is the lack of

streamlined mechanisms to exploit all the resources

available within the CNs. As a result, the development

of these types of services can be very challenging.

The current network deployment model in the

Guifi.net CN is based on geographic singularities

rather than on the QoS (Quality of Service). The

resources in the network are not uniformly distributed

[41]. Wireless links are with asymmetric quality for

the services and there is a highly skewed traffic and

bandwidth distribution [10].

Further, the network topology in a wireless CN

such as Guifi.net is organic and different with respect

to conventional ISP (Internet Service Provider) net-

works [44]. Guifi.net is composed of numerous dis-

tributed CNs and they represent different types of

network topologies. The overall topology is constantly

changing and there is no fixed topology as in the

Data Center (DC) environment. The Guifi.net net-

work shows some typical patterns from the urban

networks (i.e., mesh networks) combined with an

unusual deployment, that do not completely fit neither

with organically grown networks nor with planned

networks [42]. This implies that a service placement

solution (i.e., algorithm) that works in a certain topol-

ogy might not work in another one.

The infrastructure in the Guifi.net CN is highly

unreliable and heterogeneous [41]. Devices and the

network are very heterogeneous compared to the DCs

where they are very homogeneous. The strong hetero-

geneity is due to the diverse capacity of nodes and

links, as well as the asymmetric quality of wireless

links. Employed technologies in the network vary sig-

nificantly, ranging from very low-cost, off-the-shelf

wireless (WiFi) routers, home gateways, laptops to

expensive optical fiber equipment [4, 32]. In terms of
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Fig. 1 Guifi.net inbound and outbound traffic (2014–2016)

demand distribution, the demand comes directly from

the edge so there are no central load balancers as in

the DC environments.

Among other issues, the above-mentioned chal-

lenges spurred the invention of “alternative” service

deployment models to cater for users in the Guifi.net.

One of these models was that based on micro-clouds.

A micro-cloud is nothing but a platform to deliver

services to a local community of citizens within the

vast CN. Services can be of any type, ranging from

personal storage [29] to video streaming and P2P-TV

[28]. Observe that this model is different from Fog

computing [9, 21], which extends cloud computing by

introducing an intermediate layer between devices and

datacenters. Micro-clouds take the opposite track, by

putting services closer to consumers, so that no further

or minimal action takes place in the Internet. The idea

is to tap into the shorter, faster connectivity between

users to deliver a better service and alleviate overload

in the backbone links.

This approach, however, poses new challenges,

such as that of the optimal placement of micro-clouds

within the CN to overcome suboptimal performance.

And Guifi.net is not an exception. Obviously, a place-

ment algorithm that is agnostic to the state of the

underlying network may lead to important ineffi-

ciencies. Although conceptually straightforward, it is

challenging to calculate an optimal decision due to the

dynamic nature of CNs and usage patterns.

This paper tries to answer the following three

research questions:

1. First, given that sufficient state information is

in place, is network-aware placement enough to

deliver satisfactory performance to CN users?

2. Second, can the redundant placement of services

further improve performance?

3. Third, given a CN micro-cloud infrastructure,

what is an effective and low-complexity service

placement solution that maximizes the end-to-

end performance (e.g., bandwidth), taking into

account the dynamic behavior of the network and

resource availability?

To answer these questions, we contribute in this

work with a new placement heuristic called BASP

(Bandwidth and Availability-aware Service Place-

ment), which uses the state of the underlying CN

to optimize service deployment [27]. In particular,

it considers two sources of information: i) network

bandwidth and ii) node availability to make opti-

mized decisions. Compared with brute-force search,

which takes in the order of hours to complete, BASP

runs much faster; it just takes a few seconds, while

achieving equally good results.

Our results show that the BASP heuristic consis-

tently outperforms random placement, the existing

in-place and naturally fast strategy in Guifi.net, by

2x with respect to end-to-end bandwidth gain. Driven

by these findings, we then ran BASP in a real CN

and quantified the boost in performance achieved after

deploying a live video-streaming and Web 2.0 service

according to BASP. Our experimental results demon-

strate that with BASP, the video chunk loss in the peer

side decreased up to a 3% point reduction, i.e., worth

a 37% reduction in the packet loss rate, which is a

significant improvement. Furthermore, when using the

BASP with the Web 2.0 service (i.e., social network-

ing service), the client response times decreased up to

an order of magnitude.

The rest of the paper is organized as follows. In

Section 2 we define CN micro-clouds and describe and

characterize the performance of the production CN

such as QMP (Quick Mesh Project) network, which
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is a subset of the Guifi.net CN. Section 3 defines

our system model and presents our BASP heuristic.

In Section 4 we discuss the evaluation results of our

BASP heuristic, using the QMP network traces. In

Section 5 we present and discuss the real deployment

experiments with a video-streaming and Web 2.0 ser-

vice. Section 6 describes related work and Section 7

concludes and discusses future research directions.

2 Background and Network Characterization

The adoption of the CN micro-cloud services requires

carefully addressing the service deployment and per-

formance requirements. Our service placement strat-

egy considers two aspects: node availability and net-

work bandwidth. As the first step, it is vital to under-

stand the behavior of these two dimensions in a real

CN. We achieve this by characterizing over a five-

month period a production wireless CN such as the

QMP network, which is a subset of the Guifi.net. Our

goal is to determine the key features of the network

(e.g. bandwidth, traffic distribution), of the nodes (e.g.,

availability patterns) and service types in the network

that could help us to design new heuristics for intelli-

gent service placement in CNs.

2.1 Micro-Clouds in the Community Networks

CN micro-clouds are built on top of the CNs. In

this model, a cloud is deployed closer to CN users

and other existing network infrastructure (e.g., public

schools, strategic locations etc.). CN micro-clouds

take the opposite track from Fog Computing, by

putting services closer to consumers, so that no fur-

ther or minimal action takes place in the Internet. In

CN micro-clouds, by contrast to other edge comput-

ing models, the users of edge services are enabled to

collaborate and actively participate in the service pro-

vision, and contribute to sustain edge micro-clouds.

They are deployed over a single or set of user nodes,

and comparing to the public clouds they have a smaller

scale, so one still gets high performance due to locality

and control over service placement.

The devices forming the CN micro-clouds are co-

located in either users homes (e.g., as home gateways,

routers, laptops, parabolic antennas etc., as shown in

the Fig. 2) or distributed in the CNs. The concept

of micro-clouds can also be introduced in order to

Fig. 2 Devices forming a CN micro-cloud (home gateways,

routers, laptops, set-top boxes, antennas etc.)

split deployed CN nodes into different groups. For

instance, a micro-cloud can refer to these nodes which

are within the same service announcement and discov-

ery domain. Different criteria can be applied to deter-

mine to which micro-cloud a node belongs to. Apply-

ing technical criteria (e.g., Round-trip time (RTT),

bandwidth, number of hops, resource characteristics)

for micro-cloud assignment is a possibility to optimize

the performance of several services. But also social

criteria may be used, e.g., bringing in a micro-cloud

cloud resources together from users which are socially

close may improve acceptance, the willingness to

share resources and to maintain the infrastructure.

2.2 The QMP Network: an Urban CN of the Guifi.net

QMP network began to operate in 2009 in a quarter

of the city of Barcelona, Spain, called Sants, as part

of the Quick Mesh Project (QMP).2 The QMP net-

work is an urban mesh network and it is a subset of

the Guifi.net CN sometimes called GuifiSants. At the

time of writing, the QMP has around 77 nodes. There

are two gateways (i.e., proxies) distributed in the net-

work that connect the QMP to the rest of Guifi.net

and the Internet (highlighted in the Fig. 3). A detailed

description of QMP can be found in [10].

Typically, the QMP users have an outdoor router

(OR) with a Wi-fi interface on the roof, connected

through Ethernet to an indoor AP (access point) as

a premises network. The most common OR in the

QMP is the NanoStation M5 as shown in the Fig. 2,

2http://qmp.cat
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Fig. 3 QMP network topology

which is used to build point-to-point links in the net-

work and integrates a sectorial antenna with a router

furnished with a wireless 802.11an interface. Some

strategic locations have several NanoStations, that

provide larger coverage. In addition, some links of

several kilometers are set up with parabolic anten-

nas (NanoBridges). ORs in the QMP are flashed with

the Linux distribution which was developed inside the

QMP project which is a branch of OpenWRT3 and

uses BMX6 and BMX7 as the routing protocol [25].

The user devices connected to the ORs consists

of Minix Neo Z64 and Jetway mini PCs, which

are equipped with an Intel Atom CPU. They run

the Cloudy4 operating system, which leverages the

Docker containerization technology and allows CN

users to launch their favorite or the predefined Docker

images in a few clicks, from their browser. This

rapid application provision allows room for new, very

dynamic ways to deploy services and share resources

in a digital community.

Methodology and Data Collection The measurements

have been obtained by connecting via SSH to each

QMP OR and running basic system commands avail-

able in the QMP distribution. This method has the

advantage that no additional software needs to be

installed on the nodes. Live measurements have been

taken hourly over a five-month period, starting from

July 2016 to November 2016, and our live monitoring

3https://openwrt.org/
4http://cloudy.community/
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Fig. 4 Number of local services in the Guifi.net (network and

user-focused)

page and data is publicly available in the Internet.5 We

use this data to analyze the main aspects of the QMP

network.

2.3 Services in the QMP Network

In the Guifi.net (QMP) CN, the Internet cloud ser-

vices have equivalent alternatives that are owned and

operated at the community level. There are two type

of services in the network: network-focused and user-

focused services. Figure 4 depicts the evolution of user

and network-focused services during the last 10 years.

Considering that network management is of interest

to all users in the network (i.e., to keep the network

up and running), Fig. 4 reveals that services related

to the network operation outnumber the local services

intended for end-users. However, in the recent years

the local user services are also gaining attraction as

demonstrated by the Fig. 4.

Moreover, the most frequent of all the services,

whether user-focused or network-focused, are the

proxy services [12]. Proxies act as free gateways to

the Internet for the CN users. Specifically for the user-

focused services, the percentage of the Internet access

services (i.e., proxies and tunnel-based) is higher than

55%, confirming that the users of Guifi.net are typi-

cally interested in accessing the Internet [30]. Further,

other important services are web hosting, data stor-

age, VoIP, and video streaming. From the service

placement point of view, we are focusing on both type

of services in the network.

5http://dsg.ac.upc.edu/qmpsu/
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2.4 Node Availability

The quality and state of the heterogeneous hardware

used in the QMP influences the stability of the links

and network performance. Availability of the QMP

nodes is used as an indirect metric for the quality

of connectivity that new members expect from the

network.

Figure 5 shows the Empirical Cumulative Dis-

tribution Function (ECDF) of the node availability

collected for a period of five months. We define the

availability of a node as the percentage of times that

the node appears in a capture, counted since the node

shows up for the first time. A capture is an hourly net-

work snapshot that we take from the QMP network

(i.e., we took 2718 captures in total). Figure 5 reveals

that 25% of the nodes have an availability lower than

90% and others nodes left have an availability between

90–100%. In a CN such as QMP, users do not tend to

deliberately reboot the device unless they have to per-

form an upgrade, which is not very common. Hence,

the percentage of times that node appears in a capture

is a relatively good measure of the node availability

due to random failures.

When we compare the availability distribution

reported in a similar study and environment on Plan-

etLab [43], a QMP node has a higher probability of

being disconnected or not to be reachable from the

network. The fact that PlanetLab showed a higher

average availability (i.e., sysUpTime) on its nodes

may be because it is an experimental testbed running
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Fig. 5 Node availability in the QMP network

on much more stable computers and environment. Fur-

thermore, the QMP members are not only responsible

for the maintenance of their nodes, but also for ensur-

ing a minimum standard of connectivity with other

parts of the network.

Figure 6 depicts the number of nodes and links

during captures. Figure shows that the QMP is grow-

ing. Overall, 77 different nodes were detected. From

those, 71 were alive during the entire measurement

period. Around 6 nodes were missed in the majority

of the captures. These are temporarily working nodes

from other mesh networks and laboratory devices used

for various experiments. Figure 6 also reveals that on

average 175 of the links used between nodes are bidi-

rectional and 34 are unidirectional. For bidirectional

links, we count both links in opposite direction as a

single link.

In summary, node availability is important to iden-

tify those nodes that will minimize service interrup-

tions over time. Based on the measurements, we assign

availability scores (Rn) to each of the nodes. The

highly available nodes are the possible candidates for

deploying on them the micro-cloud services.

2.5 Bandwidth Characterization

A significant amount of services that run on the

QMP and Guifi.net network are network-intensive

(i.e., bandwidth and delay sensitive), transferring large

amounts of data between the network nodes [8, 30].

The performance of such kind of services depends not
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Fig. 6 Node and link presence in the QMP network
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just on computational and disk resources but also on

the network bandwidth between the nodes on which

they are deployed. Therefore, considering the network

bandwidth when placing services in the network is of

high importance.

First, we characterize the wireless links of the QMP

network by studying their bandwidth. Figure 7 shows

the average bandwidth distribution of all the links.

The figure shows that the link throughput can be fit-

ted with a mean of 21.8 Mbps. At the same time

Fig. 7 reveals that the 60% of the nodes have 10 Mbps

or less throughput. The average bandwidth of 21.8

Mbps obtained in the network allows many popular

bandwidth-hungry service to run without big interrup-

tions. This high performance can be attributed to the

802.11an devices used in the network.

In order to see the variability of the bandwidth,

Fig. 8 shows the bandwidth averages in both direc-

tions of the three busiest links. Upload operation is

depicted with a solid line and download operation with

a dashed line. The nodes of three busiest links are

highlighted on the top of the figure. We noted that the

asymmetry of the bandwidths measured in both direc-

tions it not always due to the asymmetry of the user

traffic (not shown in the graphs). For instance, node

GSgranVia255, around 6 am, when the user traffic is

the lowest and equal in both directions, the asymme-

try of the links bandwidth observed in Fig. 8 remains

the same. We thus conclude that even though band-

width time to time is slightly affected by the traffic, the

asymmetry of the links that we see might be due to the
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Fig. 8 Bandwidth in three busiest links

link characteristics, as level of interferences present at

each end, or different transmission powers.

In order to measure the link asymmetry, Fig. 9

depicts the bandwidth measured in each direction. A

boxplot of the absolute value of the deviation over

the mean is also depicted on the right. The figure

shows that around 25% of the links have a deviation

higher than 40%. At the same time, the other 25%

of the links have a deviation less than 10%. After

performing some measurements regarding the signal-

ing power of the devices, we discovered that some

of the community members have re-tuned the radios

of their devices (e.g., transmission power, channel

and other parameters), trying to achieve better perfor-

mance, thus, changing the characteristics of the links.

Thus, we can conclude that the symmetry of the links,

an assumption often used in the literature of wireless

mesh networks, is not very realistic for our case and

service placement algorithms unquestionably need to

take this into account.

2.6 Discussion

Here are some observations (features) that we have

derived from the measurements in the QMP network:

Dynamic Topology The QMP network is highly

dynamic and diverse due to many reasons, e.g., its

community nature in an urban area; its decentral-

ized organic growth with extensive diversity in the

technological choices for hardware, wireless media,

link protocols, channels, routing protocols etc.; its
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Fig. 9 Bandwidth

asymmetry
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mesh topology etc. The current network deployment

model is based on geographic singularities rather than

QoS. The network is not scale-free. The topology is

organic and different with respect to conventional ISP

networks.

Non-uniform Resource Distribution The resources are

not uniformly distributed in the network. Wireless

links are with asymmetric quality for services (25%

of the links have a deviation higher than 40%). We

observed a highly skewed traffic pattern and highly

skewed bandwidth distribution (Fig. 7).

Currently used organic (i.e., random) placement

scheme in the QMP and Guifi.net in general, is utterly

inefficient, failing to capture the dynamics of the net-

work and therefore it fails to deliver the satisfying

QoS. The strong assumption under random service

placement, i.e., uniform distribution of resources, does

not hold in such environments.

Furthermore, the services deployed have differ-

ent QoS requirements. Services that require intensive

inter-component communication (e.g., streaming ser-

vice), can perform better if the replicas (i.e., service

components) are placed close to each other in the

high capacity links [28]. On other side, bandwidth-

intensive services (e.g., distributed storage, video-on-

demand) can perform much better if their replicas are

as close as possible to their final users (i.e., overall

reduction of bandwidth for service provisioning) [31].

Our goal is to build on this insight and design a

network-aware service placement heuristic that will

improve the service quality and network performance

by optimizing the usage of scarce resources in CNs

such as bandwidth.

3 Context and Problem

Based on the network measurements we did at the

QMP network, in this section, first we describe our

model for network and service graph. Subsequently

we build on this to describe the service placement

problem. The symbols used in this section are listed in

Table 1.

3.1 Network Graph

The deployment and sharing of services in CNs is

made available through community network micro-

clouds (CNMCs). The idea of CNMC is to place the

Table 1 Input variables

Symbol Description

N Set of physical nodes in the network

E Set of edges (physical links) in the network

S Set of services

D Set of service copies

k Max number of service copies

Be Bandwidth capacity of link e

βs1,s2 Bandwidth requirement between services s1 and s2

Rn Availability of node n

λ Availability threshold
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cloud at the edge closer to community end-users, so

users can have fast and reliable access to the ser-

vice. To reach its full potential, a CNMC needs to be

carefully deployed in order to effectively take advan-

tage and utilize efficiently the available bandwidth

resources.

In a CNMC, a server or low-power device (i.e,

home gateway) is directly connected to the wireless

base-station (ORs) providing cloud services to users

that are either within a reasonable distance or directly

connected to the base-station.

We call the CN the underlay to distinguish it from

the overlay network which is built by the services.

The underlay network is supposed to be connected

and we assume each node knows whether other nodes

can be reached (i.e., next hop is known). We can

model the underlay graph as: G ← (N, E) where N

is the set of nodes connected to the outdoor routers

(ORs) present in the CNs and E is the set of wire-

less links that connects them. Physical links between

nodes are characterized by a given bandwidth (Bi).

Furthermore, each link has a bandwidth capacity (Be)

(i.e., theoretical capacity). Each node in the network

has an availability score (Rn) derived from the real

measurements in the QMP network.

3.2 Service Graph

The services aimed in this work are at infrastructure

level (IaaS), as cloud services in current dedicated

datacenters. Therefore, the services are deployed

directly over the core resources of the network and

accessed by the clients. Services can be deployed by

QMP users or administrators.

The services we consider in this work are dis-

tributed services (i.e., independently deployable ser-

vices as in the Microservices Architecture6). The

distributed services can be composite services (non-

monolithic) built from simpler parts, e.g., video

streaming (built from the source and the peer com-

ponent), web service (built from the database, the

memcached and the client component) etc. In the

real deployment, one service component corresponds

to one Docker container. These parts or components

of the services create an overlay and interact with

each other to offer more complex services. Bandwidth

requirement between two services s1 and s2 is given

6http://microservices.io/patterns/

by βs1,s2. At most k copies can be placed for each

service s.

A service may or may not be tied to a specific node

of the network. Each node can host one or more type

of services. In this work we assume an offline service

placement approach where a single or a set of appli-

cations are placed “in one shot” onto the underlying

physical network, i.e., different from online placement

[45]. We might rearrange (migrate) the placement

of the same service over the time because of the

service performance fluctuation (e.g., weather condi-

tions, node availability, changes in use pattern, and

etc.). We do not consider real-time service migration.

3.3 Service Placement Problem

The concept of service and network graph allows us

to formulate the problem statement more precisely as:

“Given a service and network graph, how to place a

service on a network as to maximize user QoS and

QoE, while satisfying a required level of availability

for each node (N) and considering a maximum of k

service copies?”

Let Bij be the bandwidth of the path to go from

node i to node j . We want a partition of k clusters

(i.e., services) : C ← C1, C2, C3, . . . , Ck of the set of

nodes in the mesh network. The cluster head i of clus-

ter Ci is the location of the node where the service will

be deployed. The partition maximizing the bandwidth

from the cluster head to the other nodes in the cluster

is given by the objective function:

arg maxC

k
∑

i=1

∑

j∈Ci

Bij (1)

with respect to the following constraints:

1. The total bandwidth used per link cannot exceed

the total link capacity:

∀e ∈ E :
∑

s1,s2∈S

βs1,s2
(e) ≤ Be (2)

2. Availability-awareness: the node availability

should be higher than the predefined threshold λ:

∀n ∈ N :
∑

n∈N

Rn ≥ λ (3)

3. Admission control: At most, k copies can be

placed for each service:

|D| ≤ k (4)
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3.4 Proposed Heuristic Algorithm: BASP

Solving the problem stated in the (1) in brute force

for any number of N and k is NP-hard and very

costly. The naive brute force method can be esti-

mated by calculating the Stirling number of the second

kind [1] which counts the number of ways to par-

tition a set of n elements into k nonempty subsets,

i.e., 1
k!

∑k
j=0(−1)j−k

(

n
k

)

jn ⇒ O(nkkn). Thus, due to

the obvious combinatorial explosion, we propose a

low-cost and fast heuristic called BASP.

The BASP (Bandwidth and Availability-aware Ser-

vice Placement) allocates services taking into account

the bandwidth of the network and the node availabil-

ity. BASP is executed every single time a (new) service

deployment is about to be made. In every run, the

BASP partitions the network topology into k (maxi-

mum allowed number of service replicas) and removes

the nodes that are under the pre-defined availability

threshold (Phase 1); estimates and computes the band-

width of the nodes (Phase 2); and finally re-assigns

nodes to selected clusters (Phase 3). Algorithm 1

depicts the pseudo-code and Fig. 10 demonstrates the

phases of the BASP.

The BASP runs in three phases:

1. Phase 1: Availability-awareness and K-Means:

Initially in this phase we check the availability of

the nodes in the network. The nodes that are under

the predefined availability threshhold are removed.

Then, we use the naive K-Means partitioning

algorithm in order to group nodes based on their

geo-location. The idea is to get back clusters of

nodes that are close to each other. The K-Means

algorithm forms clusters of nodes based on the

Euclidean distances between them, where the dis-

tance metrics in our case are the geographical

coordinates of the nodes. In traditional K-Means

algorithm, first, k out of n nodes are randomly

selected as the cluster centroids depicted with a

purple color in Fig. 10 (e.g., nodes E, Z and T).

Each of the remaining nodes decides its cluster

centroid nearest to it according to the Euclidean

distance. After each of the nodes in the network

is assigned to one of k clusters, the centroid of

each cluster is re-calculated. Each cluster contains

a full replica of a service, i.e., the algorithm in this

phase partitions the network topology into k (i.e.,

maximum allowed number of service replicas)

clusters. Grouping nodes based on geo-location

Algorithm 1 B A S P

Require: G(N, E) ⊲ Network graph

(qmpTopology.xml)

k ⊲ k partition of clusters

C ← C1, C2, C3, . . . , Ck

Bi ⊲ bandwidth of the node i

Rn ⊲ availability of the node n

λ ⊲ availability threshold

Phase 1 – Availability-awareness and K-Means

1: procedure AVAILABILITYAWARENESSKMEANS

(G, Rn, k)

2: if Rn ≥ λ then

3: Perf ormKMeans(G,k)

4: return C

5: end if

6: end procedure

Phase 2 – Aggregate Bandwidth Maximization

7: procedure FINDCLUSTERHEADS(C)

8: clusterHeads ← list ()

9: for all k ∈ C do

10: for all i ∈ Ck do

11: Bi ← 0

12: for all j ∈ setdiff (C, i) do

13: Bi ←Bi+estimate.route.bandwidth

(G, i, j)

14: end for

15: clusterHeads ← max Bi

16: end for

17: end for

18: return clusterHeads

19: end procedure

Phase 3 – Cluster Re-Computation

20: procedure RECOMPUTECLUSTERS

(clusterHeads, G)

21: C′ ← list ()

22: for all i ∈ clusterHeads do

23: clusteri ← list ()

24: for all j ∈ setdiff (G, i) do

25: Bj ←estimate.route.bandwidth(G, j, i)

26: if Bj is best from other nodes i then

27: clusteri ← j

28: end if

29: C′ ← clusteri
30: end for

31: end for

32: return C′

33: end procedure
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Fig. 10 Phases of the

BASP algorithm
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is in line with how the QMP is organized. The

nodes in the QMP are organized into a tree hier-

archy of zones. A zone can represent nodes from

a neighborhood or a city. Each zone can be fur-

ther divided in child zones that cover smaller

geographical areas where nodes are close to each

other. From the service perspective we consider

placements inside a particular zone. We use K-

Means with geo-coordinates as an initial heuristic

for our algorithm. As an alternative, clustering

based on network locality can be used. Several

graph community detection techniques are avail-

able for our environment [20].

2. Phase 2: Aggregate Bandwidth Maximization:

The second phase of the algorithm is based on the

concept of finding the cluster heads maximizing

the bandwidth between them and their member

nodes in the clusters Ck formed in the first phase.

The cluster heads computed are depicted with a

black color in Fig. 10 (e.g., nodes F, N and L).

The bandwidth between two nodes is estimated

as the bandwidth of the link having the minimum

bandwidth in the shortest path. The cluster heads

computed are the candidate nodes for the service

placement. This is plotted as Naive K-Means in

the Fig. 11.

Fig. 11 Average bandwidth

to the cluster heads
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3. Phase 3: Cluster Re-Computation: The third

and the last phase of the algorithm includes reas-

signing the nodes to the selected cluster heads

having the maximum bandwidth, since the geo-

location of the nodes in the clusters formed during

phase one is not always correlated with their

bandwidth. The final cluster heads computed are

depicted with an orange color in Fig. 10 (e.g.,

nodes F, N and J) . This way the clusters are

formed based on nodes bandwidth. This is plotted

as BASP in the Fig. 11.

Complexity The complexity of the BASP is as follows:

for BASP, finding the optimal solution to the K-means

(i.e., phase one) clustering problem if k and d (the

dimension) are fixed (e.g., in our case n = 77, and

d = 2), the problem can be exactly solved in time

O(ndk+1 log n), where n is the number of entities

to be clustered. The complexity for computing the

cluster heads in phase two is O(n2), and O(n) for

the reassigning the clusters in phase three. Therefore,

the overall complexity of BASP is polylogarithmic

O(n2k+1 log n), which is significantly smaller than the

brute force method and thus practical for commodity

processors.

4 Evaluation

Setup We take a network snapshot (i.e., capture) from

77 physical nodes of the QMP network regarding the

bandwidth of the links and node availability. The data

obtained has been used to build the topology graph of

the QMP. The QMP topology graph is constructed by

considering only operational nodes, marked in “work-

ing” status, and having one or more links pointing to

another node. Additionally, we have discarded some

disconnected clusters. The links are bidirectional and

unidirectional, thus we we use a directed graph. The

nodes of QMP consists of Intel Atom N2600 CPU, 4

GB of RAM and 120 GB of disk space. Our experi-

ment is comprised of 5 runs and the presented results

are averaged over all the runs. Each run consists of 15

repetitions.

4.1 Comparison

To emphasize the importance of the different phases

of the Algorithm 1, we compare in this section two

phases of our heuristic algorithm with the Random

Placement, i.e., the default placement at the QMP.

Random Placement Currently, the service deploy-

ment (much as network deployment) at the QMP is not

centrally planned but initiated individually by the CN

members. Public, user and community-oriented ser-

vices are placed randomly on super-nodes and users’

premises, respectively. The only parameter taken into

account when placing services is that the devices must

be in “production” state. The network is not taken into

consideration at all. All nodes in the production state

appear equally to the users.

Naive K-Means Placement This corresponds to the

second phase of the heuristic Algorithm 1. The service

is placed on the node having the maximum bandwidth

on the initial clusters formed by K-Means. We limit

the choice of the cluster heads to be inside the sets of

clusters obtained using K-Means.

BASP Placement It includes the three phases of the

heuristic Algorithm 1. The service is placed on the

node having the maximum bandwidth after the clus-

ters are re-computed.

4.2 Results

Figure 11 depicts the average bandwidth to the cluster

heads obtained with the Random, Naive K-Means and

the BASP heuristic algorithm. This value reflects the

average bandwidth computed from the cluster heads

obtained, to the other non-cluster nodes within each

cluster.

Figure 11 reveals that for the considered number

of services k, BASP outperforms both Naive K-Means

and Random placement. For k = 2, the average band-

width to the cluster heads has increased from 18.3

Mbps (Naive K-Means) to 27.7 Mbps (BASP), which

represents a 50% improvement. The highest increase

of 67% is achieved when k = 7. On average, when

having up to 7 services in the network, the gain of

BASP over Naive K-Means is of 45%. Based on the

observations from Fig. 11, the gap between the two

algorithms grows as k increases. We observe that

k will increase as the network grows. And hence,

BASP will presumably render better results for larger

networks than the rest of strategies.
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Table 2 Centrality measures for the cluster heads

k = 1 k = 2 k = 3 k = 5

Cluster[Cluster Head ID] C1 [27] C1 [20] C2 [39] C1 [20] C2 [39] C3 [49] C1 [20] C2 [4] C3 [49] C4 [51] C5 [39]

Cluster head degree 20 6 6 6 6 10 6 10 10 12 6

Neighborhood connectivity 7.7 9.6 9.6 9.6 9.6 10.8 9.6 8.7 10.8 8.1 9.6

Diameter 6 5 3 4 3 5 4 2 3 1 3

Random QMP - bandwidth

[Mbps]

5.3 6.34 13.4 11.9

Naive K-Means - bandwidth

[Mbps]

16.6 18.3 23 23.4

BASP - bandwidth [Mbps] 16.9 27.7 32.9 38.5

BASP - running time [seconds] 46 28 17 9

Regarding the comparison between BASP and Ran-

dom placement, we find that the Random placement

leads to an inefficient use of network’s resources, and

consequently to suboptimal performance. As depicted

in the Fig. 11, the average gain of BASP over naive

Random placement is 211% (i.e., 2x bandwidth gain).

Comparison to the Optimal Solution Note that our

heuristic enables us to select cluster heads that provide

much higher bandwidth than any other random or naive

approach. But, if we were about to look for the opti-

mum bandwidth within the clusters (i.e., optimum

average bandwidth for the cluster), then this problem

would be NP-hard. The reason is that finding the opti-

mal solution entails running our algorithm for all the

combinations of size k from a set of size n. This is a

combinatorial problem that becomes intractable even

for small sizes of k or n (e.g., k = 5, n = 71).

For instance, if we wanted to find the optimum band-

width for a cluster of size k = 3, then the algorithm

would need to run for every possible (non-repeating)

combination of size 3 from a set of 71 elements, i.e.,

choose(71, 3) = 57K combinations. We managed to

do so and found that the optimum average was 62.7

Mbps. For k = 2, the optimum was 49.1 Mbps. For

k = 1, it was 16.9 Mbps.

The downside was that, the computation of the

optimal solution took very long time in a commod-

ity machine. Concretely, it took 5 hours for k = 3

and 30 minutes for k = 2. Instead, BASP spent only

17 seconds for k = 3 and 28 seconds for k = 2.

Table 2 shows the improvement of BASP over Random

and Naive K-Means. To summarize, BASP is able to

achieve good bandwidth performance with very low

computation complexity.

Correlation with Centrality Metrics Table 2 shows

some centrality measures and some graph properties

obtained for each cluster head. Further, Fig. 12 shows

the neighborhood connectivity graph of the QMP

network. The neighborhood connectivity of a node v is

defined as the average connectivity of all neighbors of
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Fig. 12 Neighborhood connectivity graph of the QMP
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v. In the figure, nodes with low neighborhood connec-

tivity values are depicted with bright colors and high

values with dark colors. It is interesting to note that

some the nodes with the highest neighborhood con-

nectivity are those chosen by BASP as cluster heads.

The cluster heads (for k = 2 and k = 3) are illustrated

with a rectangle in the graph. A deeper investigation

into the relationship between service placement and

network topological properties is out of the scope of

this paper and will be reserved as our future work.

4.3 Dynamic Service Placement

In Guifi.net (i.e., QMP) nodes are added by the com-

munity members using their home’s rooftop, which

are often at non-optimal locations. This fact produces

a high diversity in the quality of the links, making

some nodes to be sporadically unreachable. Figure 13

depicts the number of nodes in the QMP network dur-

ing the month of March 2017. Figure 13 reveals that

there is a churn i.e., change in the set of participat-

ing nodes in the network, due to failures, electric cuts,

nodes that have been upgraded, reconfigured, hanged,

etc. The minimum number of nodes observed in the

network is 67 and the maximum 74 nodes.

In order to see the performance of the BASP heuris-

tic algorithm with churn of nodes, we run it in every

day of March 2017. Figure 14 shows the average

bandwidth to the cluster heads obtained with the naive

K-Means and the BASP heuristic algorithm when

using different number of services k (k = 1, k = 2,

k = 4 and k = 8). Figure shows that the gap between

the two algorithms grows as k increases. For instance

when k = 4 (Fig. 14c), the average bandwidth to the

cluster head obtained with K-Means algorithm is 18.9

Mbps and with BASP algorithm is 41 Mbps. This is

because we keep clustering nodes by their bandwidth

and the clusters are formed from the nodes with higher

bandwidth.

Furthermore, we observed also some outliers in

specific days of March 2017. For instance on 18th

of March, Fig. 14a and b reveals a performance (i.e.,

bandwidth) drop. After performing some measure-

ments we discovered that during these days one of

the gateways (i.e., proxies) in the network got discon-

nected. Because of this, nodes that use this gateway to

connect to the other nodes result in worst performance,

since different paths are used (i.e., longer and slower).

To summarize it, BASP outperforms the K-Means for

every day of the month March and for the considered

number of services k.

5 Experimental Evaluation

In order to foster the adoption and transition of

the community micro-cloud environment, we pro-

vide a real community cloud distribution, codenamed

Fig. 13 Number of nodes

in March 2017
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Cloudy [6], which contains the platform and applica-

tion services of the community cloud system.

5.1 Cloudy: a Service Hub for the Micro-Clouds

Cloudy is the core software of our micro-clouds,

because it unifies the different tools and services of

the cloud system in a Debian-based Linux distribution.

Cloudy is open-source and can be downloaded from

public repositories.7

Cloudy’s main components can be considered a

layered stack, with services residing both inside the

kernel and at the user level. Figure 15 reports some

of the available services running on Docker contain-

ers. Cloudy includes a tool for users to announce and

discover services in the micro-clouds based on Serf,

which is a decentralized solution for cluster member-

ship and orchestration. On the network coordination

layer, having sufficient knowledge about the under-

lying network topology, the BASP decides about the

placement of the service which then is announced via

Serf as shown in Fig. 15. Thus, the service can be

discovered by the other users.

7https://github.com/Clommunity/
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5.2 Evaluation in a Real Production Community

Network

In order to understand the gains of our network-aware

service placement heuristic in a real production CN,

we deploy our algorithm in real hardware connected

to the nodes of the QMP network, located in the city

of Barcelona. We concentrate on benchmarking two

of the most popular network-intensive applications:

Live-video streaming service, and Web 2.0 service

performed by the most popular websites.

5.2.1 Live-Video Streaming Service

PeerStreamer,8 an open source live P2P video stream-

ing service, has been paradigmatically established as

the live streaming service in Cloudy. This service is

based on chunk diffusion, where peers offer a selection

of the chunks they own to some peers in their neigh-

borhood. A chunk consists of a part of the video to

be streamed (i.e., by default, this is one frame of the

video). PeerStreamer differentiates between a source

node and a peer node. A source node is responsible

for converting the video stream into chunks and send-

ing to the peers in the network. In our case, both the

source nodes and the peers run in Docker containers

atop the QMP nodes.

Setup We use 20 real nodes connected to the wire-

less nodes of the QMP. These nodes are co-located in

users homes (e.g., as home gateways, set-top-boxes,

etc.). They run the Cloudy operating system. As the

controller node, we leverage the experimental infras-

tructure of Community-Lab.9 Community-Lab pro-

vides a central coordination entity that has knowledge

about the network topology in real time and allows

researchers to deploy experimental services and per-

form experiments in a production CN. The nodes

of the QMP that are running the live video stream-

ing service are part of the Community-Lab. In our

experiments, we connect a live streaming camera (i.e.,

maximum bit-rate of 512 kbps, 30 frame-per-second)

to a local PeerStreamer instance that acts as a source

node.

8http://peerstreamer.org/
9https://community-lab.net/

The location of the source in such a dynamic net-

work is therefore crucial. Placing the source in the

QMP node with a weak connectivity will negatively

impact the QoS and QoE of viewers. In order to deter-

mine the accuracy of the BASP upon choosing the

appropriate QMP node where to host the source, we

measure the average chunk loss percentage at the peer

side, which is defined as the percentage of chunks that

were lost and not arrived in time. This simple metric

will help us understand the role of the network on the

reliable operation of live-video streaming over a CN.

Our experiment is composed of 20 runs, where each

run has 10 repetitions. Results are averaged over all

the successful runs. Ninety percent of them were suc-

cessful. In the 10% of failed runs, the source was

unable to stream the captured images from the cam-

era, so peers did not receive the data. This experiment

was run for 2 weeks, with roughly 100 hours of live

video data and several GBytes of logged content. The

presented results are from one hour of continuous live

streaming from the PeerStreamer source.

Results Figure 16 shows the average chunk loss for

an increasing number of sources k. The data reveals

that for any number of source nodes k, the BASP

heuristic outperforms the currently adopted random

placement in the QMP network. For k = 1, the BASP

decreases the average chunk loss from 12 to 10%.

This case corresponds to the scenario where there is

one single source node streaming to the 20 peers in

the QMP network. Based on the observations from

Fig. 16, the gap between the two algorithms is grow-

ing as k increases. For instance, when k = 3, we get a

3% points of improvement with respect to chunk loss,

and a significant 37% reduction in the packet loss rate.

Fig. 16 Average video chunk loss
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5.2.2 Web 2.0 Service

The second type of service that we experiment is the

Web 2.0 Service. The workloads of Web2.0 websites

differ from the workloads of older generation web-

sites. Older generation websites typically served static

content, while Web2.0 websites serve dynamic con-

tent. The content is dynamically generated from the

actions of other users and from external sources, such

as news feeds from other websites. We are experi-

menting with a social networking service, which is

an example of a Microservices architecture, since it is

formed by a group of independently deployable ser-

vice components (i.e., web server, database server,

memcached server and clients). In this type of ser-

vice, the placement of the web server (together with

the database server) is decisive for the user QoS.

Setup For the evaluation, we use the dockerized ver-

sion of the CloudSuite Web Serving benchmark [26].

Cloudsuite benchmark has four tiers: the web server,

the database server, the memcached server, and the

clients. Each tier has its own Docker image. The web

server runs Elgg10 and it connects to the memcached

server and the database server. The Elgg social net-

working engine is a Web2.0 application developed in

PHP, similar in functionality to Facebook. The clients

(implemented using the Faban workload generator)

send requests to login to the social network and per-

form different operations. We use 10 available QMP

nodes in total, where three of them act as a client.

The other seven nodes are candidates for deploying

the web server. The web server, database server and

memcached server are always collocated in the same

host. On the client side, we measure the response time

when performing some operations such as login, live

feed update, message sending, etc. In Cloudsuite, to

each operation is assigned an individual QoS latency

limit. If less than 95% of the operations meet the QoS

latency limit, the benchmark is considered to be failed

(i.e., marked as × in the Table 3). The location of the

web server, database server and memcached server has

a direct impact on the client response time.

Results Figure 17a and b depicts the response time

observed by three clients for the update live feed

10https://elgg.org/

Table 3 Cloudsuite benchmark results

Operations Update live feed Do login

Threads 10 20 40 80 10 20 40 80

QMP-Random � × × × � � × ×

QMP-BASP � � � × � � � ×

Stdev(sec) 0.02 0.03 0.01 0.01 0.02 0.02 0.01 0.03

Improvement 0.1 0.2 1.8 6.7 0.1 0.1 1.2 4.2

operation, when placing the web server with the Ran-

dom and the BASP, respectively.

When placing the web server with the Random

approach, Fig. 17a reveals that, as far as we increase

the number of threads (i.e., concurrent operations) per

client, the response time increases drastically in three

clients. For up to 120 operations per client (i.e., 20

threads), all clients perceive a similar response times

Number of concurrent threads (per client)

R
e
s
p
o
n
s
e

ti
m

e
(s

)

Client 1

Client 2

Client 3

(a) Random

Number of concurrent threads (per client)

R
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o
n
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m

e
(s

)

Client 1

Client 2

Client 3

(b) BASP

Fig. 17 Response times of clients (Random vs. BASP)
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(300–350 ms). Response time increases more than one

order of magnitude in Client 2 and Client 3, and an

order of magnitude in Client 1 when performing 160

operations (i.e., 80 threads).

Figure 17b reveals that, the client response times

for higher workloads decreases an order of magnitude

when using our BASP heuristic compared to Random

approach shown in the Fig. 17a (i.e., reaching 700

ms on average for 160 operations using BASP). For

up to 120 operations per client, the response times

that three clients perceive is slightly better (200–280

ms) than the response time when the web server is

deployed with the Random approach. Furthermore,

Table 3 demonstrates the successful and failed tests

for the update feed and login operations in the Cloud-

suite benchmark. Table reveals that, using the BASP

heuristic the number of successful tests i.e., those that

met the QoS latency limit, is higher than the number

of successful tests with the Random approach. Further,

it also shows the standard deviation values and aver-

age client response time improvements when using the

BASP heuristic over Random approach. We can notice

that the gain brought by the BASP heuristic is higher

for more intensive workloads.

6 Related Work

Service placement is a key function of the cloud man-

agement systems. Typically, by monitoring all the

physical and virtual resources on a system, service

placement aims to balance load through the alloca-

tion, migration and replication of tasks. We looked

at the service placement problem in four different

environments: data center (DC), distributed data cen-

ters, wireless networks and IoT (Internet of things)

environment.

Data Centers Choreo [19] is a measurement-based

method for placing applications in the cloud infras-

tructures to minimize an objective function such as

application completion time. Choreo makes fast mea-

surements of cloud networks using packet trains as

well as other methods, profiles application network

demands using a machine-learning algorithm, and

places applications using a greedy heuristic. Volley

[2] is a system that performs automatic data place-

ment across geographically distributed datacenters

of Microsoft. Volley analyzes the logs or requests

using an iterative optimization algorithm based on

data access patterns and client locations, and outputs

migration recommendations back to the cloud service.

A large body of work of service placement in data

centers has been devoted to finding heuristic solutions

[16].

Most of the work in the data center environment is

not applicable to our case because we have a strong

heterogeneity given by the limited capacity of nodes

and links, as well as asymmetric quality of wireless

links. The difference/asymmetry in the link capaci-

ties across the network makes the service placement a

very different problem than in a mostly homogeneous

cloud datacenter. Our measurement results demon-

strate that 25% of the links have a symmetry deviation

higher than 40%.

Distributed Data Centers When the service placement

algorithms decide how the communication between

computation entities is routed in the substrate net-

work, then we speak of network-aware service place-

ment, i.e., closely tied to Virtual Network Embedding

(VNE). The work in [36] proposes efficient algorithms

for the placement of services in distributed cloud

environment. The algorithms need input on the sta-

tus of the network, computational resources and data

resources which are matched to application require-

ments. In [18] authors propose a selection algorithm

to allocate resources for service-oriented applications

and the work in [3] focuses on resource allocation

in distributed small datacenters. Another example of

a network-aware approach is the work from Moens

in [23] which employs a Service Oriented Architec-

ture (SOA), where applications are constructed as a

collection of services. Their approach performs node

and link mapping simultaneously. The work in [34]

extends the work of Moens in wireless settings taking

into account the IoT. Mycocloud [15] is another work,

which provides elasticity through self-organized ser-

vice placement in decentralized clouds. The work of

Elmroth [38] takes into account rapid user mobility

and resource cost when placing applications in Mobile

Cloud Networks (MCN). A recent work of Tantawi

[37] uses biased statistical sampling methods for cloud

workload placement. Regarding the service placement

through migration, the authors in [39] and [46] study

the dynamic service migration problem in mobile

186



A Lightweight Service Placement Approach for Community Network Micro-Clouds

edge-clouds that host cloud-based services at the n

edge. They formulate a sequential decision making

problem for service migration using the framework

of Markov Decision Process (MDP) and illustrate the

effectiveness of their approach by simulation using

real-world mobility traces of taxis in San Francisco.

The work in [22] evaluates the migration perfor-

mance of various real applications in mobile edge

clouds (MEC). The authors in [14] propose a fully

approach to the joint optimization problem of scaling

and placement of virtual network services. Spinnewyn

[35] provides a resilient placement of mission-critical

applications on geo-distributed clouds using heuristic

based on subgraph isomorphism detection.

Most of the work in the distributed clouds con-

sider micro-datacenters, where in our case the CN

micro-clouds consist of constraint/low-power devices

such us home gateways. Furthermore, in our case we

have a partial information regarding the computational

devices, so their approaches are not fully applicable to

our environment.

Wireless Environment In [17] the authors propose an

optimal allocation solution for ambient intelligence

environments using tasks replication to avoid network

performance degradation. Some other works done in

wireless settings are the work of Vega [40] and our work

[31] which proposes several placement algorithms that

minimize the coordination and overlay cost along a

CN. The work of Coimbra in [11] presents a parallel

and distributed solution designed as a scalable alterna-

tive for the problem of service placement in CNs.

The focus of the work in this paper is to design

a low-complexity service placement heuristic for CN

micro-clouds in order to maximize bandwidth and

improve user QoS and QoE.

IoT Environment The authors in [33] study the place-

ment of IoT services on fog resources taking into

account their QoS requirements. They show that their

optimization model leads to 35% less cost of execu-

tion when compared to a purely cloud-based approach.

Authors in [24] present a data placement strategy

for Fog infrastructures called iFogStor. They formu-

late the data placement problem as a Generalized

Assignment Problem (GAP) and propose heuristic

one based on geographical zoning to reduce the solv-

ing time. Most of the IoT approaches analyzed are

deployed in simulation environments using modeling

and simulation toolkits such us iFogSim, thus, their

results are not easily applicable to our context.

7 Conclusion

In this paper, we motivated the need for bandwidth

and availability-aware service placement in CN micro-

cloud infrastructures. CNs provide a perfect scenario

to deploy and use community services in contribu-

tory manner. Previous work done in CNs has focused

on better ways to design the network to avoid hot

spots and bottlenecks, but did not relate to schemes for

network-aware placement of service instances.

However, as services become more network-

intensive, they can become bottlenecked by the net-

work, even in well-provisioned clouds. In the case of

CN micro-clouds, network awareness is even more

critical due to the limited capacity of nodes and links,

and an unpredictable network performance. Without a

network-aware system for placing services, locations

with poor network paths may be chosen while loca-

tions with faster, more reliable paths remain unused,

resulting ultimately in a poor user experience.

We proposed a low-complexity service placement

heuristic called BASP to maximize the bandwidth

allocation when deploying CN micro-clouds. We pre-

sented algorithmic details, analyzed its complexity,

and carefully evaluated its performance with realis-

tic settings. Our experimental results show that the

BASP consistently outperforms the currently adopted

random placement in Guifi.net by 2x bandwidth gain.

Moreover, as the number of services increases, the

gain tends to increase accordingly. Furthermore, we

deployed our service placement algorithm in a real

network segment of the QMP network, a production

CN, and quantified the performance and effects of our

algorithm. We conducted our study on the case of a

live video streaming service and Web 2.0 Service inte-

grated through Cloudy distribution. Our real experi-

mental results show that when using BASP heuristic

algorithm, the video chunk loss in the peer side is

decreased up to 3% points, i.e., worth a 37% reduction

in the packet loss rate. When using the BASP with the

Web 2.0 service, the client response times decreased

up to an order of magnitude, which is a significant

improvement.
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As a future work, we plan to look into live service

migration, i.e., the controller needs to decide which

micro-cloud should perform the computation for a par-

ticular user, with the presence of user mobility and

other dynamic changes in the network.
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42. Vega, D., Cerdà-Alabern, L., Navarro, L., Meseguer, R.:

Topology patterns of a community network: Guifi.net.

In: 1st International Workshop on Community Networks

and Bottom-Up-Broadband (CNBub 2012), within IEEE

Wimob. Barcelona, Spain, pp. 612–619 (2012)

43. Verespej, H., Pasquale, J.: A characterization of node

uptime distributions in the Planetlab test bed. In: 2011 IEEE

30th International Symposium on Reliable Distributed Sys-

tems, pp. 203–208 (2011)

44. Wang, L., Bayhan, S., Ott, J., Kangasharju, J., Sathi-

aseelan, A., Crowcroft, J.: Pro-diluvian: understanding

scoped-flooding for content discovery in information-

centric networking, pp. 9–18. ACM, New York (2015)

45. Wang, S., Zafer, M., Leung, K.K.: Online placement of

multi-component applications in edge computing environ-

ments. IEEE ACCESS 5, 2514–2533 (2017)

46. Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M.,

Leung, K.K.: Dynamic service placement for mobile micro-

clouds with predicted future costs. IEEE Trans. Parallel

Distrib. Syst. 28(4), 1002–1016 (2017)

189


	A Lightweight Service Placement Approach for Community Network Micro-Clouds
	Abstract
	Introduction
	Background and Network Characterization
	Micro-Clouds in the Community Networks
	The QMP Network: an Urban CN of the Guifi.net
	Methodology and Data Collection

	Services in the QMP Network
	Node Availability
	Bandwidth Characterization
	Discussion
	Dynamic Topology
	Non-uniform Resource Distribution



	Context and Problem
	Network Graph
	Service Graph
	Service Placement Problem
	Proposed Heuristic Algorithm: BASP
	Complexity


	Evaluation
	Setup
	Comparison
	Random Placement
	Naive K-Means Placement
	BASP Placement


	Results
	Comparison to the Optimal Solution
	Correlation with Centrality Metrics


	Dynamic Service Placement

	Experimental Evaluation
	Cloudy: a Service Hub for the Micro-Clouds
	Evaluation in a Real Production Community Network
	Live-Video Streaming Service
	Setup
	Results

	Web 2.0 Service
	Setup
	Results



	Related Work
	Data Centers
	Distributed Data Centers
	Wireless Environment
	IoT Environment



	Conclusion
	Acknowledgements
	Open Access
	References


