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Abstract

Family samples, which can be enriched for rare causal variants by focusing on families with multiple extreme individuals and
which facilitate detection of de novo mutation events, provide an attractive resource for next-generation sequencing
studies. Here, we describe, implement, and evaluate a likelihood-based framework for analysis of next generation sequence
data in family samples. Our framework is able to identify variant sites accurately and to assign individual genotypes, and can
handle de novo mutation events, increasing the sensitivity and specificity of variant calling and de novo mutation detection.
Through simulations we show explicit modeling of family relationships is especially useful for analyses of low-frequency
variants and that genotype accuracy increases with the number of individuals sequenced per family. Compared with the
standard approach of ignoring relatedness, our methods identify and accurately genotype more variants, and have high
specificity for detecting de novo mutation events. The improvement in accuracy using our methods over the standard
approach is particularly pronounced for low-frequency variants. Furthermore the family-aware calling framework
dramatically reduces Mendelian inconsistencies and is beneficial for family-based analysis. We hope our framework and
software will facilitate continuing efforts to identify genetic factors underlying human diseases.
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Introduction

Next generation sequencing (NGS) technologies are being used

to identify and genotype rare, low frequency and common genetic

variants in a variety of settings. The 1000 Genomes Project is

generating a publicly available and increasingly comprehensive

catalog of human variation [1]. Whole exome sequencing studies

are accelerating the rate of discovery for rare Mendelian disease

associated variants [2–5]. Rare variants are also expected to play

an important role in complex disorders [6–8] and several large

scale NGS studies of complex diseases are underway.

Family designs provide a promising approach for these NGS

studies [7–9]. Samples of families with multiple affected individuals

can be enriched for causal variants, increasing the power of rare

variant association studies compared to studies of unrelated cases

and controls [10,11]. Furthermore, families can also be useful in

studies that initially examine unrelated individuals. When a rare

variant of interest is identified, sequencing family members can help

identify additional carriers, facilitating validation of findings.

Finally, by modeling inheritance of alleles within families greater

accuracy of variant calling may be achieved, mitigating the effects of

sequencing error associated with many NGS platforms. Also

important, families allow explicit identification of de novo mutations,

which are important contributors to some of complex diseases [12–

20]. Although some de novo events, including copy number variants

in particular have been extensively studied using microarrays

[12,14,15], next generation sequencing will facilitate examination of

other types of de novo events, including point mutations [13,16–20].

Here, we focus on a critical step in the analysis of next

generation sequence data, which is the identification of variant

sites in a sample and estimation of genotypes for each individual

being studied [21,22]. This process is challenging due to

sequencing errors, potential allelic drop-out when coverage is

low, and errors in read mapping, among others. Although much

work has been done on the identification of variant sites and

genotype calling using next generation sequence data, most prior

work has focused on the analysis of unrelated individuals and did

not allow for explicit modeling of relationships between sequenced

individuals. We develop and implement a likelihood based

framework that considers sequence data for all individuals in a

family jointly. Our framework (implemented in our software for

Polymorphism and Mutation discovery - PolyMutt) builds on the

Elston-Stewart peeling algorithm [23–25], and provides a prob-

abilistic framework for evaluating the evidence for specific genetic

variants, individual genotypes and de novo mutation events.

Through simulations, we show that by modeling family relation-

ships our framework improves variant detection and genotype

calling, including detection of de novo mutation events. Specific
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advantages of our model include a modest increase in the number

of variant sites detected, a marked improvement in genotype

accuracy, greatly improved specificity for lists of potential de novo

mutation events, and elimination of most Mendelian inconsisten-

cies due to genotyping error. Overall, our work provides analysis

tools and study design guidance for investigators wishing to include

families in their NGS sequencing studies.

Methods

Genotype likelihood calculation
For simplicity, we first describe how our methods can be applied

to SNPs. In a later section, we describe the modifications required

to apply our methods to call short insertion and deletion (indel)

polymorphisms. Suppose for a sequenced individual a genome

position is covered by N mapped A, C, G and T bases with counts

of NA, NC, NG and NT respectively. For each of these mapped bases

bj[ A,C,G,Tf g an error rate ej is provided to indicate the

probability that the base is incorrectly called. Let R denote the

base calls overlapping the position of interest across all aligned

read data in an individual. Due to sequencing errors and allele

dropout all 10 genotypes are possible, and genotype likelihoods

[26] (GL) are calculated to quantify the likelihood of R for each

underlying true genotype. Genotype likelihoods are defined as

P(RDGi), i = 1,…,10, where Gi is one of AA, AC, AG, AT, CC, CG,

CT, GG, GT or TT, given the error rate for each base. As an

example, the GL for genotype AA is P(RDAA)~PNA

j~1 (1{ej)

PN{NA

k~1 ek=3 where ej is the estimated error rate for the jth A base

and ek is the error rate of the kth non-A base. This assumes each

base has an equal probability of being miscalled as any of the three

alternative bases. For heterozygous AC genotypes, we assume each

base originates from either the A or C allele with equal probability,

that is P(ADAC)~P(CDAC)~0:5. Then for the jth base

bj[ A,C,G,Tf g the GL is

P(bj DAC)~P(bj ,ADAC)zP(bj ,CDAC)

~P(bj DA)P(ADAC)zP(bj DC)P(CDAC)

~
1

2
½P(bj DA)zP(bj DC)�

If the base bj is either A or C then P bj DAC
� �

~0:5 1{2ej=3
� �

and

otherwise P bj DAC
� �

~ej=3. Then the GL of genotype AC

combining all bases is P(RDAC)~P
NAzNC
j~1 0:5(1{2ej=3)

P
N{NA{NC
k~1 (ek=3) where ek is the estimated error rate of the kth

sequence base which is neither A nor C. The calculation assumes

all base calling errors are independent – see the work of Li and

Durbin [26] for an alternative. The GL calculation is similarly

carried out for each potential genotype. Usually the 10 GL values

are stored in binary Genotype Likelihood Format (GLF) [22,26]

files or in Variant Call Format (VCF) [27] files. In some cases,

these likelihoods may be improved by explicitly modeling

reference biases due to alignment artifacts.

Variant calling in families—likelihood of reads in
pedigrees

Let Rj and Gj denote respectively the vector of aligned bases at a

site and the vector of genotypes for all individuals in the jth family.

Given the error rate of each base the likelihood of sequence data

for this family is

P(Rj)~
X

Gj

P(Rj jGj)P(Gj )~
X

G1

:::
X

Gn

P
i

P(R
j
i jG

j
i )

P
founders

P(Gfounders) P
o,f ,m

P(GojGf ,Gm)

In the above calculation it is assumed that in a family the aligned

bases for each individual depend only on this person’s genotypes so

that P(Rj DGj)~P
i

P(R
j
i DG

j
i ). The likelihood calculation involves a

nested summation of joint likelihood of reads and genotypes over

all possible genotype configurations for the pedigree. For each

genotype configuration the joint likelihood consists of product of

three parts: (1) the likelihood of aligned bases conditional on each

individual genotype, P(R
j
i DG

j
i ), (2) the probability of founder

genotypes P(Gfounders) and (3) the probability of offspring

genotypes conditional on their parental genotypes, P(GoDGf ,Gm),

for all parent-offspring triplets. For multiple families the likelihood

is P(R)~P
j

P(Rj) which is the product of the likelihoods for

individual families. In calculating the likelihood of reads in a

pedigree, the genotype likelihood P(R
j
i DG

j
i ) is typically retrieved

from the GLF or VCF file for the ith individual in the jth family,

generated as described above or using one of several existing

approaches [21,26]. Founder genotype frequencies P(Gfounders) are

usually unknown and can be estimated by maximum likelihood

from the data [28]. In this study we assumed that variant sites are

bi-allelic and in Hardy-Weinberg equilibrium. We used the Brent

optimization algorithm [29] to estimate the allele frequency by

maximizing P(R) with respect to allele frequencies and to obtain

the maximum likelihood Pmax(R). Note that this approach uses all

available information to estimate founder allele frequencies (for

example, when founders are not sequenced, their frequencies can

be estimated based on observed alleles in their offspring).

Variant calling in families—variant site discovery
A key step in the analysis is to determine which sites vary, and (for

these variant sites) to identify the segregating alleles. For bi-allelic

variants we find the two alleles, A1,A2, with the maximal posterior

probability P(A1,A2DR)~ P(RDA1,A2)P(A1,A2)X
(A
0
1
,A
0
2
)
P(RDA

0

1,A
0

2)P(A
0

1,A
0

2)
. For a

given two-allele configuration the probability of observing the reads

P(RDA1,A2) can be obtained as Pmax(R) above. The configurations

Author Summary

New sequencing methods can be used to study how
genetic variation contributes to disease. For studies of rare
variation, family designs are especially attractive because
they allow even very rare variants to be observed in
multiple individuals and because they can be used to
study the impact of de novo mutation events. An
important challenge is that most raw sequencing data
include many errors. Here, we develop a new approach for
interpreting sequence data. We show that by analyzing
sequence data across many family members together it is
possible to greatly reduce error rates (measured either as
the number of true variants that are missed or the number
of false variants that are claimed). In addition to facilitating
detection and genotyping of SNPs, our methods can
interface with existing tools to improve the accuracy of
more challenging short insertion deletion polymorphisms
and other types of variants. Our methods should make
studies of families even more attractive because, in
addition to making it easy to study rare variants and de
novo mutation events, family studies will now be able to
better transform sequence data into accurate genotypes.

Variant Calling in Families
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we considered include monomorphism where all alleles match the

reference (A1 = A2 = Aref), the transition from the reference, the two

possible transversions from the reference, and other less likely but

possible configurations where neither of the alleles in the sequenced

families is the same as the reference (because the reference allele is

incorrectly called or very rare). From classic coalescent theory [30],

in a sample with N diploid founders and in the absence of natural

selection, the prior probability that a site includes non-reference

alleles is h
P2N

i~1

1

i
where h is the population scaled mutation rate

per site and is set to 1/1000 in this study. If a site varies, we set the

probability that the mutation is a transition from the reference at

,2/3 and the probability of a transversion from the reference is

,1/6 (there are two possible transversions at each site). These prior

probabilities are biologically meaningful and consistent with the

estimates in dbSNP and the 1000 Genomes Project data [1]. To

summarize confidence in each variant site we define a Phred-like

variant quality score VQ~{10 log10(1{Pmax(A1,A2DR)).

Variant calling in families—genotype calling
For a variant site, the steps described in the previous section

provide the two most likely alleles and the corresponding founder

allele frequency. Genotypes for each individual can be inferred

conditioning on available sequence data for all individuals in a

family. We calculate the posterior probabilities of genotypes for

individual i in family j, given the read data in a family as follows:

P(G
j
i~gDRj)~

P(Rj ,G
j
i~g)

P(Rj)

The numerator P(Rj ,G
j
i~g) can be calculated analogously to

P(Rj) by considering only terms where G
j
i~g. To call the

genotype of an individual, we record the modal genotype (i.e. the

one with the highest posterior probability) and the expected

alternative allele count (dosage). The expected allele count is a real

number between 0 and 2 which summarizes the expected number

of non-reference alleles in an individual and which can be used in

downstream phenotype association analyses [31]. We define a

genotype quality score for each genotype as

GQ~{10 log10(1{P(GbestDRj)). This framework considers se-

quence data at each variant site independently, and does not

account for LD information (which could further improve calling

accuracy) – for an example of how linkage disequilibrium

information can be used in trios, see [32].

Note that the likelihood calculation, variant site discovery

procedure and genotype calling strategy above apply to unrelated

individuals as well as families, or to mixed samples of unrelated

and related individuals. When comparing the performance of

variant calling using family information with standard approaches

that ignore relatedness, we use the likelihood framework above but

analyze all sequenced individuals twice, first, modeling the correct

relationships, and second, treating all individuals as if they were

‘‘unrelated’’.

Integration of de novo mutation detection
In our likelihood calculations so far, we have assumed

Mendelian transmission. To integrate the detection of de novo

mutations in the same framework, the transmission probabilities

from parents to offspring are modified to allow for de novo mutation

events. Assuming mutation rate m for the site of interest, then the

mutation model is defined as a transition matrix from parental

alleles to mutant alleles in an offspring, for example:

A C G T

A

C

G

T

D

1{m a b a

1{m a b

1{m a

1{m

D

This simple model assumes that a parental allele can be mutated

into any of the other 3 alleles, transitions and transversions have

mutation rates of a and b respectively and m = 2a+b. Our

implementation allows for alternative, and arbitrary, user supplied

mutation matrices. In this model, a non-founder can have any of

the 10 possible genotypes irrespective of parental genotypes

(naturally, most combinations that include alleles not present in

the parents will be a priori unlikely when the mutation rate estimate

is low). Using the updated definition of transmission probabilities,

the likelihood function of reads in a family allowing for de novo

mutation events can be calculated and is denoted as Ldenovo Except

for the updated transmission function, our likelihood, site

discovery and genotyping proceed exactly as before. To assess

the evidence of a de novo mutation, the likelihood disallowing de novo

mutation, denoted as Lmendel, is also calculated and the likelihood

ratio LRdenovo~
Ldenovo

Lmendel

, or equivalently the posterior probability

of de novo mutation Pdenovo~
Ldenovo

LdenovozLmendel

, indicates the

confidence in de novo mutation detection.

Genotyping refinement on insertion and deletion
variants

Calculation of genotype likelihoods for insertion and deletion

polymorphisms (indels) calling usually involves re-alignment of

each read to candidate indel haplotypes [33] and is an area of very

active research. By using standard formats, like the Variant Call

Format (VCF), our implementation can use genotype likelihoods

for any type of polymorphism – as calculated by the Genome

Analysis Toolkit (GATK) [34,35] or samtools [26,36], for

example. This means that any improved methods of genotype

likelihood calculation for indels or other classes of polymorphism

can be combined with our modeling of familial segregation. To

illustrate the possibilities, we used genotype likelihoods calculated

by the GATK as a starting point for calling of indel genotypes,

taking family inheritance into account.

Simulations
To simulate sequence data, we first simulated 100 independent

1 Mb regions each with 10,000 haplotypes based on previously

proposed genetic models for European and African ancestry

samples [37]. For each pedigree, founder genotypes were

generated by randomly pairing haplotypes from this sample. For

descendant individuals, crossovers were simulated according to a

constant recombination rate of 1.561028 and recombinants were

randomly transmitted to offspring. For an individual genome with

coverage c, we assumed that the number of bases covering a

position follows a Poisson distribution with mean c. To simulate

bases, we first randomly drew a number from Poisson(c) at a site for

an individual, assuming that each base originated with equal

probability from either allele. Then each base bj was simulated

with error rate ej : with probability l{ej the base matched the

underlying template allele and with probability ej the observed

base was a sequencing error, and one of the three alternative bases

Variant Calling in Families
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was sampled with equal probability. The GL was calculated as

described in the section ‘‘Genotype likelihood calculation’’ after all bases

were generated. This process was repeated for all sites and

genotype likelihood values for each individual were stored in GLF

files [22].

To assess the power of this framework for de novo mutation

detection, we started with the simulation framework above, and

then introduced de novo mutations at a rate of 1.461028 per site

per generation [38]. To evaluate false positive de novo mutation

calls, the same calling algorithm was applied to sequencing data

simulated without de novo mutations.

Note that the above simulation framework assumes that the

mapping is 100% correct. To evaluate the performance in the

presence of mapping errors for both SNPs and short indels, we used

simulations that mimic the read mapping protocols used in current

next-generation sequencing studies. First, we randomly selected

CEU samples from the 1000 Genomes Project [1] as founders and

generated founder haplotypes from the VCF file for the March 16,

2012 Phase I haplotype release. Non-founder haplotypes were then

generated simulating recombination and segregation of founder

haplotypes through the pedigree, as above. Then, 100-bp long

paired-end reads with an average insert size of 400 bp and standard

deviation of 50 bp were randomly simulated for each person,

assuming a Poisson distribution for read start points, a normal

distribution for insert sizes, and a per base Phred-scaled quality of

Q20 (corresponding to a 1% error rate). Simulated paired-end reads

were aligned to the reference genome using BWA [39] and then

GATK [34,35] was used to perform indel re-alignment and base

quality re-calibration. The list of known indels was provided to

GATK for re-alignment prior to SNP and indel calling.

The family structures we simulated include trios, sibships,

nuclear families and 3-generation extended pedigrees. Since we

used only one extended pedigree (shown in Figure 1), we will use

‘‘3-generation pedigree’’ throughout to denote this extended

pedigree. Variant calling and de novo mutation detection were

evaluated for sequencing coverage of 56–406 and base quality

scores of Q20 and Q30 which correspond to per base sequencing

error rates of 0.01 and 0.001, respectively. Due to the

computational demands of read mapping, we carried out

simulations based on the 1000 Genomes data only for the 3-

generation pedigree and for trios.

Results

Non-reference genotypes identified per individual
We calculated the percentage of non-reference genotypes not

discovered (i.e. false negative rate) per individual in various

pedigrees for joint family calls and for a standard analysis that

ignores family structure. For all sequencing quality scores and

coverage, the 3-generation pedigree has the lowest rate of missed

non-reference genotypes (Table 1). For nuclear families, the lowest

rate of missed non-reference genotypes was observed in families

where both parents and 2 siblings were sequenced (Table 1). Other

configurations with 4 sequenced individuals per nuclear family,

such as those where one parent and three offspring were

sequenced or where four siblings were sequenced had higher

rates of missed non-reference alleles (among these two configura-

tions, the proportion of missing genotypes was highest when no

parental genotypes were available) (Table 1). This demonstrates

that sequencing parents can be beneficial, reducing the rate of

missed variant sites. Although increasing sequencing quality

increases the fraction of variant genotypes discovered, increasing

coverage has a far more dramatic effect. For example, the false

negative rate is 3.16% for sequencing at 56 coverage in the 3-

generation pedigrees when bases are simulated with Q20. This

rate is reduced to 2.67% when base quality increases to Q30 and

reduced to 0.51% when coverage is doubled (i.e. 106) (Table 1).

In all cases, when the variant calling was performed using the

standard approach that assumes all sequenced individuals are

unrelated, higher proportions of variant genotypes were missed

(Table 1). The false negative rates reported for the standard

approach were averaged across all individuals in all pedigrees since

the missing rates are similar for different pedigrees.

Genotype accuracy
We compared the best-guess genotype calls for each individual

to the true simulated genotypes and estimated the mismatch rates

for all genotypes (All) and for 3 sub-categories classified based on

true genotypes: homozygous reference allele (HomRef), heterozy-

gotes (Het) and homozygous alternative allele (HomAlt). For

different pedigrees and genotype categories, the trend for

mismatch rates again showed that examining the 3-generation

pedigrees provided the most accurate results while examining

siblings with no parents provided the least accurate option

(Table 2). Among all genotype categories, heterozygotes are the

most difficult to call correctly and the mismatch rates for this

category can be substantially larger than for the others. For

example at 156 with base quality Q30, heterozygotes in siblings

have a mismatch rate .3 times larger than HomAlt genotypes and

.20 times larger than HomRef genotypes (Table 2). Similar to the

power of detecting variant genotypes, coverage has a more

dramatic effect than sequencing quality on genotype accuracy and

at 306 all categories of genotypes can be reliably identified

(Table 2). When relatedness was ignored, the genotypes were less

accurate for all categories and for some pedigrees the mismatch

rates could be substantially increased. For example, the mismatch

rate for heterozygotes called using the standard approach that

ignores family structure was typically about 2 times higher than for

heterozygotes called using the full 3-generation pedigrees (Table 2).

Genotype accuracy by frequency
We further investigated the genotype accuracy as a function of

the reference allele frequency in pedigrees with both parents and 2

siblings sequenced with ,156 coverage and Q20 bases. Consid-

ering all genotypes, the mismatch rate is lower at low minor allele

frequencies (MAF) and increases when MAF becomes higher

(Figure 2A). Different sub-categories of genotype show markedly

different patterns of mismatch rates as a function of allele

frequency (Figure 2B, 2C, 2D); in general, error rates are higher

for rare genotypes than for common ones. For example, HomRef

genotypes have lower mismatch rate for high reference allele

frequencies and higher mismatch rates for low reference allele

frequency values (Figure 2D). The pattern is the opposite of that

for HomAlt genotypes (Figure 2B). Figure 2B and 2D are not exact

mirror images because of systematic differences between reference

and non-reference alleles in both our simulation (where reference

alleles are typically more common) and our analysis strategy

(where very rare alternate sites might not be discovered at all, and

thus not contribute to genotype accuracy calculations). For

heterozygotes the pattern is roughly symmetric relative to allele

frequency and heterozygotes are easiest to call when allele

frequencies are close to 0.5 (Figure 2C). When the standard

approach was applied, genotype mismatch rates for all categories

dramatically increased, especially at lower MAF (Figure 2). For

example at MAF below 0.1, the mismatch rates of HomRef and

HomAlt genotypes in the standard approach are about 2–3 times

higher than when family relationships are modeled (Figure 2B,

2D). These observations suggest that it is critical to jointly model

Variant Calling in Families
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family relationships explicitly, particularly when calling genotypes

for rare variants which are usually of great interest for sequence

based association studies.

Individual genotype accuracy in three-generation
extended pedigrees

The genotype mismatch rates discussed above are averaged

over all individuals in a family and we next examined the genotype

accuracy for different members of the simulated 3-generation

extended pedigrees shown in Figure 1, focusing results on

heterozygous genotypes. Individual II-2 has the lowest mismatch

rates (Figure 1A), mainly due to the strong familial inheritance

constraints imposed on this individual by multiple sequenced

offspring and sequenced parents. On the other hand, individual II-

4, with a single sequenced offspring, has the highest mismatch rate

due to the weakest Mendelian inheritance constraints in the

pedigree (Figure 1A). Other individuals fall in between and

individual error rates are roughly consistent with the degree of

inheritance constraints (Figure 1A). When the relatedness was

ignored, the individual genotype accuracy was jeopardized with

similar but much elevated mismatch rates for all family members

(Figure 1B). The greatest loss is observed for individual II-2 whose

mismatch rate increased from 0.11% to 0.51% (Figure 1).

Mendelian inconsistency
Ignoring relatedness typically increased the rate of Mendelian

inconsistencies, defined as the number of incompatible genotypes

per triplet (father, mother and offspring), by ..100-fold (Table 3).

For example, at 106 with base quality Q20, the Mendelian

Figure 1. Three-generation extended pedigrees. A) is a 3-generation extended pedigree with numbers labeling the individual heterozygous
genotype mismatch rates (%) at coverage of 156with base quality of Q20 without mapping error and panel B) labels the corresponding mismatch
rates for the standard approach of ignoring relatedness. Panel C) and D) display the heterozygous mismatch rates (%) when a fixed sequencing effort
of 1506 is allocated differently to family members: Panel C) is for the situation where the founders are allocated 306while non-founders have 56
and in Panel D) founders and non-founders have coverage of 66 and 216 respectively.
doi:10.1371/journal.pgen.1002944.g001

Variant Calling in Families
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inconsistency rate is 1.9*1026 when family structure is modeled

explicitly and 4.9*1023 when treating individuals as unrelated

(Table 3). Even at higher coverage and base quality scores, the rate

of Mendelian inconsistencies in genotypes called without knowl-

edge of family structure remains high (Table 3). Excluding markers

with Mendelian inconsistences has the risk of discarding true

signals. Importantly, in studies that aim to detect de novo mutations,

erroneous genotype calls suggesting Mendelian inconsistencies can

become false candidate sites for de novo mutation events and lead to

wasted replication resources. Therefore it is again advantageous to

jointly model family data to infer genotypes – reducing the

number of false positive de novo variant calls.

Allocation of sequencing differentially to family members
To explore strategies for allocating sequence coverage among

different family members, we distributed a total of 1506simulated

coverage across individuals in the 3-generation pedigree. We

investigated three scenarios: in the first, all individuals were

sequenced to 156; in the second, founders were sequenced deeply

to 306 each and non-founders to 56 each; in the third, founders

were sequenced to a depth of 66each and the rest of the pedigree

to 216. For these three scenarios, the numbers of variants

discovered differed substantially, with equal coverage of 156 for

all pedigree members uncovering 0.45% and 3.3% more variants

than the second and third scenario respectively. The equal

coverage scenario also produced the most accurate genotypes. For

example, the heterozygote mismatch rate across all individuals was

0.24% for equal coverage and 3.83% and 1.67% for the second

and third scenarios; the mismatch rates at sites homozygous for the

alternative allele was 0.076%, 0.85% and 0.51% for the three

scenarios respectively. When we focused on genotype accuracy for

rare variants with MAF,0.01, the same pattern holds. For

example the heterozygous mismatch rates are 0.2%, 3.9% and

1.4% for the three scenarios respectively. Genotype accuracy of

each individual is highly correlated with the depth and the

mismatch rates of individual family members are displayed in

Figure 1C, 1D. In these simulations, equal allocation of

sequencing to founders and non-founders thus seems optimal for

variant calling.

Detection of de novo mutation
We investigated the power to identify de novo mutations in trios,

nuclear families where two parents and multiple siblings are

sequenced, and the 3-generation pedigree. For the 3-generation

pedigree we evaluated the performance on individual II-2. In this

study, a de novo mutation was claimed when LRdenovow2 and the

inferred genotypes of a triplet violate Mendelian consistency with

simulated true genotypes. We found power to be extremely low for

Table 1. Percentage of missing non-reference genotypes (i.e.
false negatives) per individual in families for variants called by
joint modeling family data and the standard approach of
ignoring relatedness for sequencing coverage between 56
and 306 and for input sequence data with Phred-scaled
quality of 20 (error rate of 1% per base) or 30 (error rate of
0.1% per base) without mapping error.

False negative rate per individual (%)

Base
Quality Family structure 56 106 156 206 306

20 3-generation families 3.16 0.51 0.114 0.0260 0.00152

2 parents+2 siblings 3.53 0.57 0.123 0.0267 0.00156

1 parent+3 siblings 4.15 0.68 0.152 0.0341 0.00194

0 parents+4 siblings 4.23 0.73 0.160 0.0362 0.00204

Standard approach 5.52 1.08 0.234 0.0531 0.00290

30 3-generation families 2.67 0.27 0.046 0.0087 0.00027

2 parents+2 siblings 2.96 0.30 0.049 0.0094 0.00028

1 parent+3 siblings 3.70 0.42 0.064 0.0128 0.00036

0 parents+4 siblings 3.85 0.47 0.069 0.0134 0.00045

Standard approach 4.72 0.57 0.096 0.0180 0.00055

For all scenarios 300 sequenced individuals were simulated.
doi:10.1371/journal.pgen.1002944.t001

Table 2. Genotype mismatch rates (%) for different family structures with sequencing coverage of 56, 156, and 306 and input
bases with Phred-scaled quality Q20 (1% error rate) or Q30 (0.1% error rate) without mapping error.

Genotype mismatch rate (%)

56 156 306

Base
Quality Family structure All HomRef Het HomAlt All HomRef Het HomAlt All HomRef Het HomAlt

Q20 3-generation families 1.69 0.42 7.09 2.25 0.0546 0.0156 0.2423 0.0756 6.8*1024 2.6*1024 2.5*1023 1.3*1023

2 parents+2 siblings 1.80 0.45 7.77 2.53 0.0562 0.0160 0.2617 0.0872 7.0*1024 2.7*1024 2.7*1023 1.5*1023

1 parent+3 siblings 2.12 0.49 9.19 3.02 0.0723 0.0220 0.3265 0.1151 9.9*1024 4.0*1024 3.7*1023 1.8*1023

0 parents+4 siblings 2.33 0.59 9.45 4.02 0.0814 0.0251 0.3526 0.1539 1.1*1023 4.6*1024 4.0*1023 2.2*1023

Standard approach 2.88 0.62 12.39 4.10 0.1098 0.0292 0.5082 0.1806 1.5*1023 5.2*1024 6.0*1023 2.6*1023

Q30 3-generation families 1.27 0.22 6.33 1.49 0.0215 0.0057 0.0997 0.0289 1.1*1024 2.7*1025 5.9*1024 9.4*1025

2 parents+2 siblings 1.35 0.24 7.02 1.70 0.0217 0.0057 0.1057 0.0313 1.2*1024 2.6*1025 6.8*1024 1.2*1024

1 parent+3 siblings 1.67 0.24 8.83 1.98 0.0288 0.0077 0.1385 0.0393 1.6*1024 3.6*1025 7.7*1024 2.8*1024

0 parents+4 siblings 1.81 0.28 9.16 2.53 0.0335 0.0084 0.1659 0.0485 1.9*1024 3.8*1025 9.9*1024 3.0*1024

Standard approach 2.14 0.21 11.64 2.46 0.0448 0.0105 0.2242 0.0592 2.5*1024 5.7*1025 1.3*1023 3.4*1024

The mismatch rates are shown for 4 genotype categories: all genotypes (All), homozygous reference allele (HomRef), heterozygotes (Het), and homozygous alternative
allele (HomAlt).
doi:10.1371/journal.pgen.1002944.t002
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56 and 106 coverage, in all pedigree structures considered. We

found power to increase dramatically for coverage of 156 to 206
and higher (Figure 3). At about 306, the power is over 98% and at

406 the power is close to 100% (Figure 3). As expected, for base

quality of Q30, the detection rate of de novo mutations is higher

than when bases have Q20 quality, except when depth is very low

(low power) or very high (saturated signal) (Figure 3).

Since both de novo mutation and variant calling are integrated in

the same framework, next we investigated whether examining

additional related individuals could increase the power of de novo

mutation detection. For base quality Q20, we observed that in

comparisons with trios analyzed separately, sequencing additional

siblings increases power for detection of mutation events,

especially for intermediate coverage levels of 156–206
(Figure 3B). For SNPs, detecting a de novo mutation event typically

requires deeply sequencing the parents. In the pedigree in Figure 1,

the detection power is greater than for nuclear families (Figure 3),

because more information is available to the genotype caller,

increasing the genotype accuracy in the triplet of I-1, I-2 and II-2.

To evaluate the false positive rate for de novo mutation detection,

we applied the same calling procedure on data simulated without

de novo mutations. It is shown that false positives are well controlled

for all pedigrees and coverage levels investigated (Table 4). For

example, at 306 which is the coverage where .98% de novo

mutations can be detected, the false positives rate remains

extremely low (Table 4).

Figure 2. Mismatch rates (%) of 4 categories of genotypes by the reference allele frequencies for pedigrees of quartet (two siblings
and their parents) with base quality Q20 at 156 without mapping error. The 4 categories are (A) overall genotypes, (B) homozygous
alternative allele, (C) heterozygotes and (D) homozygous reference allele.
doi:10.1371/journal.pgen.1002944.g002

Table 3. Mendelian inconsistency rates per triplet (father,
mother and offspring) for the genotypes by joint modeling of
family data (top panel) and by the standard approach where
the relatedness was ignored, i.e. individuals were treated as
unrelated (bottom panel) for sequencing coverage of 56 to
306 and bases with Phred-scaled quality Q20 (1% error rate)
and 30 (0.1% error rate) without mapping error.

Mendelian inconsistency rate per triplet

Calling method
Base
quality 56 106 156 206 306

Family-aware calls Q20 0.00011 1.9*1026 4.3*1028 0 0

Q30 5.7*1025 4.6*1027 0 0 0

Standard calls Q20 0.025 0.0049 0.0011 0.00023 0.00014

Q30 0.022 0.0029 0.00045 8.0*1025 2.7*1026

doi:10.1371/journal.pgen.1002944.t003
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Effect of mapping error
Results presented so far are based on idealized simulations that

ignore (for example) errors in read mapping. To evaluate the

usefulness of our methods in a more challenging set of simulations,

we conducted a second set of simulations where genotypes from

founders were simulated using one of the 1000 Genomes samples

as templates and where we simulated raw reads (rather than

aligned bases). We followed the best-practice procedures (see

Simulations) for variant calling and for the re-alignment step, we

provided GATK with a list of simulated indels as candidates –

which is an idealized situation but approximates what may soon be

possible as variation catalogs become more complete and include

.99% of the variants typically segregating in any single individual.

We compared the mismatch rate at heterozygous sites and the

Mendelian inconsistency rate for genotype calls generated by our

methods (implemented in PolyMutt) and a gold-standard variant

caller that ignores family structure (implemented in the GATK

version 1.3-5). To explore the impact of mapping error in our

variant calls, we also analyzed variable sites with .10 bp apart

from a nearby SNP or indel; at sites with nearby variants we

expect a larger fraction of reads to map incorrectly (Table 5). The

advantages of using family data were also clear in this analysis. For

example, using GATK, at 156 coverage the error rate in called

genotypes at heterozygote sites was 1.22% overall; when we

focused on sites .10-bp away from the nearest variant, this error

rate decreased slightly to 0.9%. Analyses using PolyMutt, but also

ignoring family structure, produced similar error rates (Table 5).

In contrast, modeling family structure reduced error rates to

0.71% and 0.51% for all variants and for variants .10 bp apart

from the nearest variant, respectively; a reduction in error rate of

.40% in each case. (Table 5). These per genotype error rates are

also manifest in large numbers of Mendelian inconsistencies (and

potential false-positive candidates for de novo mutation events).

Using GATK, about 2.26% of sites resulted in Mendelian

inconsistencies in the 3-generation pedigree at 156 coverage

and 0.97% of sites at 306coverage (Table 5). On the other hand,

modeling relatedness dramatically reduced Mendelian inconsis-

tencies to a rate ,0.01% (and, thus, false positive de novo mutation

events) (Table 5). In comparison to simulations without mapping

Figure 3. Power of detecting de novo mutations (DNM) in different pedigree structures for coverage from 56to 406. Panel A) shows
the power for trios with base quality Q20 and Q30 and panel B) shows the power comparisons of trios, nuclear families with 2 and 3 siblings, and 3-
generation extended pedigrees (shown in Figure 1) for base quality Q20 without mapping error.
doi:10.1371/journal.pgen.1002944.g003

Table 4. Number of false positive de novo mutations per billion bases detected by PolyMutt of jointly modeling for sequencing at
coverage 56–406with Phred-scaled base quality Q20 (1% error rate) without mapping error in different pedigrees structures.

Coverage Parents-offspring trio 2 Parents+2 siblings 2 Parents+3 siblings 3-Gen pedigree

56 0 0 0 0

106 0 0 2 0

156 0 0 4 4

206 0 4 1 1

306 0 1 0 1

406 0 0 0 0

doi:10.1371/journal.pgen.1002944.t004
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error (summarized in Table 2), analyses that allow for mapping

error show much reduced accuracy (for example, at 156depth the

average error rate for our caller was 0.71% when mapping error

was simulated versus 0.24% when it wasn’t), but still show a

notable advantage for modeling family structure.

Analysis of short insertion deletion polymorphisms
Analysis presented so far focused on single nucleotide polymor-

phisms, the most abundant class of variants in the genome. Many

variant callers can now call other types of variants and some, such

as GATK, can calculate genotype likelihoods for each examined

site (summarizing the likelihood of observed reads for different,

true underlying genotypes). To explore the utility of our

framework for the analysis of other types of variants, we next

performed indel calling using GATK and then used PolyMutt to

refine the calls taking into account family information and GATK

generated genotype likelihoods. In this analysis, we evaluated

genotype accuracy only at indel sites where the called reference

and alternate alleles matched the underlying simulation, skipping

over sites where the alternate alleles were called incorrectly. It is

clear that the genotyping error rates at indel sites are much higher

than for SNPs (Table 5). For example, the GATK heterozygote

error rate at 156 coverage was 5.96% (compared to 1.22% for

SNPs). Indel calling improved substantially when we focused on

sites separated by .10-bp from the nearest variant, but even then

the heterozygote error rate was still 1.93% (Table 5). Again,

modeling relatedness using PolyMutt reduced error rates by 30–

40% (Table 5). This increased genotyping accuracy was also

manifest in reduced Mendelian inconsistency rates. For example,

Mendelian error rates are ,0.01% at variant sites with .10 bp

apart for PolyMutt calls modeling relatedness in comparison to

3.32% and 1.48% for 156 and 306 GATK calls that ignore

family structure (Table 5). We also called genotypes using

PolyMutt assuming family members are unrelated and the results

are similar to GATK for both genotype accuracy and Mendelian

inconsistency (Table 5).

Detection of de novo mutations in the presence of
mapping error

After demonstrating that modeling relatedness could improve

detection and genotyping of SNPs and indels, even in the presence

of mapping error, we proceeded to evaluate the impact of

mapping error on detection of de novo mutation events. We

simulated de novo mutations at a rate of 1.461028 per bp per

generation in trios sequenced at 306. As in the previous sections,

we based founder genotypes on those observed in the 1000

Genomes Project and, after read mapping, re-alignment and

recalibration called de novo mutations either by analyzing trio

assuming individuals are independent using GATK’s standard

caller (followed by a series of filters shown to help reduce the

number of spurious Mendelian inheritance errors [18]) or by using

the methods described here and implemented in PolyMutt. In

addition, we also used PolyMutt to detect de novo mutations

assuming individuals are unrelated, to compare with the GTAK

calls. We called a candidate de novo event only in places where the

parents were called as homozygotes for the reference allele, and

the offspring was called as heterozygote [18–20] – a strategy that

removes most alignment artifacts. We varied the likelihood ratio

values (LRdenovo) for PolyMutt calls and the minimum depth in a

trio for standard calls to tune false positive and false negative rates.

Using the above criteria, we calculated the power and false positive

rates for the Polymutt call set, and also the two call sets generated

by GATK and PolyMutt ignoring relatedness. The ROC curves

for the three call sets are displayed in Figure 4. We can see that
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PolyMutt clearly outperforms standard approaches and a power of

90% is quickly reached at a false positive rate of 6.7*1027

(Figure 4). On the other hand, analyses that did not model family

structure resulted in much higher false positive rates. For example,

achieving 80% power in this simulated dataset required allowing

for a false-positive rate of 3.3*1027 when family structure was

modeled, but 2.2*1026 and 1.9*1026 for calls from GATK and

PolyMutt ignoring relatedness, corresponding to an increase in

false positives of ,6–7 fold (Figure 4).

Application to real data for variant calling
We are currently sequencing related individuals in Sardinia to

study the genetics of immune and aging related traits [40,41]. We

applied our framework on an early data freeze totaling 66 samples

and including 13 trios, four parent-offspring pairs, four families

with two siblings with one parent, and 7 unrelated individuals.

Samples were sequenced at average depth of 2–36. Since we do

not know whether called variants are true or false, except for those

previously reported by the 1000 Genomes Project or in dbSNP, we

used the transition/transversion (Ts/Tv) ratio to compare the

quality of rediscovered dbSNPs and newly discovered SNPs. Prior

research indicates that on the genome level the Ts/Tv ratio is

around 2.2 and that significantly lower values can indicate an

excess of false SNPs. Variant calling was carried-out in two ways:

(1) jointly modeling family data and (2) using the standard

approach in which relatedness was ignored. For variants detected

exclusively by either approach, the Ts/Tv ratio of 2.29 in family

calls is on the same level as the ratio estimated from known

variants, indicating the high accuracy of variants unique to the

family-aware call set. On the other hand, variants exclusively

called by the standard approach of ignoring relatedness have a

much reduced ratio of 1.21, closer to the expected ratio of 0.5

assuming that genome changes are random. This further indicates

that ignoring family relationships results in sub-optimal use of

available information. In addition, family calls are especially more

accurate for rare variants. For example, the median MAF of

variants only detected by family calls is roughly 3 times lower than

the corresponding MAF of variants exclusive to the standard calls

(Figure 5). Since the data we analyzed do not consist of complete

families and some subjects are unrelated, we expect a further boost

of variant calling accuracy using families when the full family data

set is available.

Discussion

Family designs were largely ignored in the GWAS era due to

their decreased efficiency compared to case/control studies for

common variant association studies. In the sequencing era, family

designs may provide an attractive approach for studies of low

frequency variants. Another attraction of family samples comes

from the possibility of studying de novo mutation, which trio

sequencing has shown may be involved in the etiology of

neurological disorders [13,16–20]. Current methods for calling

variants and individual genotypes, typically do not model

relatedness, resulting in loss of efficiency. Our simulations show

that, when next generation sequencing is applied to multiple

related individuals, better variant site lists and genotypes can be

generated. This is particularly true for rare variants, for which the

genotype accuracy is greatly increased if family relatedness is

modeled in our methods (Figure 2). The advantages extend to

many aspects of variant calling, including both sensitivity and

specificity. For sequencing studies that aim to identify de novo

mutations, our results illustrate the advantages of modeling all

family members simultaneously. For standard methods, false

positive de novo mutations can be due to false negative variant calls

in parents. Our methods model polymorphism and de novo

mutation simultaneously in the same framework and increase

both the sensitivity and specificity when family information is

available. Similar calling algorithms for de novo mutations have

been proposed for trios [42,43] and our methods now extend the

analysis of next generation sequence data to arbitrary pedigrees.

Our methods are based on the Elston-Stewart algorithm for

pedigree likelihood calculation, which can handle very large

pedigrees without inbreeding. Marriage loops and/or inbreeding

pedigrees are well known to challenge most implementations of the

algorithm. Our implementation uses a well-known workaround for

handling inbred pedigrees, based on loop-breaking approach [44–

Figure 4. The receiver operating characteristic (ROC) curves of
PolyMutt and the standard methods for de novo mutation
(DNM) detection from empirically calibrated alignments of
simulated reads with sequencing coverage of 306 with base
quality of Q20. PolyMutt (ignoring relatedness) and GATK calls were
obtained by jointly calling a trio assuming individuals in a trio are
unrelated using Polymutt and GATK respectively.
doi:10.1371/journal.pgen.1002944.g004

Figure 5. Comparisons of two variant callsets from SardiNIA
low-pass sequencing data where variant calling was carried
out by explicitly modeling family relatedness (family calls) and
by the standard approach of ignoring relatedness (standard
calls).
doi:10.1371/journal.pgen.1002944.g005

Variant Calling in Families

PLOS Genetics | www.plosgenetics.org 10 October 2012 | Volume 8 | Issue 10 | e1002944



46]. To investigate the performance of this strategy, we simulated

156 sequence data for 3-generation first-cousin marriage pedi-

grees with 10 individuals. We performed variant calling using

PolyMutt by the loop-breaking approach and also the standard

approach assuming that individuals are unrelated. The overall

genotype mismatch rate for the standard approach is 0.11%,

compared to 0.049% for the family joint calls. When we focused

on heterozygotes, the mismatch rates are 0.51% and 0.24%

respectively. These statistics are very similar to the results shown

for the 3-generation pedigree in Table 2 and demonstrated that

although there is loss of information by loop-breaking, modeling

relatedness remains highly useful.

Current protocols for deep genome and exome re-sequencing

typically aim for coverage .306 and we thus expect excellent

accuracy of genotype calls and power to identify de novo events in

many existing datasets. Still, even in these cases, our methods

provide substantial improvements in the accuracy of genotype

calls – particularly in our more realistic simulations that allow for

mapping error and examine hard to call variants (such as indels

or variants that are clustered with other nearby polymorphisms).

Furthermore, in some regions, depth may be lower (e.g. due to

unusual GC content or the vagaries of exome capture) and in

these regions analysis will continue to benefit from modeling of

familial relationships even when the average depth for the rest of

the genome leaves most genotypes beyond doubt. It may also

occur that individuals in a family are sequenced at different

coverage, using different platforms, with varying read lengths and

sequencing error rates, and other systematic differences. For

example offspring may be sequenced later with technologies that

produce higher coverage and lower error rates. By jointly

modeling related individuals in pedigrees, our methods can

improve the accuracy of genotype calls for individuals sequenced

earlier.

We first conducted an initial set of simulations that ignored

mapping error. These data were efficient to simulate and analyze,

allowing us to explore a variety of family configurations,

sequencing error rates, and to vary depth of coverage. In a

second set of simulations, we used founder haplotypes from the

1000 Genome Project and simulated short reads that were then

mapped and processed as in standard analysis for several ongoing

projects. Error rates were noticeably higher than in ideal situations

assuming no mapping error. This increase is expected, since

sequence alignment error is one of the major sources for variant

calling problems [1]. For example, at 306 depth heterozygous

genotyping error increased from 0.006% (with no mapping error)

to ,0.67% (with mapping error simulated) when family informa-

tion was ignored in the 3-generation pedigree. Modeling family

information reduced these error rates to 0.0025% (with no

mapping error) and ,0.45% (with mapping errors), respectively.

Family-aware calling using the methods described here greatly

increased genotyping accuracy and reduced Mendelian inconsis-

tency rates. Mapping and alignment challenges have a far more

severe effect on more complex variants, such as short insertion

deletion polymorphisms. Typically, reads containing these variants

are harder to align and interpret correctly. Still, just as for SNPs,

our methods appear to reduce the genotyping error rate

significantly and of particular note to essentially eliminate

Mendelian inconsistencies.

For a fixed sequencing effort, our simulations suggest that it

will be optimal to distribute sequencing coverage equally among

family members. However it is not trivial in general to determine

the optimal allocation of sequencing to families for association

studies. Although larger sample sizes have better power to

identify genetic factors, when a fixed sequencing budget is

distributed among more samples, genotyping accuracy can be

compromised. The power of association studies is dependent

upon the interplay between the sample size, the pedigree

structure and the genotype accuracy. In unrelated individuals

the variant discovery rate is optimal when sequencing many

individuals, each with somewhat lower coverage [1,47] and we

expect this will also hold true for family studies. One question

that remains to be addressed is how to determine the optimal

allocation of sequencing to families in order to obtain the best

power for association studies. Besides the sequencing quality, the

factors to consider include number of families, family size, family

structures and selection for specific disease status or trait values.

This important issue is beyond the scope of the current study and

will be investigated elsewhere.

De novo mutations have been implicated to play an important

role in some complex diseases, such as autism. Sequencing allows

for efficient detection of de novo point mutations and has begun to

reveal potential causal genes for sporadic autism [18–20]. Most of

studies focused on the trio design due to its simplicity. Sequencing

unaffected siblings could provide valuable information about

background mutation within family, and we expect these studies to

soon extend into quartet families (where background mutation can

be examined) or even extended pedigrees (where the parental

origin of mutations can be examined). For the simple trio design,

we demonstrated the advantages of our methods over standard

approaches. For more complex pedigrees, our methods will

continue to improve the sensitivity and specificity due to the use

of sequencing data from the entire family, as shown in Figure 3,

and will further outperform standard approaches of analyzing

individual trios.

In unrelated individuals, modeling of linkage disequilibrium is a

very effective strategy for improving the accuracy of genotype

calling [47]. In principle, it would be ideal to combine the

haplotype-based imputation with the constraints of Mendelian

inheritance in pedigrees for variant calling. However, this process

remains very challenging computationally because integrating over

haplotype distributions for multiple founders increases the

complexity of the problem exponentially. We are actively

investigating heuristic solutions to the problem, and hope to

report on them in the future.

In this study, we developed a likelihood framework for variant

and genotype calling and de novo mutation detection in families

from sequencing data, and showed its superior performance

compared to the standard approach in which family members are

treated as unrelated. We have implemented the framework in

PolyMutt, a software package for Polymorphism and Mutation

detection, which can be downloaded from authors’ website

(http://sph.umich.edu/csg/bingshan). There is a growing inter-

est in using family sequencing data for genetic studies and we

hope that our methods will be helpful for identifying genetic

factors associated with human diseases by providing accurate

variant and genotype calls and de novo mutations in family

sequencing studies.
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