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Abstract

Two-part models are an attractive approach to analyzing longitudinal semicontinuous data 

consisting of a mixture of true zeros and continuously distributed positive values. When interest 

lies in the population-averaged (marginal) covariate effects, two-part models that provide 

straightforward interpretation of the marginal effects are desirable. Presently, the only available 

approaches for fitting two-part marginal models to longitudinal semicontinuous data are 

computationally difficult to implement. Therefore there exists a need to develop two-part marginal 

models that can be easily implemented in practice. We propose a fully likelihood-based two-part 

marginal model that satisfies this need by using the bridge distribution for the random effect in the 

binary part of an underlying two-part mixed model; and its maximum likelihood estimation can be 

routinely implemented via standard statistical software such as the SAS NLMIXED procedure. We 

illustrate the usage of this new model by investigating the marginal effects of pre-specified genetic 

markers on physical functioning, as measured by the Health Assessment Questionnaire (HAQ), in 

a cohort of psoriatic arthritis (PsA) patients from the University of Toronto Psoriatic Arthritis 

Clinic. An added benefit of our proposed marginal model when compared to a two-part mixed 

model is the robustness in regression parameter estimation when departure from the true random 

effects structure occurs. This is demonstrated through simulation.
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1 Introduction

Over the last decade or so, the two-part modelling framework has become increasingly 

popular when analysing ‘semicontinuous’ response data measured either cross-sectionally or 

repeatedly over time1–10. By semicontinuous data we refer to data generated from a 

response which is a mixture of true zeros and continuously distributed positive values4. For 

this type of data, it is natural to view the response observed as the result of two processes, 

one determining whether the response is zero and the other determining the actual value if it 

is non-zero; and for convenience, we refer to the data arising from these two processes as the 

‘binary part’ and the ‘continuous part’ of the original data, respectively.
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In the case of longitudinal semicontinuous data, two approaches have been proposed within 

this two-part modelling framework. The first is based on two-part mixed models with 

correlated random effects in both parts of the model4–6,11. The other is based on two-part 

marginal models7. The approach adopted will depend on the aims of the study and the 

intended purposes for the results obtained. If the objective is to investigate the effects of 

covariates at the subject-specific level (conditional effects) then the two-part mixed 

modelling approach is appropriate. For example, in the fitted two-part mixed model from the 

analysis reported in Su et al.11, the regression coefficients in the binary part for explanatory 

variables, such as disease activity and disease damage, can be interpreted as the log odds 

ratios representing the change in the probability of being functionally disabled for any 

specific patient who had one unit increase in disease activity or disease damage over time. 

The corresponding regression coefficients in the continuous part represented the expected 

change in any observed (non-zero) disability level for a patient with one unit increase in 

disease activity or disease damage over time. On the other hand, if, as is the case in this 

article, straightforwardly interpreted covariate effects at the population-averaged level 

(marginal effects) are required, then two-part marginal models are needed. For example, it 

would be interesting to investigate whether on average the patients with certain genetic 

markers had different odds of being functionally disabled or different mean disability level 

than those patients without those genetic markers. A subject-specific interpretation for the 

genetic marker effects would be less attractive here as genetic markers are time-invariant 

within the same patients. It is worth noting that in generalized linear models for longitudinal 

data, marginal and conditional effects will differ in magnitude unless linear models with an 

identity link are used (see detailed discussion in Chapter 7 of Diggle et al.12).

Currently, when interpretation of population-averaged covariate effects is of interest, there 

are only moment-based two-part modelling approaches available for fitting longitudinal 

semicontinuous data. In particular, Hall and Zhang7 have described both a direct estimation 

method based on generalized estimating equations (GEE) for the observed semicontinuous 

responses alone and an Expectation-Solution (ES) algorithm with GEE in the S-step for 

estimating the marginal covariate effects. However, because of the complexity of the 

estimating equations and algorithms, both methods require specialized programs that are not 

readily available to analysts and would require considerable statistical programming skills 

for implementation. Therefore it would seem advantageous to develop a two-part marginal 

model which can be conveniently and routinely implemented in practice.

In this article, we propose a likelihood-based approach to the two-part marginal modelling of 

longitudinal semicontinuous data. Specifically, our two-part marginal model is derived from 

an underlying two-part mixed model where the random intercept in the conditional logistic 

model for the binary part and the random intercept in the linear mixed model for the 

continuous part are assumed to be correlated and follow a bridge distribution (instead of a 

Normal distribution as per usual) and a Normal distribution, respectively13,14. The marginal 

covariate effects are directly specified in both parts of the model because the marginal 

expectations in both parts preserve the logit and identity links after integration over the 

random effects. The integration can be achieved using adaptive Gaussian quadrature 

techniques and the likelihood is then maximized by performing quasi-Newton 

optimization6.
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In Section 2 we describe the work on the association between genetic markers and physical 

functioning in psoriatic arthritis which partly motivated this research. Section 3 describes 

formally our two-part marginal model for longitudinal semicontinuous data. We conduct a 

simulation study to evaluate how the two-part marginal model performs under a plausible 

departure from the true underlying random effect structure in Section 4 and the psoriatic 

arthritis data are then analyzed in Section 5 to illustrate the methods. We conclude the article 

in Section 6.

2 Motivating example

This research on developing an appropriate two-part marginal model was partly motivated 

by work on a dataset from The University of Toronto Psoriatic Arthritis (PsA) Clinic15. The 

Health Assessment Questionnaire (HAQ) is a self-report functional status (disability) 

measure that has become the dominant instrument in many disease areas, including 

arthritis16. It produces a measure that has a point mass at zero, whilst non-zero values vary 

“continuously” in the range zero (no disability) to three (completely disabled). Since June 

1993, the HAQ has been administered annually to patients in the PsA Clinic and, as of 

March 2005, 382 patients had completed at least two HAQs with 2107 observations in total 

for analyses17.

In the earlier work on HAQ11,17, our objective was to examine whether the effects of 

disease activity and disease damage on physical functioning (as measured by the HAQ) were 

changing over the PsA disease duration. On examining these data (see Figure 1), a notable 

feature was the relatively high preponderance of zeros (i.e. observation cluster at zero of 

645/2107 = 30.6%), which presented a challenge in characterizing the relationship between 

the HAQ scores and covariates. Our use of two-part mixed models allowed us to overcome 

this challenge and investigate the changing relationship of disease activity and damage with 

physical functioning; both in terms of distinguishing a PsA patient when no functional 

disability (HAQ score = 0) occurs to when at least mild difficulty (HAQ > 0) occurs, and in 

determining the impact on the actual level of difficulty (represented by positive HAQ 

scores), given that the patient had at least mild difficulty. These effects of interest were at the 

subject-specific level and therefore mixed models were deemed appropriate. Moreover, it 

was found to be important to allow the random effects in both parts of the two-part mixed 

model to be correlated (rather than wrongly assumed independent) otherwise bias would 

ensue in the parameter estimators obtained for the continuous part11.

In a study characterizing the relationship between genetic markers and disease progression 

in psoriatic arthritis18, a number of alleles that code for HLA antigens were found to be 

associated with progression of clinical damage. HLA-B27 in the presence of HLA-DR7, 

HLA-B39, and HLA-DQw3 in the absence of HLA-DR7 were predictive of progression of 

clinical damage, whereas HLA-B22 was protective. Here the marginal effects of the various 

genetic markers on disease progression were of interest, that is, we aimed to investigate 

whether on average the patients with genetic markers present had more clinical damage than 

those without genetic markers.
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In more recent follow-up work, we are interested in investigating the relationship of the 

aforementioned HLA alleles with physical functioning, as measured by the HAQ. The 

question to be answered is whether patients with those specific HLA alleles had on average 

different levels of physical functioning over time than others. The marginal effects of these 

genetic markers were again of interest, but the HAQ data to be used were repeatedly 

measured over time and had, as described earlier, a large number of observations clustered at 

zero. To analyze these data, two-part marginal models which would provide straightforward 

interpretation were found to be needed. However no such easily implementable method to 

achieve this was available in practice.

In the next section, we propose a two-part marginal model that is easily implementable and 

interpretable and will allow us to analyze the above HAQ data.

3 Model

We build our two-part marginal model based on the original two-part mixed models 

introduced in Olsen and Schafer4 and Tooze et al.6 and the random effects specifications in 

Lin et al.14. Let Yij be a semicontinuous variable for the ith (i = 1, … , N) subject at time tij 
(j = 1, … , ni). This response variable can be represented by two variables, the occurrence 

variable

and the intensity variable g(Yij) given that Yij > 0, where g(·) is a transformation that makes 

Yij | Yij > 0 approximately Normally distributed with a subject-time-specific mean.

Instead of focusing on the marginal distribution of Yij, in a two-part model we are interested 

in both the distribution for the occurrence variable Zij and the conditional distribution of the 

intensity variable g(Yij) given that Yij > 0. Specifically, it is assumed that Zij follows a 

random effects logistic regression model with

(3.1)

where Xij is a 1 × q covariate vector,  is a q × 1 regression coefficient vector and Bi is the 

subject-level random intercept. The intensity variable g(Yij) given Yij > 0 follows a linear 

mixed model

(3.2)

where  is a 1 × p covariate vector, β is a p × 1 regression coefficient vector and Vi is 

again a subject-level random intercept. The error term ϵij is assumed to be distributed as 

. Note that the covariate vectors ,  may coincide, but this is not required.
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Further, we assume that Bi, the random intercept in the binary part, follows the bridge 

density of Wang and Louis13

with unknown parameter ϕ (0 < ϕ < 1). This bridge distribution is symmetric with mean zero 

and variance . It is slightly heavy tailed and more concentrated than the 

Normal distribution with the same variance. The key characteristic of this bridge density is 

that after integration over the random intercepts, (Bi, Vi), the marginal probability Pr(Zij = 1) 

relates to the linear predictors through the same logit link function as for the corresponding 

conditional probability. In addition, if we specify the marginal regression structure of the 

binary part as

then the marginal covariate effects θ are proportional to the subject-specific conditional 

covariate effects , with . Therefore, we could rewrite (3.1) as

(3.3)

Based on marginalization of random effects models, Heagerty19 and Heagerty and Zeger20 

proposed full likelihood-based methods of estimating marginal regression parameters for 

longitudinal binary data. In their models, random effects are assumed to be Normally 

distributed and the marginal probability and the conditional probability given the random 

effects are matched by an intercept term Δij. Similarly, in our model we have

and the intercept term is actually 

For the continuous part of the model, we let Vi be Normally distributed with mean zero and 

variance . Therefore, g(Yij) | Yij > 0 given the random intercepts (Bi, Vi) follows a Normal 

linear mixed model with mean  and variance . It follows that the marginal mean 

of g(Yij) | Yij > 0 integrated over (Bi, Vi) is , the fixed effects part of the linear mixed 

model.

It is natural to conjecture that the two processes that generate semicontinuous data may be 

related, especially if the response is observed at multiple time points. Therefore, we 

construct a bivariate joint distribution for the random intercepts (Bi, Vi) from a pair of 

Normal random variables
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(3.4)

and use the probability integral transformation

to obtain Bi13,14. Here Φ(·) is the cumulative distribution function of the standard Normal, 

and  is the inverse cumulative distribution function,

of the bridge density for 0 < x < 1. Lin et al.14 found that the correlation for (Bi, Vi) is 

approximately the same as the correlation ρ for (Ui, Vi).

In this two-part marginal model, we consider the primary targets of inference to be the 

marginal covariate effects θ and β, while variance components  (or equivalently ϕ), , 

and the correlation parameter ρ are treated as nuisance parameters. The estimation of θ, β, 

, , ρ and  is based on maximization of the likelihood

(3.5)

which can be implemented in the SAS NLMIXED procedure by quasi-Newton optimization 

with adaptive Gaussian quadrature techniques6.

There are three advantages of this marginally specified two-part model. First, compared with 

alternative two-part marginal modelling specifications, it can be conveniently implemented 

using standard software procedures such as SAS NLMIXED. Second, compared with the 

moment-based approaches in Hall and Zhang7, it can deal with unbalanced longitudinal data 

either by design or due to ignorable missingness (such as ‘Missing at Random’ (MAR)) 

because it is fully likelihood-based12,21. Third, compared with the two-part mixed model, it 

can offer some degree of robustness in regression parameter estimation when departure from 

the true underlying random effect structure occurs. For generalized linear mixed models 

(GLMM), it has been shown that even point estimates, under certain conditions, can be 

sensitive to assumptions made regarding the random effect structure19,20,22–28. In 

particular, Heagerty and Kurland25 showed that substantial bias can arise for the subject-
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specific conditional covariate effects in a GLMM when the true random effect structure 

includes both a random intercept and a random slope but the specified model includes only 

the random intercept, whereas the marginally specified regression structure can be more 

robust to this violation of the random effect structure assumption. The situation for 

longitudinal semicontinuous data is analogous: because of the computational burden, a 

random intercept is often assumed in practice for the conditionally specified regression 

structure in the binary part of a two-part mixed model and this could give rise to biased point 

estimates of the conditional covariate effects when an additional true random slope is 

ignored. In this scenario, a marginally specified two-part model, with marginal interpretation 

of covariate effects, might be preferable although this would be dependent on the purpose of 

the study. We will conduct a simulation study to further investigate this issue in Section 4.

4 Simulation Study

Here we describe and report the findings from our simulation study to investigate the 

performance of our proposed two-part marginal model and the original two-part mixed 

model with bivariate Normal random intercepts, when the underlying random effects 

assumption is violated. We shall explicitly focus on the scenario in which the true random 

effect structure in the binary part include both random intercept and random slope but the 

models to be fitted incorporate a random intercept only in this part. The true random effect 

structure in the continuous part includes only the random intercept and the models to be 

fitted will include the random intercept alone in the continuous part. The true random effects 

are generated from the trivariate Normal distribution in (4.1). Our objective is to investigate 

the relative biases in the marginal covariate effects and conditional covariate effects under 

this misspecification of the random effect structure in the binary part. The setups for 

investigating these biases for marginal and conditional effects are described next.

4.1 Setup for marginal covariate effects

Let the marginal covariate vector Xij = (1, Gi, tij, Gitij) follow a group by time design, where 

Gi ∈ (0, 1) is a group membership indicator, tij = (j − 1)/(ni − 1), j = 1, … , ni and ni = 5 ∀ i. 
Further, for illustration, we assume that subjects have equal probability of being in the two 

groups, in other words, Pr(Gi = g) = 1/2 (g = 0, 1). The response variables Yij, Zij are defined 

in the same way as in Section 3, and data are simulated from a logistic-lognormal mixture 

distribution with

and with correlated random effects

(4.1)
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Note that  satisfies

and we use Newton-Raphson algorithm with two-dimensional Gaussian quadrature to 

compute Δij19,29. We then generate 500 datasets with N = 500 subjects using the set of 

parameter values given in Section 4.3. The two-part marginal model described in Section 3 

is then fitted with the marginal mean regression structures correctly specified, but assuming 

that the random effect structure in the binary part only includes a random intercept from the 

bridge distribution. We also fit a two-part mixed model with correlated Normal random 

intercepts and with conditional mean structures for the fixed effects following the group by 

time design. To obtain the approximate marginal covariate effects in the binary part, we use 

the methods in Zeger et al.30, and multiply the conditional covariate effects by an 

attenuation factor 

4.2 Setup for conditional covariate effects

Similarly, for conditional covariate effects, we simulate data from a logistic-lognormal 

mixture distribution with

and with the random effects structure in (4.1).

Five hundred datasets with N = 500 subjects are generated for each set of parameter values 

given in Section 4.3. Again, the two-part marginal model described in Section 3 and a two-

part mixed model with correlated Normal random intercepts are fitted to the simulated data. 

The conditional mean structures for the fixed effects are both correctly specified and we 

focus on their estimated conditional covariate effects.

4.3 Simulation Results

Table 1 displays the Monte Carlo relative bias (100 × (θ* − θ0)/θ0, θ* is the estimate and θ0 

is the true value) for marginal and conditional covariate effects in both the binary and 

continuous parts of the two-part models as functions of the random intercept variance, , 

and random slope variance,  of the true random effect structure in the binary part. The 

true values of the parameters are set as follows: the true marginal covariate effects in the 

binary part are θ = (0.5, log 2, −1, 0.5)T; the true conditional covariate effects in the binary 

part are ; the true marginal/conditional covariate effects in the 

continuous part are β = (1, 0.5, −1, 0.5)T; the random intercept variance in the continuous 

part is ; the error variance in the continuous part is ; the correlation between 

random intercepts in the two parts is ρ0 = 0.5; the correlation between random slopes in the 

binary part and random intercepts in the continuous part is ρ1 = 0.5.
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The top part of Table 1 shows the relative bias of marginal and conditional covariate effects 

in the binary part. Similar to Heagerty and Kurland25, for both models, the (relative) bias in 

the estimated conditional interaction term between group and time, , in the binary part 

was found to be as large as 23 – 26% when the random intercept variance component, , 

was small relative to the random slope variance component, . Conversely, when  was 

large relative to , the bias of  reduced to 15 – 20%. The biases for other conditional 

covariate effects (i.e. the intercept, , and the main effects of time, , and group, ) were 

similar across a range of values for the random intercept and random slope variance 

components, and were found to be relatively small (less than 6%). The biases for all 

marginal covariate effects from our two-part marginal model were less than 5% for the range 

of values chosen for the variance components in the binary part. However, the biases for the 

corresponding approximate marginal parameter estimates associated with the original two-

part mixed model tended to be larger and were observed to be as large as 13% for the 

marginal group by time interaction effect.

As expected, the (relative) biases of marginal and conditional covariate effects from the 

continuous part for both our two-part marginal model and the original two-part mixed model 

(the bottom part of Table 1) were small (less than 3%) and similar because the true random 

effect structure of the continuous part included a random intercept only and this was 

correctly specified in the models.

Overall, our simple simulation study shows that incorrectly assuming only a random 

intercept in a random coefficient model may lead to moderate bias in the estimated 

conditional covariate effects in the binary part, while under the same situation it has much 

less impact on marginal covariate effect estimation using the two-part marginal model.

5 Investigation of the association between HLA alleles and HAQ

In this section we use the proposed model to investigate the relationship between the alleles 

that code for HLA antigens (identified in earlier work as associated with clinical damage) 

and physical functioning as measured by the HAQ. Recall that our objective is to examine 

the marginal effects of these alleles on physical functioning in a cohort of psoriatic arthritis 

patients from the Toronto Psoriatic Arthritis Clinic.

To both parts of our two-part marginal model for HAQ we initially included the main effects 

of HLA-B27, HLA-DR7, HLA-B39, HLA-DQw3 and HLA-B22, and the interaction of 

HLA-B27 with HLA-DR7, and the interaction of HLA-DQw3 with HLA-DR7. 

Additionally, we controlled for age at onset of PsA (standardized), sex and PsA disease 

duration in years (standardized). After model selection, we arrived at a final two-part 

marginal model which included in both parts the genetic markers that in either of the two 

parts had statistically significant main effects or interactions. In this final model, age at onset 

of PsA, sex and PsA disease duration were also controlled for in both parts. Thus Xij in (3.1) 

and  in (3.2) coincided. Because residual plots suggested a symmetric error distribution 

for the continuous part, no transformation was applied to the non-zero HAQ scores11. For 
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estimation, the SAS NLMIXED procedure was used with the maximum number of points in 

the adaptive Gaussian quadrature procedure for the quasi-Newton algorithm held at thirty-

one (default option in the SAS NLMIXED procedure). A sample SAS program for the final 

HAQ analysis is provided in the Supplementary Material.

The results for marginal effects of genetic markers are given in Table 2. Note that the 

conditional estimates associated with the binary part of the underlying two-part mixed 

model, from which our two-part marginal model is derived, are also shown in this table. 

These conditional effect estimates are obtained by inflating the corresponding marginal 

covariate effects in the binary part by the reciprocal of ϕ = 0.4861 (95% CI: 0.4256–0.5465). 

The corresponding standard errors are calculated using the delta method.

From Table 2 we observe that the presence of HLA-B27 significantly increases both the 

odds of the presence of functional disability (p = 0.0324) and the actual level of physical 

functioning given that one has functional disability (p = 0.0294). The (marginal) odds ratio 

associated with HLA-B27 is 1.605 (95% CI: 1.041–2.476) and the population-averaged 

difference in the mean (non-zero) HAQ scores between PsA patients with HLA-B27 present 

compared to PsA patients with HLA-B27 absent, but all else the same, is 0.1652 (95% CI: 

0.0166–0.3138). Furthermore, there is statistically significant evidence (p = 0.0358) for an 

interaction effect between HLA-DQw3 and HLA-DR7 on the probability of having 

functional disability, with an apparent detrimental effect of having HLA-DQw3 present 

(compared to absent) whilst in the presence of HLA-DR7. There are no statistically 

significant effects of HLA-DQw3, HLA-DR7 or their interaction on the level of physical 

functioning once functional disability occurs.

The estimate of ρ is 0.9801 and in the context of this HAQ analysis, ρ can be interpreted as 

the presence of disability at one occasion being strongly positively related to the level of 

disability at that and other occasions. Note also that since the estimated correlation between 

the random intercepts in the underlying two-part mixed model is close to one, this suggests 

that there might be a single unmeasured latent process which influences the two processes of 

the HAQ data, corresponding to perfectly correlated random intercepts11. In various 

analyses of the PsA HAQ data we found that the estimates of the correlation parameter ρ 

were usually positive and close to one. Since the two-part model described is essentially for 

a single response process, it is not surprising to observe high correlation between the random 

effects for the two parts of the longitudinal semicontinuous data. In practice, the estimates of 

the correlation parameter can be anywhere in the range (−1, 1) as evidenced in other 

contexts5,6.

6 Conclusion

In this article we have proposed a likelihood-based two-part marginal model for longitudinal 

semi-continuous data. Building upon the original two-part mixed models of Olsen and 

Schafer4, we specified the bridge distribution in Wang and Louis13 for the random intercept 

in the binary part and a Normal distribution for the random intercept in the continuous part, 

where the two random intercepts were allowed to be correlated. Under this specification, the 

marginal and conditional expectations in both the binary and continuous parts had the 
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logistic and linear forms, respectively. Thus this allowed us to obtain the marginal covariates 

effects directly through the model, with the benefit of preserving the straightforward 

interpretations of covariate effects in terms of odds ratios and mean differences. Our work 

here is in a similar spirit to that of Lin et al.14 on clustered mixed-type bivariate responses.

Some of the benefits of our two-part marginal model over those presented by Hall and 

Zhang7 are its easy implementation in standard statistical software packages such as SAS 

and it being readily extendable to more complicated data structures such as semicontinuous 

data with additional artificial zeros due to left-censoring5. Moreover, as our two-part 

marginal model is fully likelihood-based, all the advantages that this brings are present. For 

example, the ability to construct likelihood ratio tests and deal with unbalanced longitudinal 

data that result either by design or due to MAR. These advantages are not all available for 

other two-part marginal models based on GEE methodology.

For the HAQ data used in Section 5, we also fit the original two-part mixed model (with 

Normal random intercepts in both parts)4–6,11 and the conditional estimates and standard 

errors obtained are similar to those obtained in Table 2 (results not shown). The estimate of 

the variance component corresponding to the random intercept in this model is found to be 

smaller than the estimate obtained for  in the bridge distribution. This is because the 

bridge distribution is more peaked than the Normal distribution when they have equal 

variances13. Despite this difference in the variance component estimates between the two 

models, if the scientific questions of interest were targeted at the subject-specific level then 

the conclusions arrived at from both models would be the same as long as the random effects 

and mean structures are correctly specified. However, if the random effect structures are 

misspecified, for example, if we assume a random intercept only in the binary part of the 

model when both a random intercept and random slope should be included, then this may 

lead to bias in the estimated conditional covariate effects in the binary part, while having a 

lesser impact on the corresponding estimated marginal effects in the binary part. These 

findings have been verified through the simulation study in Section 4 and are supported by 

the work of Heagerty and Kurland25 on generalized linear mixed models. Thus in practice 

when there is some evidence to suggest that a simple random intercept structure for the 

binary part of the underlying two-part mixed model may be incorrect, if interest is focused 

on the marginal effects of the covariates in this model, rather than the conditional effects, 

then there will be minimal impact of this misspecification on estimation and interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Histogram and kernel density estimates (dark line) for the HAQ data in Section 1
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Table 1:

Monte Carlo relative bias, 100 × (θ* − θ0)/θ0 (θ* is the estimate and θ0 is the true value), for the marginal and 

conditional covariate effects in the simulation study.

two-part marginal model analysis two-part mixed model analysis

binary part binary part

simulated marginal effect θ0
M θ1

M θ2
M θ3

M θ0
M θ1

M θ2
M θ3

M

σu1
2 = 1 σu0

2 = 1

σu0
2 = 3

  1.5 −2.8 1.3 1.8 6.4 1.6 5.1   6.6

−0.2 −2.1 1.0 4.8 7.0 3.4 7.4 13.2

simulated conditional effect θ0
C θ1

C θ2
C θ3

C θ0
C θ1

C θ2
C θ3

C

σu1
2 = 1 σu0

2 = 1

σu0
2 = 3

−1.0 0.0 −4.6 −25.8   0.5   0.7 −3.7 −22.7

−3.3 1.6 −5.8 −19.8 −1.0 −0.1 −4.4 −15.4

continuous part continuous part

simulated marginal effect β0
M β1

M β2
M β3

M β0
M β1

M β2
M β3

M

σu1
2 = 1 σu0

2 = 1

σu0
2 = 3

−1.5 1.6 −1.8 −2.4 −1.0 1.4 −1.7 −1.9

−1.3 1.5 −1.3 −1.4 −1.0 1.6 −1.3 −1.4

simulated conditional effect β0
C β1

C β2
C β3

C β0
C β1

C β2
C β3

C

σu1
2 = 1 σu0

2 = 1

σu0
2 = 3

−1.6 0.3 −1.6 −1.6 −0.9 0.6 −1.4 −1.7

−1.1 0.9 −1.0 −0.6 −0.9 1.0 −1.0 −0.6
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