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Abstract. We consider the motion of a particle in a weak mean zero random 

force field F, which depends on the position, x(t), and the velocity, v(t) = 2(0. 
The equation of motion is 2(0  = ef(x( t ) ,  v(t), 0~), where x( ')  and v(-) take values 

in R d, d > 3, and co ranges over some probability space. We show, under 

suitable mixing and moment conditions on F, that as e--+ 0, v~( t ) -  v(t/e 2) 
converges weakly to a diffusion Markov process v(t), and e2x~(t) converges 

weakly to S v(s)ds + x, where x = lim e2x~(0). 
0 

1. Introduction 

For  simplicity we do not discuss the general situation in this section, but restrict 

ourselves to force fields which depend on position only. 

Let F(x) ,x~g~ a, be a random vector field, a random force field, which 

is stationary and has mean zero. Let x(t) be the coordinate of a particle of unit 

mass moving through this force field. The equation of motion is 

Y = F(x) .  (1.1) 

with given initial position and velocity. Suppose that the force is weak and weakly 

correlated for points that are far apart. Then one expects that after a long time 

the velocity 2 will behave like a diffusion Markov process and the position x 

like the integral of this diffusion process. 

To be more specific, suppose that the root mean square of the force field F 

is proportional to e so that we may replace (1.1) by 

2 = ~F(x) (1.2) 

in which F(x)  is of order one. Rescaling of time t into t/e 2 and putting 2(tie 2) = 
v~(t), x(t/e 2) = x~(t) leads from (1.1) to the system. 

dx~(t) 1 
dt -- ~2 v~(t) 

dye(t) _ 1 F(x~(t) ) (1.3) 

dt g 
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It is proved in the following sections that under suitable conditions on F, v ~ conver- 

ges weakly as e-+ 0 to a diflhsion Markov process v(t) whose generator is given 
t 

explicitly. Moreover, g2x~(t) converges weakly to ~ v(s)ds + x, where x = lim e2x~(0), 
0 

as e-~ 0. 

The Eq. (1.2) describes for instance the motion of a charged particle in 

an electromagnetic field, and several authors have obtained formulas for the 

limit process by perturbation methods or similar procedures [1 5]. We now 

give such a formal derivation of the relevant results for (1.3). We note that the 

method used in [6] for the much simpler problem than (1.3) 

dx~(t) 1 1 
dt a2 v +-F(x~(t))'e 

does not work well in the present situation. 

Letf(v) be a bounded and smooth function on R d and let u~(t, x, v) =f(v~(t ;x, v)) 
where x~(t;x, v), v~(t;x, v) is the solution of (1.3) with M(0) = x, v~(0) = v. As a 

function of t, x and v, u ~ satisfies (the adjoint) Liouville equation 

Ou t 1 ~u ~ 1 0u ~ 
& -  2V.Tx+~F(x).Tv, t>0, 

u~(0, x, v) =f(v) ,  (1.4) 

Here c?/c~x and c~/c~v denote the x and v gradient operators and • stands for dot 

product in R e. We now attempt to solve (1.4) by a formal series expansion u~= 

u o + 8u 1 + e2u 2 + . . . .  Inserting this into (1.4) and collecting terms leads to the 

equations 

I) ~uO 
~ x  = o (1.5) 

V-~x~ + F(x)-~v° = 0 (1.6) 

V'~x + F(x) Ou 1 &o 
~?v ~ = 0, et. (1.7) 

From (1.5) we conclude that u o = Uo(t, v) and Uo(0, v) =f (v)  (to satisfy (1.4)), but 

u o is otherwise undetermined at this stage. We consider (1.6) and note that we 

can write the random function u 1 in the form 

U l ( t  , X, /)) = )~(X, V) ' (~  (1.8) 

where )~(x, v) satisfies 

OZ 
V'~x + F(x) = 0. (1.9) 

o0 

One may write formally Z(x, v) = 5 F(x + vt)dt but of course this expression does 
0 
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not make sense. We retain it anyway with the understanding that some conver- 

gence fac t ° rhasbeen in t r °duced ( l i ke~e -~ tF(x+v t )d t )  " o  

Now we use this in (1.7) and demand as usual that the expectation of 

F Out ~U0 t?v 0t be zero. This gives a diffusion equation that determines Uo(t, v). 

Specifically Euo(t, v) satisfies 

~Eu o 
O t - ~ E u ° '  t > 0 ,  uo(O,v)=f(v) (1.10) 

where ~ is given by 

= 2 j (v) (1.11) 
j , k  = 1 

with 

Ajk(V ) = ~ E{Fj(X)Fk(X + vt) }dr. (1.12) 
0 

When the correlations in the force field die out rapidly enough, the diffusion 

coefficients Ajk(v ) are well defined if v ~ 0 but they are necessarily singular at 

v = 0. (Note that S is not always self-adjoint if F depends on v as well; see (2.3) 

and (2.4) below.) 

The problem then is to show that v~(t) converges weakly to the diffusion 

generated by S of (1.11) under some suitable hypotheses. The theorem of the 

next section gives such Conditions for convergence. It is discussed further there. 

Some specific examples are given in Sect. 4. 

It is of interest to point out some special cases of (t.11) and (1.12) here. 

Let 

gjk(X ) = E{Fj(x + Y)Fk(Y)}, j, k = 1, 2, ... ,d, (1.13) 

be the covariance of the force field F. It is assumed that it decays rapidly with x; 

in fact much stronger asymptotic independence assumptions are introduced 

in the next section. Let us assume also that the symmetry condition 

Rjk(X) = Rjk ( -- x) (1.14) 

holds. Then (1.12) may be written in the form 

Ajk(V ) = ajk(V ) =- ~ Rjk(Vt)dt. (1.15) 

If we introduce the power spectral density Rjk(t), then 

Rjk(X) = ~ eU'XRjk(t)dt, (1.16) 
Na 
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and (1.15) becomes 

ajk(V) = ~ ~ 6(l'v)Rjk(1)dl (1.17) 
Nd 

where 5(c0 is the delta function with unit mass at zero. The expression (1.17) for 

the diffusion coefficients is useful when F(x) is the gradient of a potential V(x). 
If we set 

R(x - y) -- E{ V(x)V(y)} (1.18) 

then (1.17) yields 

ajk(V ) = ~ ~ 5(l'v)ljlkR(1)dl 
Na 

From this we see that in the potential case the limiting diffusion operator is 

degenerate. The limit diffusion process is concentrated on the sphere I l--I ol 
where v o 4= 0 is the starting velocity. (Since a(v)'v = 0 and L(v 2) = 0") (2.6) is 

automatic when I vl is constant, but unfortunately, our theorem as stated does 

not allow aij(v ) to become singular, and hence does not apply without modification 

to the above case. One such modification of the theorem is given in Remark 5 of 

Section 4. The conclusion of the theorem remains valid if (4.2) and (4.3) hold, 

even when a(') becomes singular. This comment also applies to other cases where 

Iv(t)[ remains constant (e.g. when F(x, v) is always perpendicular to v, such as 

when F(x, v) is of the form F(x, v) = v/x F(x)). 

2. Statement of Theorem 

Throughout  (f2, ~ ,  ~ )  denotes our basic probability space. On this space F(x, v, co): 

N d × R d × O ~ ~d is a random field with the following properties: 

(I) F is jointly measurable with respect to ~ × ~ × ~ where ~ is the Borel field 

in Rd. As a function of(x, v), F( ' ,  co) is almost surely in C2(N d × Nd). 

(II) F is strictly stationary in x, i.e. for any xi, vi~N d the joint distribution of 

F(x 1 + h, vl) . . . . .  F(x k + h, Vk) is independent of he N d. Equivalently, the process 

{F(x,',cO)}x~d is stationary in x. In addition 

E{F(x , v ) }=O,  x , v e N  d. (2.1) 

(III) For A c R d, set 

fq a = a{F(x, v, " ) :xeA,  v e n  d} 

= sigma field generated by F(x, v," ), x e A, v e iR a. 

For A1, A z ~ N d define 

c~(A 1,A2) = sup [P(B)- P(B[A)[. 
Aef~ A1,Be~ A 2 

Also, set 

fi(p) = sup {e(A 1, AE):A 1 , A 2 e N  with d(A1, A2) > p}. 
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Here 

d(A1, A2) = inf{ Ix 1 - x 2 l" x~eA~}. 

Assume that 

{fi(t)}l/24dt < oo. (2.2) 
0 

Note that  (2.2) is in a sense a measure of the rate at which F(x 1 , ") and F(x 2, -) 
become independent when Ix 2 - Xll --, 0o. 

(IV) For  some constant  C o and all VoeR e, 0 __< [p] < 2 and r = 16d + 64 

E t sup [D~F(x,v)l ~} < C  o. 
t. Ixi< l , l v - v o I <  1 

As usual fl stands here for a multi-index and D a for the corresponding partial 

derivative. Thus DnF(x, v) can be any mixed derivative of F. 

(V) Let 

a~j(v) = ~ E{Fi(0, v)F;(tv, v)}dt, (2.3) 

bi(v ) = ~ ~ E Fj(O, v) Fi(tv, v) dt 
j 0 k. j 

= Z I tE Fj(O, v) e,(tv, v) 
j O l _  L 

Here (O/Ovj)F(tv, v)= [(O/~vj)F(x, v)]x=t . The integrals in (2.3) and (2.4) can be 

shown to be absolutely convergent on the set {v @ 0} and to be bounded as ]vl ~ Go 

by means of (III) and (IV) (use Theorem 17.23 of [7] or Lemma 20.1 of [8]). 

Assume that  aij(v ) is strictly positive definite on {v 4; 0} and that  aij (') and bi(" ) 

are C °° functions on {v 4; 0}. 

For  a n y f E  C2(~ e) define 

1 02 0f  
Sf (v )  = ~ ~ a i j ( v ) ; ~ - f ( v )  + ~b,(v) v 4; O. 

Z i , j  Ul)i(Tl)j i ~ U i  ' 

(2.5) 

Let V~ be a diffusion with g e n e r a t o r f  and starting-point v o 4; 0 (see Remark 1 

below). Assume finally that  for each v o 4; 0 and T < oo 

lim PV° l I V~ l < l for some t < T } = O. 
M ~ c ~  t. = M = 

(2.6) 
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Last, let {:(t),y~(t)} = {v~(t, co), y~(t, co)} be the solution of the equations 
dy ~ 1 
dt - ~ : ( t )  

dv ~ _ t F(y~(t) ' v~(t)) 
dt e 

:(0) = v o @ 0, y~(0) = Yo" (2.7) 

These solutions exist and are unique with probability one by the argument in 

step (ii) of [6]. Denote by Q~ the probability measure on C = C( [0, Qo); ~a) induced 

by {v~(t)}t>__o . 

Theorem. I f  d >3,  v 0 ¢ 0  and F(') satisfies conditions (I) (V) above, then Q~ 

converges weakly on C as ~ $0 to the measure Q corresponding to the diffusion 

process in R d with generator L~ and initial point v o (i.e., Q(v(O) = Vo) = 1). 

Corollary. Under the conditions of  the theorem the measure R ~ induced by 
(V~('),eZy~(')) on C([0, oO);~d x [R d) converges weakly to the unique measure R 

which is concentrated on the set 

{ ' } X,  Y:  Yi(t) = J Xi(a)da, X(O) = v o 
0 

and whose marginal distribution o f  X ( . )  coincides with Q. 

(Here X l ( t ) , . . . , X a ( t ) , Y i ( t ) , . . . , Y a ( t  ) are the coordinate functions on 
C( [0, oo); R a x Re). 

Remark 1. The diffusion V t on Ra\{0} can be constructed by "patching together" 

local diffusions. The local diffusions can be obtained as solutions of suitable Ito 

equations (see [9], Ch. 4.3) or by semigroup theory (see [10]). It is also possible 

to define the diffusion V~ ") which has generator LP on 

and is killed at time z, = inf{t : v{n)~c,}.  For m > n, l:~ m) up until time z is equiva- 

lent to V{ ") ([11], Corollary in Chap. 5.24), and V t can be viewed as a limit of the 
v:n). 

Remark 2. In our most important examples (see Remark 3) the coefficients 

aij(v ) and vi(v ) are singular at the origin so that one should not replace (V) by the 

simpler condition aij('), bi(')e C~(Rd). 

In Remark 6, Sect. 4, we shall discuss a replacement for the condition 

d > 3 and aij(.), b~(') e C~°(Re\ {0} ). We shall also give some sufficient conditions 

for (2.6). For the definition of the spaces C([0, oo);Rd), O([0, oo);R e) and weak 

convergence on these spaces see [12] and [13]. 

Remark 3. Note that under R the process {X(t), Y(t)}te o of the corollary is a 

singular diffusion; the Y-part has zero diffusion coefficients. By itself the Y-part 

is not Markovian, let alone a diffusion. 
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3. P r o o f  o f  Theorem 

The basic outline of the proofis the same as for Theorem 3 of [6]. We first introduce 

a truncated process (in step (i)). The truncation will be removed only in the last 

step. The second step proves the basic mixing lemma which is used in step (iii) 

to show tightness of the family of measures (indexed by e) induced by the truncated 

processes. The remaining steps identify the limit process as the solution of a 

certain martingle problem. 

Step (i) 

In contrast to [6] we need here not one, but several cutoff functions. These will 

depend on parameters t/, 3, M, N, which remain fixed until step (v). We shall 

not exhibit these parameters explicitly in the notation before step (v); it is under- 

stood, though, that all constants C below may depend on these parameters, the 

dimension, d, and the length of the time interval, T, but not on e. 
As will become apparent it is best to define the cutoff functions as nonanticipa- 

tory functionals which depend in addition on a variable which ranges over [R d. 

We begin with the velocity cutoff. Let D = D([0, co); ~d) and r /> 0, and for X (-)~ D 

set 

I X(k~l) if X(k~) @ 0 
xk= IX(k )l 

(1, 0, . . . ,0)  if X(ktl) = O. 

In addition let ~0 : Rd x S d- I x S d- ~ --* [0, 1] be a C ~° function (S d- ~ is the unit 

ball in Rd) such that 

1 
tPo(U, Xl,Xz)=O if l u l < f ~  or [ul>2M 

1 1 
or (u,x 0 < ~  or (u'x2)=<2N" (3.1) 

1 
¢o(U,X~,X2)=l if l~<tu[<M and 

1 1 
(u, xl)> ~ and (u'x2)>--=N" (3.2) 

Throughout we take M so large that 

1 
-<I  I <M- M = v o  = 

Now define ~u : [0, oo ) x D x Ne by 

~ Co(W, Xo, Xo) 
~'(t, x,  w) = ( G(w, Xk_ ,,xk) 

if 0 < t  <r/  

if krl <=t <(k + l)rl, k ~ l 
(3.3) 
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To prevent the S path at any given time to come too close to a value taken 

on before another cutoff function is needed. It will be seen in step (ii) how this 

guarantees a certain amount of independence between the present and the "distant 

past" for the truncated process, and thereby allows us to prove the mixing lemma. 

We construct a function q5 k :D x Nd ~ [0, 1] which is smooth in its second argu- 

ment, uniformly in the first argument and k. The principal requirement for ~k 

i fk > 1 is that for fixed X( . )~D,  

Z u ~bk(X, z) = 0 if inf -- ~X(t)dt 
O<u<(k- 1)~ 0 

inf z ~k(X, Z) = 1 if -- ~X(t)dt 
O<u<(k- 1)~ 0 

< 6 ,  

> 26. (3.4) 

To construct such a function we take 

where Z is continuous, 0 < Z __< 1 and 

)~(y) = { 0 if lYl =< ¼6 

1 if lYl > 76. 

Also we take for A(') a nonnegative function C®(N d) with support in {]z I < 6/4} 

and such that 

S A( lez = 1. 
Nd 

Then 

~k(X, z) = ~ A(z - x)zk(X, x)dx (3.5) 
Na 

satisfies (3.4). Finally we define ¢ = q~ : [0, o0) x D x Ne by 

~b(t, X, z) - 1 if 0 < t < q, 

~b(t,X,z) = Ck(X,~z2(z -- YO)) i f k t /<  t < (k + 1)r/,k > 1. (3.6) 

Lastly, we set 

G(t, X,  z, w) = G f l ,  X,  z, w) = T(t, X ,  w)Cb f l ,  X ,  z)F(z, w) (3.7) 

and we define our truncated process u(-), z(') as the solution of 

dz 1 
Z = J w(t) 

dw 1 
- -  G( t ,  w('), z(t) ,  w ( t ) )  

dt e 

w(O) = v o, z(O) = Yo- (3.8) 
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As in [-6] this means that z and w are continuous functions which satisfy 

z(t) = Yo + ~ J w(~)da, 
o 

1 t 
w(t) = v o + - ~ G(a, w('), z(a), w(a))da. 

g o 

(3.9) 

Note that G is continuously differentiable in its last two arguments and for 

ktl < t < (k + 1)~/depends on w(') only through the values ofw(u) on u < kr#. In parti- 

cular, for t < q, G does not depend on its second argument and (3.9) has w.p. 1 

a unique solution on t < rl by the argument of step (ii) of [6]. Once a solution has 

been found for t < kt/, the dependence of G on its second argument is determined 

up to time (k + 1)~7 and by step (ii) of [6] one then obtains w.p. 1 a unique solution 

for t < (k + 1)17. 

Of course w(') and z(') depend on ~. When necessary we shall indicate this 

by writing w*(t) and z"(t). In particular we denote by R ~ the measure induced on 

C([0, c~);~d) or D = D([0, oo);[R a) by vet('). Towards the end we shall write 

R"( • ;M, N, ~/, 5) to indicate the dependence of R = on M, N, r/, 6. For brevity we 

shall write 

G(t, w, z) = G(t, w(" ), w, z) 

for w, z e R  e and w(') the solution of (3.8). Similarly 

~(t, w) = ~(t, w(.), w), @(t, z) = ~(t, w(.), z). 

Before turning to the proof of tightness of the family of measures 

{R~( ):0 < e < 1} we need some simple observations. First, G(t,w,z)  is constant 

in t over each of the intervals [kr/, (k + 1)t#). Second, for every T there exists a 

constant C 1 = CI(T, M,  r#, 3) such that 

(3.10) 

for all X e D ,  w, z e N  d, 0 < t -< T, 0 < e < 1 and [fi[ < 1. Formula (3.:10) is obvious 

for 7 s from (3.3); for ~b it follows from (3.5) and (3.6). Indeed, for ks7 < t < (k + 1)t#, 

( ~ \n X,  z) = ~2t~1 - x)zk(X, x)dx 

~d 

D/ Lastly, for any z of the form z(~) + w(~), 4~(t, z) does not depend explicitly 

on e, but only through {w(u):0 -<u < 3  v( (k  - l)t/)+}, when ktl < t  < ( k +  t)1. 
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Indeed for such t, the above z and u < ((k - 1)r/) + 

11 

[ w(t)dt ~2{z(~)+~w(~)-yo}-; 

= ~ w(,~)d,~ + (a - Ow(O. 
u 

Finally, we have the following simple 

Lemma 1. 

1 
< ] w ( t ) [ < 2 M  f o r a l l l  >O. 

2M 

1 1 
(w(t), w k_ 1) > ~ and (w(t), wk) > 

= 2N 

for  ktl < t < (k + 1)t/, 

(3.11) 

(3.12) 

w(jn) 
where wj -[w(jt/)l, (w_ 1 = Wo). 

2M 
z(s)l s 7 I t -  sl, 

P { t w(t) -- w(s) l > t -- s I t -  9/8 

t ,s > 0 ;  (3.13) 

for  some 0 < s, t < T ;  < C2~ s 
= = ) = (3.14) 

Proof. Formulas  (3.11) and (3.12) are easily proved by induction on k. If they 

hold at t = kt/, then they must hold up till (k + 1)q because 'P(t, w(t)) vanishes 

as soon as (3.11) or (3.12) fails. Formula  (3.13) is immediate from (3.9) and (3.11). 

Lastly, for (3.14) observe that  

I ~ wOO)d). - ! G 0 .  z@,  l w(t) - w(s) l = t 

< It - s { sup IF(z@, w@) I 

so that  by (3.11), (3.13) 

< P{ tw(t) - w(s) t > It - s I t -  9/s for some 0 < s, t < T} 

_<P{ sup IF(z().), w(2))[ > t -1/8} 

I,q<_--T 

=<p~ sup If(z)l __> ~-1/8~ 
([zl < ( 2 M / e 2 ) T  + [yol,lw[ < 2M J 

(3.15) 

Formula  (3.14) now follows from the fact that  the set {(z, w): ]z ] < (2M/~2) T + [Yo l, 
]w[ < 2 M }  can be covered by at most  C3((T + 1)/e2) d cubes of edge-length one, 
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and for any z0, w o 

P~ sup IF(z,w)] >e--1/s~ 
(Iz -zOI =< 1,1w- wOl < 1 ] 

sup IV(z, wl I =< 
(Iz-zol < i,lw-wol _-< i 

(by (II) and (IV)). Thus, the left-hand side of (3.14) is at most 

/ T  + 1~ d r's 
Co=Coq(r+ 

-= CoC3(T + 1)% s. (3.16) 

Step (ii) 

This is devoted to the fundamental mixing Lemma 4 and some of its consequences. 

The preparatory Lemma 3 gives a bound for expectations along the path of z 

which will be used frequently. Both lemmas rely on the possibility of "predicting" 

z(a) by the linear function z(~)+ ( ( a -  ~)/~2)w(~), which depends only on the 

path up until time 3. A crucial role is also played by the measure theoretical 

Lemma 2 which follows directly from the definition of the mixing coefficient ft. 

For convenience we extend the definition of/3 by setting 

f l(p)=2 for p < O  

We also replace fl(') by its left continuous modification. This can always be done 

without invalidating (III) because/3(-) is nonincreasing. We need a further conven- 

tion. For 0=(0 ' ,  O")eRax Ra, Zo F will denote the random field whose value at 

(z, w) is given by 

roF(z, w) = F(z + 0', w + 0") 

If h is a function of the F(z,w) which depends only on {F(z,u):zeA, w~R d} and 

such that h(F) is ~a measurable for some A c R a, then we see immediately that 

h(%F) is fqa+0, measurable. In the next lemma we shall take 0 itself also random. 

Lastly, we set 

~ t  = a{z(u), w(u), V(z(u), w(u)):u <= t} (3.17) 

Lemma 2. Let X be an ~'~t measurable random variable with E{IXI} < oo and 
let gi = (g'i, gi') be R e x R ~ valued random variables, measurable with respect to 
~ t  and such that 

min {Ig; - z(u)l:u < t} >= p (3.18) 

a.e. on the set {X ¢ 0}. Lastly, let h i be Borel functions of {F(z,w):zeAi, w e r  e} 
for Borel sets A i c Ne with 

O~Ai, diameter A i <= tc 

and 

(3.19) 

] hi(F)] < A everywhere. (3.20) 
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For O i ~  d x R e set 

u~(o) = E{h~%F)} ,  V(O 1, 02) = E{hl(Oa)h2(02) }. 

Then  

IE{Xhl%lF) } - E { X U a ( g l )  } I < 2 A N p  - ~)E{ IX I}, (3.21) 

and 

I E{Xhl(zolF)h2(zo2F)}  - E { X V ( o a ,  gz)} l  < 2A2fi(P -  )E{IXl >. (3.221 

I f  (3.181 is replaced by 

min{lg'  2 - z (u )  I " u < t} > p and 19~ - 9'11> p (3.231 

a.e. on the set { X  =/= 0}, then 

I E{Xh~(zgF)h2(zo2F)}  - E { X h a ( v o F ) U 2 ( g 2 ) }  ] 

< 2A2fl(p - 2to)E{ IXI }. (3.24) 

P r o o f  We only prove (3.21). First we change gl ,  92 on the set X = 0 such that 

(3.18) holds everywhere. Since {X = 0} s ~ t  we can do this in such a way that the 

modified 9i are still ~v t measurable. Moreover this modification does not affect 

(3.21). We may also assume p - ~c > 0 since we took fl(p) = 2 for p < 0. Now take 

0 < z < (p - ~:)/2 and let C a , C2,... be a sequence of disjoint cubes whose union 

is all of Nd and such that diameter (C~) < v. Let 

D i = {z :d(z, Ci) > p - z} 

E i = {z:d(z,  Ci) > p - 2r} 

I i = indicator function of {g'l ~Ci}, 

and last, 

R = {z(u):u ~ t}. 

R is the (random) range of z(') up until time t, and it follows from (3.18) that if 

~'1 ~ Ci, then R must be contained in D c Consequently 

E{Xha( z  o f )  } = Z E{Xh l ( ro  F)I~} = Z E{Xha(zo  F)I  ~ ;R ~ D~}. (3.25) 
i i 

Now E~ is an open neighborhood of D~, and we proceed to show that for any 

~ ,  measurable random variable Y one has 

Y I [ R  = Di] is ~ ,  measurable. (3.26) 

To verify (3.26) it suffices to consider only Y's of the form 

1 

r = H Kj(z%), w%), F(z%), w%))) 
j = l  

with 0 <- uj <<- t and Kj : R a x Rd x Nd ~ Nd bounded Borel functions (e.g. by [14], 
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Theorem 1.20). Now let ( : Na ~ [0, 1] be a smooth function such that 

if d(z, C~) > 0 - - -  
((z) = = 2 

if zf~Ei, 

and set 

G*(t, w(" ), z, w) = G(t, w(" ), z, w)~(z). 

Also, let z*('), w*(') be the solution of 

1 ¢ 
z*(t) = Yo + ~ [w*(~)dG 

g o 

w*(t) = v o + 2 ~ G*(a, w*(" ), z*(~), w*(a) )da (3.27) 
~o 

One can obtain z*, w* by the usual iteration procedure, i.e. z*, u* = lira (z ("), u(")), 
n - * o o  

where z(°)(t) - Yo, w(°)(t) - Vo and 

t 

1 [wl.~(~)d~, z("+ 1)(t) = Y0 + ~-  
o 

w ("+ ~)(t) = v o + 1_ ~ 6*(a,  w(")('), z(")((r), w(")(cr))da. (3.28) 
~o 

For fixed z, w and t < q, G*(t, w( ') ,  z, w) is clearly N~, measurable and hence by 

(3.28) so are z(~)(t), u(1)(t). It then follows by induction on n from (3.28) that (z(")(t), 
w(")(t)) and also z*(t), u*(t) are (¢e, measurable for all t < t/. This remains valid 

for t = q by continuity and the argument can now be repeated for r /<  t < 2t/etc. 

It follows that (z*(t), u*(t)) is ~ measurable for all t. However, it is also clear 

that z*(t), u*(t) coincides with z(t), u(t) for all t < S, where S = inf{v > O:d(z(v), Ci) > 
3 i p - 72~. In particular this holds until the first time z* leaves D~ and 

Y I [ R  c D J  = Y * I [ R *  c D,] (3.29) 

where Y* and R* are defined by replacing z(-), w(-) by z*(-), w*(-) in the definition 

of Y and R. Since the right-hand side of (3.29) is ~E, measurable, this implies 

(3.26). 

Now set 

F i = {z :d(z, Ci) <= to} 

and ~ = the collection of Borel sets of C~ × ~d Then the map from C~ × ~d × 

into R given by (0, co)~ hl(zoF ) is ~i  x ~v~ measurable, because for fixed 0 = 

(0', O")~C i × R d, O' + A i ~ F i and hence hl(zoF ) is ffe~ measurable in co. Moreover, 

for fixed co, zoF is continuous in 0. We now combine this with the fact that for 

any Borel set B ~ C i × ~d, X i i i [ g l ~ B ] i [  R ~ Di ] is aJe, measurable (by (3.26)) 

to conclude that 

X I i I [ R  ~ D i ]h l ( zoF)  is (~e~v~ measurable. (3.30) 
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In addition 

d(Ei, Fi) > d(Ci, El) - ~ > p - 2r - ~c, 

so that 

[ P ( A B ) -  P(A)P(B)[ <= P(A)fl(p - 2z - ~c) (3.31) 

whenever A¢~¢~,  BeqCF. Let Q be the probability measure on (¢E~,~, which is 

defined by Q ( A B ) =  P(A)P(B) whenever A~CE~,Be~qF. Q is well defined since 

~¢~,~v, is generated by such sets AB. We can then rephrase (3.31) as 

[ P ( A B ) -  Q(AB)]<= P(A)fl(p - 2z - ~c). (3.32) 

Now let Z be {¢~, measurable and F be ~,uF~ measurable. Following [8], p. 171 

we shall show that (3.32) implies 

I y Z F d P  - yZFdQI <= 2fl(p - 2z - r 0 sup I F I E { I Z I } .  (3.33) 

Indeed it suffices to prove (3.33) if Z and F are of the form 

Z = Z Z f l A k ,  F = ZTk, I IA, ,cB,  

with A k e f~E, and B~ e f#v," But for such Z and F, 

] S Z r d P -  ~zrde] 

<- Z izklP(Ak) Z [ 7k,t t[ P(B, [Ak) - P(B,) l 
k l 

E{[Z[}  sup IFI max ~ l n ( U t ] A  k) - n(Bz) ] 
k l 

=< 2~(p - 2~ - ~ t sup  I r l  E { I z l } .  

The last inequality is just (20.27) on p. 171 of [8]. 

We can apply (3.33) to 

z XI~I[R ~ D~], r = I~1[R ~ D~]h~(~ f) ,  

for which 

~. ZFdQ = E { X I [ R  ~ Pi]I  i Ui(gi) } . 

As a result (recall (3.20)) 

I E { X I i I [ R  ~ Di]hi(zoF)}  - E{XI~I[R ~ D~] Ui(g~)} I 

< 2fl(p - 2r - ~c)AE{IX[I~}. 

Taking into account (3.25) we obtain after summation over i 

[E{Xhi(zo F) } - E{XUi(91) } I <= 2Afl(p - 2z - ~)E{IXI}. 
Formula (3.21) follows by taking the limit as z 10, [] 

We define 

L(¢, a) = z(¢) + ~ T -  w(O, (3.34) 

r(s, ~, a) = sz(a) + (1 - s)L(~, a). (3.35) 
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Lemma 3. Let 

H(t, z, w) = DPG(t, z, w) or H = DPF(z, w) 

for some [ill < 2 and D ~ only involvin 9 derivatives with respect to z and w. Then Jor 
each fixed T, M there exists a constant C 4 such that for all 

0 <_o" _< T , ( a -  e3/2) + "~ ~ ~0",0 ~S  ~ 1 , 0 <  e =< 1. (3.36) 

one has 

E{ sup tH(a,r(s,¢,a),w)l s} <c~. (3.37) 

IwI < 2M 

Proof We only consider an H of the form 

H(t, z, w) = D e' ~(t, w)Da2fb(t, z)DP~F(z, w) 

where D e' involves only w-derivatives and D p2 only z derivatives. D¢G(t, z, w) is 

a finite sum of such terms, and the same estimates can be used if H = DaF(t, w). 
We shall also restrict ourselves to 

0 < s < t/A (4N) -8 A T -  16d(r(r-8-4a))-t (3.38) 

(r = 16d + 64 again), since (3.37) is immediate from (II) and (IV) for e bounded 

away from zero (and hence r(s,~,a) bounded above, on account of (3.tl) and 

(3.13)). 

Let 

K m  , (Da3F(z,w) if I Da~F(z, w) l < A 
tz, w) = ~0 if [Da~F(z, w)[ > A, (3.39) 

and 

HA(t, z, w) = D p~ ~(t, w)Da2eb(t, z)KA(z, w), 

FIA(t, z, w) = H(t, z, w) - HA(t, z, w). (3.40) 

We begin by estimating the error introduced by replacing H by H A in (3.37). 

Since D a~ ~P(t, w) and Da~(t,  z) are uniformly bounded in t < T, w, z~ ~a (cf. (3.10)) 

and 

2M 
Ir(s,¢,a)[ <--: a2 ~ + ]Yoi (cf. (3.11) and (3.13)), 

this error is 

E{ sup llyIA(a,r(s,~,a),w] 8} 
rwl_~2M 

< E{ sup IDP3F(r(s, ¢, ~r), w) - KA(r(s, ¢, ~), w} I s} 
Iwl=<2M 

<__ AS- 'E{  sup ID~3F(z, w)l' } 
[z[ =< 2M*- aa+ [Yol 

c A --< s t~-~ + 1 (by (IV)). 
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Next we shall replace r(s, 4, ~) by 

x(s, r, ~, ~) = sL(~, ~) + (1 - s)L(~ A ~, 0-) 

= s z(~) + - - U -  w(~) + (1 - s) z(~ A ~) -~ e 2 

where z will be chosen later in such a way that 

(0--I/) + < r < ~ < a  or ( a - 1 7 ) + _ < r < a - e  7/4. (3.41) 

We claim that 

P {  I r(s,  ~, (7) -- x(s,  "c, ~, o')1 ~ 1} "Q C 6 8 - d -  2r(o " - -  "c) 2r (3 .42)  

Indeed, by (3.9), (3.11) and (3.13), 

I z(0-) - L(r, 0-)1 = ~ ([w(2) - w(~) 

1 
< - ( ~  - ~)~ sup IF(z, w) l. (3.43) ~--~- ~ 3 

tzl < 2Me- 2T+ lYol 
[wl_-<2M 

Therefore, as in (3.15), (3.16) 

P{ I z(0-) - L(~, ~)1 --> 1} 

f sup IF(z, W)] ~ /;3(0" - -  "C)- 2 

--< P~ 1~l=<2M~-lr+tyol J k Iwl<2M 

C6 e -  2d-  3r(o. _ Z.)2r. (3.44) 

Similarly, for z < ~, 

e{Ic(¢ A ~,~)--g(¢, ~)l __> 1} 

C6 e - 2d - 3r(o. __ 27)2r. (3.45) 

For r > ~ the first member of(3.45) vanishes. This proves (3.42), since the left-hand 

side of (3.42) is bounded by the sum of (3.44) and (3.45). From (3.42) we deduce 

E{ sup IHX(~,r(s,~,0-),w)l 8} 
twl-_<2M 

_--< E yl < t,IM=<2M 

+ ABe{  f r(s, ¢, 0-) - x(s, ~, 4, 0-)1 ->-- 1} 

__< CTE~sup I Da~4~(0-, x(s, ~, ¢, 0-) + y)l 8 
(Irl  _-< 1 

sup l Ka(x(s, z, ~, 0-) + y, w) lS~ 
lyl_-< 1,lwl_-<2M J 

+ C 6 A S e -  2d- 3 r ( 0 -  - -  ,.c)2r. (3.46) 
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N o w  notice that  x(s, z, 4, a) is Y -measurable. If we further choose k such that  

k7 < c~ < (k + 1)7, then also sup D t~2 I~(a, x(s, z, 3, a) + Y) t is f f  -measurable be- 

It/_<- 1 
cause ( ( k -  1)7) + < v by (3.41). We shall now apply Lemma  2 to estimate the 

first te rm in the last member  of  (3.46). We choose t = -c, 

Jf = sup I OaO(a, x(s, t, ¢, a) + y) l s, 

lyl-_<l 
g i=x( s , z ,~ ,a ) ,  g'~=O, h~= sup [KA(y,w)] s (3.47) 

lyle 1,lwl<2M 

To  apply (3.21) we need a lower bound  for 

m i n { l x ( s , z , ~ , a ) -  z(u)l:u <_ ~} = p' A p", 

where 

p'= min{lx(s,'c, 4,a)- z(u)] :u < ( k  - 1)7}, 

p" = rain {1 x(s, z, 4, cO - z(u)l :(k - 1)7 _-< u < z}. 

By definition of  ¢, 

p , > 6  
= ~,~ - 1 on the set {X (= 0}, 

and we merely have to worry  about  p". Again by (3.9) 

~2 z(4 ^ ~) + ~2 w(4 /, ~) - z(u) 

= ~ wOOd2 + (a - ~ A z)w(4/x z). (3.48) 
U 

By (3.41), (3.36) and (3.38), ~/x z > ((k - 1)7) + so that  for ((k - 1)7) + < u < ¢ A z, 

the inner p roduc t  of  (3.48) with % _  ~ =  I w ( ( k -  1 )7 ) I -~w( (k -  1)7)(Iw(011-'w(0) 
if k = 0) is by virtue of (3.12) at least 

¢i~-}--d2 2@ 1 1 
. 2 N  + ( a  - 4 A z)  = (a  - u) ~ - ~  ~ ( a  - z) --'2N 

A fortiori, if z < 

inf z(~/x z) 4 
(k-  1)~=<u<~ 

1 

>= ~ N ~  (~ - +)" 
(3.49) 

The  same estimate holds if (3 A z) is replaced by z. Unfor tunate ly  (3.49) does 

not  necessarily hold for 4 < u. This can occur  for some (k - 1)7 _-< ~ < u < ~ if 

4 < z. In that  case we can only conclude that  the inner product  of (3.48) with 

wk-1 is no less than 

(~ - u)(w(4 /, ~), w ~ _  1) - w ( ~  A 

1 
> (a - u) ~-~ - (~r - ~) sup I w(2) - w(~)]. (3.50) 

~<2<~ 
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Consider the event (which belongs to ~ )  

sup [w(~,)-w(~)l < ( a -  ~)e-9/s}, (3.51) 

and denote its indicator function by J. Then on the set { J =p 0}, i.e., when the 

event (3.51) occurs, the right-hand side of (3.50) is at least 

1 (a - z) ~ 1  _ (o" - $ )2e-  9/8 => (0" - -  T) 

(by (3.36), (3.38), and (3.41)). Together with the above estimates this shows that 

p' A p" = ~ - 1  /x 4--~e2 (a - z) on the set {J~J 4: 0). 

We can now apply (3.21) with X = J~J and 91 and h 1 as in (3.47). We then obtain 

JE{2J sup JKA(x(s,z,~,a)+ y,w)t s} 
lYl < 1,twl -< 2M 

where 

g{ l~  I } _~ (g{ [~12} )1]2 ~ sup (e{ 1D°2~b(cr, z) I ~ 6) )1/2 ~ C8 .~ 09, 
z 

and (by (IV)) 

w 8 Ul(x(s'z'~'~r)'O)= EIUy, <= lsup, Iw,_-< 2u [KA(z + y' )! }~ =~(~,~,¢,¢) 

=< E~ sup lO'8~F(y, w)t s} =< C 9 . 
( l y l  < 1,1wl < 2 M  

Of course, by Schwarz' inequality we also have 

lg{J~(1-J)  sup y,w)l s} 
lyl 6 1,1wl -< 2M 

__< ( E { 3 7 2 } ) l / 2 ( p {  j = 0} ) I I2A8 

< CsC21/2ASe 4 (by (3.14) and (3.51)). 

Combining all these estimates, we finally obtain that the first term on the right- 

hand side of(3.46) is at most 

C9+CsAS[ f l (~ -3 )+  = ( ~ -  2)  + C~;2e* 1. (3.52) 

The left-hand side of (3.37) is therefore bounded by (3.52) plus 

C A s-~(  ~ )~ ~'(~ ~)~. 5 \-~ + 1 + C6ASe .  - 2 a -  - (3.53) 

It remains to choose A and z so that (3.52) and (3.53) are both bounded. We 
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may assume that 

f f  
- -  > 16N 
,~2 

since, if (3,54) fails, then by (3.13) 

[r(s, ~, a)l < 2M" 16N + lY01, 
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(3.54) 

and (3.37) is immediate from (IV). If(3.54) holds we choose 

(~V(~-8 ) - ,  

and 

• ( / = 2  \8a(2,(~- 8))-, t 

Note that the second expression in (3.55) is at most e < q (by virtue of (3.38) 

and (3.54)) so that the requirement z > (~r- r/) + of (3.4t) is satisfied by (3.55). 

If we take into account that a _-< T we immediately see that under (3.54), (3.52) 

plus (3.53) is bounded by 

C,of 1 (o-'~8a(~-8)-' ~ ~r- z +\~-f [,8(~-- 3) + /~ (~ -  2)]} (3.56, 
M 

Now observe that 

[3(u) = o(u-2% u ~ oe, whence/?(u) < Cll(u + 1) -z4 (3.57) 

by virtue of (2.2) and the fact that /3(-) is nonincreasing. Therefore (recall 

r = 16d + 64) also 

a \sd~,- s)-, / 6 \ 
- 

If the min in (3.55) equals or, then we take • = 0 (which always satisfies (3.41) 

since ~ > 0) and the remaining term in (3.56) becomes' 

/ ~r \ s a ( , -  8)-~ / o- 2 \ )<=c,, 
as above. If the min in (3.55) equals 

133/2 + d / ( r -  8 ) ( 7 -  8 d ( 2 r ( r  - 8)) - ~ ~ 133/2 + d / ( r  - 8) r - 8d(2r(~ - 8)) - i 

> ~7/4, (3.58) 

(use (3.38) for the last inequality) then a - z is given by the left-hand side of (3.58). 

In this case, 

\ezf{ °''~8a(~-s)-~fl( ~r-~\4N132 --2 ~ TSa(r-8)-t13-16d(r-8)-~fl 4Nel/4 

which (again by (3.57)) is uniformly bounded in e6(0, 1]. The proof is complete. 
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Corol lary  1. For 0 < z  < a  < T , p  < 8, ]fi] ~ 2 ,  

E IDeG(a, z(a), w(0-))[ p < C~, (3.59) 

and 

( { z(0-) 0---T 'P]\~/P --z)2 
E - z ( z ) - ~ y - w ( z )  ~ )  ~ C , ( a ~ 3  . (3.60) 

Proof  Formula (3.59) is immediate from (3.37) with s = 1, 4 = 0- (so that r(s, ¢, 0-) = 
z(0-)), and (3.11) and Jensen's inequality (3.60) now follows from Holder's inequality 
and 

1 ~ 
0- - z = :gSd2SdpG(p,z(p) ,  w(p)) 

(see (3.9)). 

Lemma 4. Let 

0~0-1,0"2~T, k~<=a 1 _-<0-2<(k+l)t/, 

0 ~ ~1' /~2' )~3 ~ 0-1' (0-2 -- /33/2) + ~- 42 ~ 0"2' 

(G 1 -- ~25/16)+ ~ ~1' ~2 ~ 0"1 (3.61) 

(notice a 1 in both sides of  the last inequality) and set 

v = max  {kr/, ),q, 22, 2a, {,, 42} 

Let ~ be an f f  z~ measurable random variable with E{ 2 < oo and 

H,(t ,  z, w) = D e' 7'(t, w)De2q~(t, z)De'F(z, w), 

and 

Hz(t, z, w) --- De'T(t ,  w)DeS~(t, z)DO'F(z, w), 

where all derivatives are with respect to w or z. Set 

V(z 1, wl ,z2, w2) = E{De~F(zl , wl)De'F(z  2, W2) }" 

Then (see (3.34)for L(' ," ) ) 

] E{ ~H , (a l ,  L(~l, el), w(2~) )U2(0-2, L(¢2,0-2), w()~2))} 

- E{~D e' T(~rl, w(21))DenO(a2, w(~2))OeZcI)(0-1 , L(4t ,  e l ) )  

"DeSqb(a2, L(42, a2))V(L(4a, %),  w(21), L(42, a2), w(22))} ] 

Also, with 

U(z 1 , w~) = E{D~F(z~,  Wl)}, 7~ = max {kr/, 21 , 23 , ~ )  

I E{~H~(0-1, L(~ ,  %), w(21)) } 

- E{~D p' T ( a , ,  w()h))De2q~(a 1 , L(41, a l ) )U(L(~I ,  a,), w(21))} j 
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112 E j2( ) 1/2( 1 I)+ 21  363) <c14(E{~ 2)) ~ ~ +~ ~ 

C14 is independent of~, 0.1, ~j, 2z and e. 

Proof. We only prove (3.62). Define K~, H~ a n d / t ~  as (3.39), (3.40) and set 

V A ( z I  ' W1 ' Z2 ' W2 ) = .4 A e{Kl(zl, w0K2(z~, w~) }. 

We first replace H~ by H~ and V by V A in the left-hand side of (3.62). The error 

introduced by the replacement is at most 

e{ I (~(0.~, L(~, 0.0, w(;~,))H~(0.~, L(~, 0.9, w(Zg)I } 
-[- E{ [ ~HA(0.1 , L(~l ,  0.1), W(~'1))/~2A(0.2 , L(~2,0.'2), w(~2))[ } 

+ C~E{I~II V(L(~I, 0.~), w()-0, L(~z, 0.z), w(22)) 

- VA(L(~I, 0.1), W(21), L(~2,0.2), W(2z))[ } (3.64) 

We estimate the first term of (3.64); it is easily seen that the same bound applies 

to the other terms. By using (3.10) and (3.37) twice we see that the first term in 

(3.64) is at most 

C~E'/Z{~2}E'/4{IH2(0.2, L(¢2,0-2), w(22)[4}" 

E~/4{ [DPW(L(¢~, 0.~), w()~)I4I[IDP~F(L(¢I, 0.~), w0h))[ > A]} 

C2C 4E1/2 {¢2 } A - 1E1/* { I Da3F(L( ~ I , 0. ~ ), w(2~)l s} 

< C2C34A - 1E1/2{~2}. 

From here on the proof is very similar to Lemma 3. We shall apply (3.22). 

We make the following choices: 

b = ~D ~ T(0.1, w0"I))D~"t/'(0.2, w(22)) 

D~(0 .1 ,  L(~ 1 , 0.1))Dt~'5~(0.2 , L(~ 2 , 0"2)), 

g, = (L(~, 0.i), w(2i)), 

h~ = DP~F(O, O)I[]D~F(O, 0)[ < A], h 2 = DP~F(O, O)I[ID~F(O,O)I <-_ A]. (3.65) 

Also we define 

p'~ = rain {[ L(~, 0.~) - z(u)] : 0 _< u -< (k - 1)t/}, 

Pi' = min {t L(~,, 0.,) - z(u) l : (k - 1)t/< u <- v), 

Ji = indicator function of~t~,=z=,~p ]w(2)-w(~i)[ ____(v - ¢i)e-9/8}. 

One easily checks that )~ is f f -measurable .  Indeed ~(a, w(2~)) depends only on 

w(~li) and w ( ( k -  1)q) and w(kq), and for the • factors we already checked the 

appropriate measurability just before (3.47). As in Lemma 3 

6 
p'~ > ~- on the set { D ~ ( a l ,  L(~i, 0.1)) @ 0}, 
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and similarly for P2- Also as in Lemma 3 (cf. (3A8)-(3.50)), on the set { Ji :/= 0}, 

1 
eZp', ' > (a, - v) ~ - (v - ~) sup I w(2) - w(~,)] 

~i__<~,<v 
1 

> f (ai -- v) ~ - (a 1 -- ~i)ze- 9/8 

1 - e  z 
> (a t - v) ~-~ (by (3.61)). 

Thus 

rain rain {[ L(~,, at) - z(u) l } 
i=1,2 u<v 

' ~ ( 2 @ ~ z ( - v ) - l )  (3.66, = Pl ^ P' " P" > A a 1 2 A P l  A 2 =  

on the set {X 4: 0}, where 

X = ~,YJ1J2. 

Moreover, by (3.14) 

P{J i=O}  <C2 e8, i = 1 , 2 .  

Now the left-hand side of (3.62) with H~ and V replaced by H~ a, respectively, 

V a, equals 

[E{.Xhx(z alF)h2(z gT) } -- E{X  Va(gl, g2) } I 

< [E{Y;h, (z , f )h2(zaf )}  - E{XVa(g l ,  02)}1 

+ ~{1~1 [(1 - sO + (1 - S ~ t ] l h ~ % f ) h ~ % f ) l )  

+ e{I ~Zl [(1 - sl) + (1 - s2)]l YA(g1,82)1 } (3.67) 

The first term on the right-hand side of (3.67) is at most 

on account of (3.22), (3.66) and (3.10). 

As for the second term in the right-hand side of (3.67) notice that 

E{Ix[(1 - Ji) lhl('cg V)h2(zo2V)l 

= E { l ¢ l( 1 - J,)[ H~(a~, L ( ~ ,  a~), w(2~ ))Ha(cr2, L(~ 2, 12 ), w(22 ) )1 }. 

<= e~:~ { l ~ ?}e~: '{  (a - J,)'} 

(e{  IH~(~I, L(~I, ~),  w(~t))l~}E{ I n~(~=, L(~2, °2), w(:~))l~)) '/" (3.68) 

By (3.37), 

e~/~{ [/t~(o,, L(¢i, ~,,, w(~,))l ~} ___ C, 
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SO that (3.68) is at most 

CIEU2{ ( ~[2}(P{ J i = 0})1/4. 

2 1/4 1/2 2 2 ~-~ C4C 2 E {l~[ }s . (3.69) 

By (IV), [VA(zl, w t , z2, wz) [ < C o and hence by (3.10) the third term on the right- 
hand side of(3.67) is bounded by 

4 I /2  2 I [2  4 2CoC1E {~ }C z s .  

Collecting all contribution we find that the left-hand side of (3.62) is bounded by 

Formula (3.62) now follows if we take 

Remark 4. For the sequel we set 

u (3.70) 

We then have (see (3.57)) 

V(u) = o(u- 8), 7(u) _- CI/~ 3 ~ + 1 and I uv(u)du < oo, (3.71) 
0 

and from (3.61) it follows that we may replace the right-hand sides of (3.62) and 
(3.63) by 

C16E1/2{~2}{82 /(Tl--V~] Ct6El12{~2}{82 /(~l--gg~ + 7 ~ - ) ~  respectively + ? ~ ) ; .  

(3.72) 

Lemma 5. I f  the hypotheses of Lemma 4 hold, as well as 41 = 42 = 4 and 
E{F(z, w)} - 0 ,  then the left-hand side of (3.62) is also bounded by 

C17E1/2{~2}{ 82+ 7~ ' - - ) f / ° ' l  -- v~]i/2 {e2 + 7(°'2 ~22 ffl )}1/2 (3.73) 

Proof We shall show that the left-hand side of (3.62) is also bounded by 

,374, 

Formula (3.73) then follows by taking the geometric mean of the bounds (3.71) 

and (3.74). Formula (3.74) is proved in the same way as (3.63). We choose X, 9i, hi 
and Ji as in Lemma 4 (see (3.65) and the preceding lines) and again we take X = 
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J1 J2" This time we begin the estimate of (3.62) with the term 

IE{~H~(alL(~I, 0-1), W(;~I)(HA(0-2 ' L(~2, a2), w(}~2))} t 

= ] E { Xh~ ('co, r)h 2 (zo2F) } [ 
< [E{Xhl(zeV)h2('cof)} I 

+ e { l ~ l [ ( ~ -  J1) + (1 + J2)]lhl('coF)h2('ca2F)l} 

In the present situation 

C2(0) = E { h2('coF) } = E { D~F(O)I[ I D~'F(O) I < A] } 
= E{DP6F(O)I[ID~F(O)I > A] }, 

because (2.1) implies 

E{D~6F(O) } = O. 

Thus 

I v~(0) l = CoA-1 
In addition, by (3.12) 

Igi ' 1 - gl 1= IL(¢, ° 9 -  L(~, ~,)t = 7 [ %  - q I I w(~)l 
1 

> 2Ne2 (0"2 - -  O-1) " 

t t! 
Therefore, by (3.24) and the lower bound for P2 A P2 in Lemma 4, 

[ E { Xhl ('co,F)h2(zg~F) } t 

<]E{Xhl( 'c~f)Uz(ge)}I+2AeE{IX[} fi + \ 2 N e  

[" ~7 2 - -  0-1 

(3.75) 

(3.76) 

(3.77) 

1)} 

The second term on the right-hand side of (3.75) is at most 

2 ~/4 t/2 y2~o2 
2 C 4 C  2 E {~ f ~ ,  

as in (3.68), (3.69). We combine this with the estimate for (3.64), and as before 

we take 

1)} 
There results 

I E{~HI(al, L(¢, al), w(21))H2(a e, L(~, a2), u(22))} 1 

=< {~2 ~2+.~, ~ . (3.78) 



Stochastic Acceleration 43 

Lastly, it follows from (3.76), (IV) and Theorem 17.2.3 of [7] or Lemma 20.1 of 

[8] that 

I V(z~, w 1 , z 2 , w 2) 1 = I E {D¢3F(z~, w 1)Dp*F(z2, w 2) } 

2C2fl l /Z(Iz~ -- z2 I)" (3.79) 

For z~ = g'~ = L(~, a,) we obtain from this and (3.77) 

t ~{~V(L(~, ~1), wG),  L(~, G~), wG))} I 

__< 2c~/~/~(I z , - zzl)E{I([} 

This, together with (3.78) implies (3.74). []  

Step (iii) 
In this step we prove that the family of measures { R " ( . ) : 0 < e < l }  = 

{R~( ' ;M,N,  r l ,6):O<e < 1} introduced in step (i) is tight in D. 

As pointed out in step (iii) of [6] it certainly suffices for this to prove 

K{~ [ w(u) - w(~)l ~} __< G ~(u - t)E~/*{~ '} (3.81) 

For ff ~ measurable and 0 _< t <u -<  T. To prove (3.81) it suffices to restrict 

oneself to 

kr/< t _< u < (k + 1)t/ (3.82) 

for some k < T)I.  For once (3.81) has been proved for such t, u, then it also holds 

by continuity for kt/__< t < u < (k + 1)tl, whereas for (k + 1)I/< u < (k + 2)t/, (3.81) 

(with k replaced by (k + 1)) gives 

E ( ( l w ( u ) -  w(k + 1)12 } < C 21(u - ( k  + 1)t/)E1/4{( ~'} 

so that (3.81) under (3.82) for each k < T/tl implies that also for kr/< t =< (k + 1)t/< 

u < (k + 2)t/, 

E{~ tw(u ) - w(t)[2} .Q 2E{~I w(( k + 1)t/) - w(t)12} 

+ 2 E { ( l w ( u ) -  w((k + 1)r/)12} __< 2C 2 l(u - t)E~/4{~*}. 

For t <(k  + 1)~/ and u > (k + 2)/ we would have u -  t >t/  and then (3.81) is 

trivial with C21 = 4Mr/- 1 since tw(u) - w(t) I < 4M by (3.11). 

The proof of (3.81) under (3.82) is very similar to step (iii) of [6]. We shall 

use the summation convention and write 

z(a), w(~r) ) for ~ z  i G(a, z(a), u(a) ) D 2 f i (a ,  

and similarly for D3j. We take 

= ~(a) = max {t, a - j /4} .  (3.83) 
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Then, by (3.9) 

2 . 
[w(u) - w(t) l 2 = ~ ! Gi(a, z(a), w(a))(wi(a ) - wi(t))da 

2"  
= : ~ Gi(a , z(a), w(4)) (wi(~) - wi(t))da 

~ t  

2 u a 
+ -~ .(&r ~ [D3jG,(a , z(a), w(2)) (wi(2) - w,(t)) 

t 

+ ~¢,fii(¢, z(¢), w(~)) ] G j(2, z(2), w(,~))d~ 

=I1  + I 2 '  

In 11 we replace z(o') by L((, a). More precisely, we write (in the notation of 

(3.34), (3.35)) 

2" 
11 = ~ ! Gi(a, L(~, a), w(4))(w~(~) - w~(t))da 

2 u 1 
+ - ~ da ~ D2jGi(a, r(s, 4, a), w(~)) (wi(~) - wi(t) ) 

~ t  0 

• [ ~ j ( ~ )  - L j (4 ,  ~)]ds 

= J 1  +J2"  

By (3.9) again 

2 u ¢ 
J ,  = ~$ j'da~ d2[D3jG,(a, L(~, a), w(2) )(w,(2) - wi(t) ) 

t t 

+ bijGi(a, L(~, ~), w(~,))]Gj(2, z(2), w(2)). 

Moreover, by (3.63) and Remark 4 with ~ replaced by 

~(wi(;.) - wi(t) )~ ~(~, z(;O, w().) ) 

we have for fixed i and j and 2 < 4, 

I E{~Dafi , (a ,  L(~, er), w(2))(w~(2) - w,(t))Gj(2, z(2), w(2))} I 

<= C~E~/~{I~(w,(~) - wi(t))Gj(~, z(~), w(~))l 2} 

. t g  2 + iT" - -  

(recall that by (3.82) and (3.83) ~ > t > kr/and that (3.76) holds; in the last step 

we also used (3.59)). The other term in J~ is handled similarly, so that 

IE{Cj1}] =T_E~/4{C4}Id~Id)~  ~2 + 7 
t t % 

< C 2 2 E " { ~ 4 } ( u  - t) T + 1 7(t)dt + T~-27(e - 1/4) 
0 

< C23E1/4{¢ 4} (u - t) (see (3.83) and (3.71)). 

Next we replace r(s, 4, a) in 32 also by L(4, a). Note that for 0 < v .<_ 1, 

vr(s, ~, a) + (1 - v)L(4, a) = r(vs, ~, a) 
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(see (3.34), (3.35)), so that 

u 1 

J2 = -  2 ~ da [ Dzf i i (a ,  L(4, a), w(~)) (w,(¢) - wi(t) ) 
g t  0 
"[zj(a) - -  L~(4, cr) ]ds 

2" 1 1 
+ - Id~ I as S d~D2~D~fi~(G, r(~s, 4, o), w(0)(w,(0  - w,(t)) 

/~t  0 0 

- [zfla) - Lj(~, a)]s[zl(a ) - Lz(4, a)] 

= K  1 + K  2 . 

As in (3.43) 

2 . 
(K1 = T£ ~ dcrD,jGi(a, L(~, a), w(~) )(wi(~) - wi(t) ) 

t 
a 3. 

" ~ d2 ~ dpG j(p, z(p), w(p) )~. 

Again by (3.63) and Remark 4, this time with ( replaced by 

(Gj(p, z(p), w(p) )(wi(~ ) - wi(t) ) 

we find 

IE{~K~)I-<_~-~E*'{~*)~d~Sa~4dp~ ~ +-~ - ~ -  

= 2C~6Ea/4{(4}Sda[dpe-4(a- -  p e 2 + ), 
t 4, 

< C=3E~/g{(a}(u - t) (again use (3.83) and (3.71)). 

Finally ~K 2 can be estimated directly by (3.11), Holder's inequality, (3.60), 

Lemma 3 and (3.83), 

4A4 u 1 a 

I~{¢K2) I _-< ~ "  E 1 / 4 { ¢  4} ~ d o  ~ds ~ dl.)E1/2{IZ(G ) -- L(4, cr) 14 } 
t 0 0 

• E~/4{ID2tD2fii(a, r(vs, 4, cr), w(())[4} 

=< 4 M C ~ 1 " { ~  4} SdG ( < C~3elt~{~ 4} (u - t). 
t 

Thus all pieces of ~I 1 are of the order claimed in (3.81). (I 2 is handled in the 

same way. For brevity denote the expression in square brackets in 12 by 

Kj(a, z(a), w(2)). Then 

2 u 
~I 2 = ~ j da~ d2(Kj(a,  L(4, a), w(2))Oj(2, z(2), w(2)) 

t 

+ V ~d~d~ ~ ds~n:,~Kj(~, ~(~, 4, ,~), w(~)) 
¢ o 



46 H. Kesten and G. C. Papanicolaou 

The first part of (I z can again be estimated by (3.63) (compare (J~) whereas the 

second integral is at most 

<= C~d:~E~/q~  ~} (u - t), 

on account of (3.37), (3.60) and (3.83). 

This completes the proof of (3.6t) and hence the tightness of {R e :0 < e < 1}. 

Step (iv) 

It follows from step (iii) that any sequence e. ~ 0 can be refined such that 

as n ~ oe for all quadruples of integers M, N, p, q > 1, with R(" ;M, N, l/p, 1/q) 
some probability measure on D. We denote by X(t) the t-coordinate function on D, 

and the corresponding a-fields of subsets of D are given by 

J¢/~ = a-field generated by {X t : u -< t -< v}. 

The first step towards proving the convergence of Q~ will be to show that 

t 

f (Xt) - S (IjU'N'P'qf)(a, X)da (3.85) 
0 

is an (R(" ;M, N, 1/p, 1/q), ~ o )  martingale for any C ~ function f :  R d -+ R with 

compact support and the following definition of LM'U'P'q: Take ~/= 1/p and 

6 = 1/q and let 

T ,(t, X) =- TM,'N'P(t, X) = T(t, X, X(t)) 

where T is as in (3.3) for given M, N and t /=  1/p. Also take 

cb,(t, X) = cbP,'q(t, X) = Ok X, J X(u)du 
0 / 

for k/p < t < (k + 1)/p, where ~b k is as in (3.5) for t /=  i/p, 5 = 1/q. One easily 

checks (compare the observation just before Lemma 1) 

q~, (t, w(" ) ) = ~(t, w(. ), z(t) ). (3.86) 

Further we define for y e n  a the following coefficients: 

+ c o  

aij(v ) = ~ E{ri(o , v)Fj(tv, v) }dt, 
-- cYO 

c,(~, X,  v) = c~'N'p(~, x ,  v) 

= k~(a, X, v) ~ tE VflO, v) Fi(tv, v) dt 
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[ ~ F ( x , v ) ~  here) ,  of course ~x~ F(tv, v) = [_ Oxj J~ =t~ 

dij(O" , X ,  v) =- dM'N'P(a, X ,  v) 

ei/a, X, v) = e~'N'P(a, X, v) 

= LP(a,X,v)!E{Fj(O,v)~Fi(tv, v)}dt, 

(~--7-Fi(tv, v)hasthesamemeaningasin(2.4)), 
J 

bi(a, X, v) = b~'N'P(a, X, v) 
d 

= ~, {co(a, X, v) + do(a, X, v) + eo(a, X, v)}. 
j = l  

Finally, 

1 6 q2 

(LU'N'v'qf)(a, X) = }P ,(a, X)q)2,(a, X) ~ ~ 7*,(a, X)aij(X(a) ) ~.ov f(X(a) ) 
i,j ~ j 

+ ~"b~'N'P(a' X' X(a)) c~v~f (3.87) 

As shown i:n step (v) of [6], to prove that (3.85) is an (R(" ;M, N, 1/p, 1/q), jgo) 
martingale it suffices to show that 

lim E{ [ f (w"(u) ) - f (w"(t) ) ]~(w~"(. ) ) } 
n ~ o o  

(3.88) 

for t < u  and ((X(.)) a bounded continuous function of X(tt),X(t2),...,X(tm) 
for any 0 < t 1 < t 2 < ... < t m < t. It is clear that it suffices to prove (3.88) for 

k t /<  t -< u < (k + 1),/for some k. Indeed, if it is true for such pairs t, u, then by 

continuity it also holds for kt/_< t -< u < (k + 1)t/ and the general case can then 

be obtained by iteration. E.g. if k l /<  t < (k + 1)t/= u < (k + 2)t/we merely have 

to write the left-hand side of (3.88) as 

lim E{ [f(w(u) ) - f(w(k + 1)t/)]~} 

+ lim E{f(w((k + 1)/) -f(w(t))]~} 

and to apply (3.88) to each of these limits separately. 

From now on we assume kt /<  t -< u < (k + 1)7. As in [6] we rewrite the left- 
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hand side of (3.88) by means of (3.9): 

[f(w(u)) - f(w(t))  ] 

~" t OWl 

1" ~ f  

OW i 

. ~ F Ozr 
1 ~da~d2|~_Z__~__(w(~.))G,(a, z(a), w(2)) 

+ e£ t ¢ Iowjowi 
"1  

Z(~), W(~) ) 

=11 + I  2 , 

where we take 

4 = 4(a) = max {t, a - £ 5/s}. (3.89) 

We shall only analyze 11 . I 2 can be handled in the same way. As in the previous 

step we start with replacing z(a) by L(4, a), i.e., we rewrite 11 as 

' iJ - (w(4))Gi(a, L(4, a), w(~))da 
~" t wi  

1 u 1 ~ 
+ - ~da ~ds ~ (w(4))D 2 fi,(~, ~(s, 3, ~), w(~)) 

~" t 0 OWi 

• [zj(a) - Lj(4, a)] = J1 + J2" 

By (3.63) and Remark 5 with ( replaced by ~(Of/awi)(w(~)), 

I E{¢J~}I < C16SU p ~ E1/2{ ~2} 

+ 7 da, 

so that E{~J1} -* 0 as e+0 (see (3.71) and (3.89)). As in the analysis o f J  2 in step (iii) 

we replace r(s, 4, ~) again by L(~, o-) in J2: 

1" 
J 2  = - e !  da ~wi(W(~))D2,lGi(a,L(~, a), w(~)) 

" [zj(a) - Lj(4, a)] 

1 u 1 1 ~f  
+ z~da  ~ ds ~dv ~ -  (w(~))D 2 ~D 2 jG(a, r(vs, 4, a), w(~)) 

t 0 0 Wi ' " 

• [zl(a ) - Lj(~, a)]s[z~(a) - Lz(~, a)] 

= K  1 + K  2 • 

As in the estimate of ( K  2 in step (iii) 

1" (*-4)*  ~0 [E{4K2}[ < C2~E~/4{~4}-~ d~ ~6 
E t 
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as ~ 0  (use (3.89)). K I is rewritten by means of (3.43) as 

1 " ~ z 0f  

8" t ~ ~ UWi 

• o~(p, ~(p), w(p))  

I u ~ 

= ~Id~idXSdp ~ (w(¢))D~ fi,(~, C(¢, ~), w(¢)) 
8 t ¢ ~ OWi 

. 6  j(p, z(p), w(~) ) 
1 "  ~ z 8f  

+ 2g~daSd;o~dp~-~L-~ (w(~))D2,.iGi(G L(~, a), w(~)) 
8. t ~ ~ dWi  

p 

• [dzO3,,Gj(p, z(p), w(z))G(z, z('0, w(z)) 
¢ 

= L  1 + L  2. 

By Holder's inequality and Lemma 3, 

lE{CL2II=O(-zydafd.)o~dpf&)=O,., ¢ ¢ ¢ / d a - - e - y - ] .  

=o(1) a s e ; 0 .  

Similarly we may in L, replace Gj(p, z(p), w(~)) by Gj(p, L(~, p), w(~)). So far we 

have shown 

E{~It} = o(1) + TgE~dafd2~dp ~ (w(~)) 
( t ¢ ¢ OWl 

" D 2,jGi(a , L( ~, er), w( ~) )G i(p , L( (, p ), w(~))(}. 

We now apply (for the first time) Lemma 5. We obtain with (we still use the sum- 

marion conventions) 

V,(y, wl ,z, w2) = E {Fj(y, w l ) ~  Fi(z, w2) }, 

Wu(y, w,, z, w2) = E{Fi(y, w,)Fi(z, w2) }, 

that 

1 r" ~ * ~w~t'(w(~))~T(P'W(¢)) E{~I,} = o(1) + Tz E ~ i daS d2 i dp 
e [.t ¢ ¢ 

I - -  

- T(a, w(¢))q)(p, L(¢, p) ) [  ¢(a, L(¢, er))Vi(L(~, p), w(¢), L(~, cr), w(~)) 

+ ~Z~z((;, L(¢, a)Wu(L(¢, p), w(¢), L(~, a), w(¢)) 
,t 

+ OtTaida~d,a.idp{~2 + 7 ~2 + 7 • 
\ 5 ,  ¢ ¢ ( 
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The last error term is again o(1) by (3.71) and (3.89). Also, by (3.10), (3.79) and 

(3.77) 

< 2 f / a - - p \ )  1i2 

OZj 

and this term too can be dropped. This almost gives us the required form. We 

still observe that for kr/< t < ¢ < p _< a _< u < (k + 1)q 

7'(p, w(¢)) = ~e(o, w(¢)) = ~'(C w(~)). 

Similarly, by (3.10) and (3.11), 

[~(p, L(~, p)) - ~b(~, z(¢)) I = 1¢(~, L(~, p) - ~(¢, z(~)) I 

< c ~  ~ ]L(C p) - z(Ol = Cl(p - O I w(¢)l 

<= 2CIM(P - 4), 

and the same inequality holds when p is replaced by a throughout. From these 

observations, (3.79) and (3.10) we see that 

E{CI , }  = o(1) + j d o E ~ - "  (w(~))~Tz(~,,,v(~))~b2(~, z(~)) 

~ X  

) 

Last, if we take into account the stationarity of F (see (II)), 

T(~, w(~))-~ ~ dp(a - p) V~(L( ~, p), w(~), L( ~, t~), w(~) ) 

= T(~, w(~)) J tE~F](O, w)--F~(tw,  w)Y dt 
o ( azj J . . . .  <~ 

j ~- 2(~ _ ~) 

= ~cu(~, w('), w(~)) + o(1) (by (3.89), (3.57) and (3.11)). 
J 

Thus 

E{~I1} = o(1) + Sd~E (w(~))~q'(C w(#))~2(C z(#)) 
t ~ Wi 

"~%(C W('), W(~)). 
J 

u 

= o(t) + . [d ie  (w(0)~. ~(¢, w(~))~2(C z(~))~%(C w(.), w(O). 
t ~ wi i 

The last equality results merely from the fact that o-= ~ + e 15/8 except on an 

interval of length e 15/8. Finally, we view w(') as an element of D. Then the expecta- 

tion in the last integral can be written as an integral over D with respect to the 
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measure R~( • ;M, N, lip, 1/q) and integrand 

Of (X(())((X(.))7~,(~, X(.))tb,2(~, X ( ' ) ) ~  c~i(~, X('), X(~)) (3.90) 
8w~ 

(This is where we use (3.86)). As observed already in [6] it follows from (3.81) 

and (3.84) that for each fixed a, X(.) is continuous at a with R(" ;M,N, l/p, 1/q) 
probability one. From this one easily derives that (3.90) is a continuous function 

of X(-) a.e. on D with respect to R(" ;M,N,  l/p, l/q) (in the usual J1 topology). 

Thus, if we write E M'N'p'q for the expectation operator with respect to 

R( . ;M,  N, l/p, 1/q) and let e -~ 0 through the sequence e ,  then (3.84) yields 

u 

lim E{(I ~ } = ~ d~E~t'N'P'q{¢(X(. ) )7~,(¢, X(" ) } 
n ,-~. a o  t 

x(.)) Xc,j( , x(-), 
j UWi 

which is one of the terms of the right-hand side of (3.88). The other terms come 

from E{U2}. This proves the claimed martingale property for (3.85). 

Step (v) 

We complete the proof of our theorem in this step by removing the truncations 

in N, q, 6 and M (in this order). It is convenient to return first to the space C = 

C([0, oo);~d). We assumed that the convergence in (3.84) takes place on D. How- 

ever, by definition R~( • ;M, N, l/p, l/q) is concentrated on C, and if we can show 

that R(" ;M, N, 1/p, 1/q) is also concentrated on C then (3.84) implies 

(see [8], p. 151). But the fact that R(" ;M,N,  I/p, l/q) is concentrated on C follows 

immediately from the martingale property of (3.85), Theorem 2.1 (especially 

inequality (2.1)) of [15] and the fact that 

4,,(o, x) x)%(x(,,)) I + I } 
< sup {I ai~(v) J + IbY'U'P(v) l } < oo 

1/2M<IvI<=2M 

(because 7~,(a, X) = 0 for IX(a)I¢[1/2M, 2M];  see (3.1)). 

From now on we can assume (3.91) and all further manipulations take place 

on C. With a slight abuse of notation we also use X t for the t-coordinate function 

on C and ~/g~ for a{ X t :u <- t < v}. Formula (3.85) still is an (R(" ;m, N, 1/p, 1/q), M °) 
martingale, even with the convention that R is a measure on jg0 and jgo, j / 0  

GO o0 

a-fields in C. We now define {jgo} stopping times, S, T, U and Vas follows: 

S = S(X(-); N, p) = lim S ,  
n ~ e h 3  
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where X k is as in step (i) with q = 1/p and 

k + l  k < t <  S, = inf t ~ 0: for some k _> O, P P 

and 

1 1 1 1 )  
(Xk- 1, X(t) ) < ~ + -n or (Xk, Xt) < -N + n ~" 

S. is an {j/o+ } stopping time and for t not of the form k/p 

~s < t} = (3 {s~ < t } ~ z  °, 
t l  

For t = k/p. 

so that indeed S is an ~ t  ° stopping time. Similarly, 

r = T(X( ' ) ;M))= lim T ,  
~ - + c O  

T=inf t ~ O: LX(t)I < - M  + - ° r  tx( t ) t  > M ' 

U = U(X(.);p, q)= lim U,, 
n - ~ o o  

g 

= inlet  > 0: for some k ~ 1 and u < (k - 1)p, kip < t < (k + 1)p U 
( 

Lastly, 

V = S A T A U .  

From these definitions it follows that 

T.(o, X) = 1 and ~ T(a, X, X(o)) = 0 

and 

¢,(o', X) = 1 

Thus 

tAV 

f ( X ,  ^v) - I (LM'N'P'qf)( a, X)da 
0 

t ^ V  

= f ( X , ^ v ) -  I 2/'f(X(a))da 
0 

tAV  

= f ( X , , , v ) -  ~ ~Mf(X(al)da,  
0 

for a < S v T 

f o r a <  U. 

and 

(3.92) 
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where A ° is given by (2.5) and 

1 -u ~ f ( v ) + ~ t ( v ) ~ J ' ( v )  
ff'uf(v) = ~ Z,.; aii (v) °vi°vi i °vl 

for any choice of the coefficients a~(v), ~u(v) which agrees with the aij(v ) and 

bi(v) of (2.a), (2.4) on the set { l < [ v [  < M }  and which makes the a:  and ~ ~ 

twice continuously differentiable on N d and ~u strictly positive definite. ij 

Now let ( ~  be the measure corresponding to the diffusion process ~ M  and 

initial point vo, and let Q be as in the theorem. Then (3.92) is an (R(- ; M, N, p, q), d/{ °) 

martingale, by virtue of the optional sampling theorem (cf. [14], Theorem VI.7 

and 13) and the martingale property of (3.85). (3.92) is also a (Q, ~/o) and a (0 ~t, j//o) 

martingale by Dynkin's formula ([11] Corollary 5.1). Moreover, by (3.91) 

Q(X(O) = 0) = Qu(X(0) = v0) = R(X(O)= v o ;M, N, p, q) = 1 (3.93) 

We claim that this implies 

QU(B) = Q(B) = R(B ;M, N, p, q) whenever 

BeJg°v'MN ,; (3.94) 
t , ,P ,q )  

(see [16] for the definition of the last a-field). Indeed if v is any of the measures 

~M, Q or R(- ;M, N, p, q) then one can use Lemma 3.6 and Theorem 3.4 of [16] 

and the martingale property of (3.92) to construct a measure # on j{o  which cz~ 

agrees with v on j # o  and such that 

t 

f(X,) - S c~Mf(X( a) )da 
0 

is a (/z, Jt{ °) martingale and (by (3.93)). 

~ ( x ( 0 )  = o) = 1. 

By the uniqueness theorem 6.2 of [16] such a # is unique. Thus all three choices 

for ~ give rise to the same # which implies (3.94). 

We apply (3.94) to 

B = B(M, N, p, q) = {S(N, p) A U(p, q) <= T(M) A t} 

for fixed t. This gives 

R(B(M, N, p, q) ;M, N, p, q) = Q(B(M, N, p, q) ). (3.95) 

We shall show in Lemma 6, Section 4 that as a consequence of assumption l/, 

for each fixed p, 

lira U(p, q) = oo a.e. [ Q ] .  (3.96) 
q ~ o 0  

This of course implies 

lim Q{U(p, q) < T/x t} --- O. 
q--* oC 
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In addition, for N >- 2M 

lim Q{S(N, p) < T (M)  A t} = 0 
p~o9  

because ]X(o-)l > 1/M for all o- < T(M)  and X(.) is continuous. It follows that 

the right-hand side of (3.95) can be made small for any N > 2M by choosing 

first p, then q large. 

It is now easy to remove the cutoffs. Fix t and any bounded positive continuous 

functional f on C which is measurable with respect to JCd °. Let e,-~ 0, and if 

necessary refine the sequence such that 

lim E{f(v~"('));  T(v% M)  > t} 

exists for all integers M, and such that (3.91) holds for all integers M, N, p and q. 

Here we view v ~' as an element of C and T(v ~, M)  is the value of T(M)  evaluated 

at v ~. Fix M and 7 > 0 and choose N, p, q such that 

Q(B(M - 1, N - 1, p, q - 1)) < Q(B(M, N - 2, p, q - 2)) < 

and 

Q(B(M, N,  p, q)) <= a 

(B denotes the closure of B in C.) Finally note that v"(t) = w~(t ;M,  N,  p, q) for all 

t < V(v ~ ; M,  N,  p, q) = V(w ~ ; M,  N,  p, q) (3.97) 

because the Eqs. (2.7) for v ~ and (3.8) for w ~ coincide up until this time V. This, 

together with (3.91) and (3.94), implies that 

lim sup E{f(v~"(.)); V(v~";M - 1, N - 1, p, q - 1) > t} 
t l  - ~  oo 

= lim sup E{ f (w~"( ' ) ) ;V(w~";M - 1, N - 1, p, q - 1) > t} 
n - ~  cx3 

<= E M's'p'q{ f ( X ( ' ) ) ;  V ( X  ;M, N,  p, q) > t} 

= ~ f ( X ( ' ) ) I [ V ( X  ;M, N, p, q) > t]dQ. 

Moreover, by our choice of N, p, q, the last member here differs from 

~ f ( X ( ' ) ) I [ T ( X ,  M)  > t]dO 

by at most 

sup ] f I Q(B(M, N,  p, q)) < ~ sup t f l- 

Finally, 

lim sup lE{ f (v~"( . ) ) ;T(v% M - 1) > t} 
n - ~ o o  

- E{f(v~"( ' ));V(v~";M - 1, N -  1, p ,q  - 1)> t}[ 

< sup ] f [  lira sup P{S(v ~ ;N - 1, p) Ix U(v" ;p, q - 1) 
n ~ o o  

< T(v ~" ;(M - 1)/x t)}, (3.98) 
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and (again by (3.97), (3.91) and (3.94)), the lim sup in the right-hand side of (3.98) 

equals 

lim sup P {S(w ~" ; g - 1, p)/x U(w ~" ; p, q - 1) < r ( w  ~" ;(M - 1)/x t) } 
n---~ oo 

= lim sup R~"(B(M - 1, N - 1, p, q - 1);M, N, p, q) 
n---~ oo  

< R ( B ( M -  1, N - l , p , q -  1 ) ; M , N , p , q )  

= Q(B(M - 1, N - 1, p, q - 1)) < c~. 

Since e is arbitrary these estimates show that for each M, t, 

lim sup E { f ( v ~ ( ' ) ) ;  r ( v  ~, M - t) > t} 
n ~ 3  

< ~ f ( X ( ' ) ) I [ T ( X ,  M )  > t]dQ. (3.99) 

Finally, we take the limit as M ~ oo. From (3.99) we see that 

lim supP{r(v ~o, M - 1) > t} _-< Q{T(X, M) > t} 
n---~ oo 

and this can be made as small as desired by taking M large, on account of assump- 

tion (2.6) and the boundedness of a~j(') and bi(" ) away from the origin (see [15], 

formula (2.1)). Thus 

lira supE{f(v~n( . ) )}  < ~ f (X( . ) )dQ.  
n ~  oo 

Since any sequence e --* 0 contains a subsequence to which this applies we have 

proved 

lim sup E{ f(v~('))  } <__ ~ f (X( ' ) )dQ.  
e$O 

As shown in [8], p. 13, and [6], Sect. 3, Step (vi), this implies that the measures 

induced by v~(') on C converge weakly to Q on C. The proof is complete. 

4. Properties of Diffusions and Examples 

We begin this section with Lemma 6 which immediately implies the relation 

(3.96) which we needed in Step (iv) of Sect. 3. The proof of this lemma is entirely 

independent of Sect. 3. 

Lemma 6. Let  V t be a diffusion with generator 5f' as in(2.3)-(2.5) and initial point 

v o ¢ O. Assume that (aij(')) is symmetric and strictly positive definite on Na\{0} 

and 

ai~('), bi(') ~ C ®(Rd\ {0} ). (4.1) 

I f  d > 3, v o ~ 0 and (2.6) holds, then for  all rl > O, r < oo, 

l imP v° &r < 6 f o r s o m e O < s , t < T w i t h l t - - s l > t t  = 0 .  (4.2) 
~+0 

Remark  5. A check of the proof in the previous section shows that the only place 
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where the smoothness of the a,~ and b~ and the strict positive definiteness of a~ 

played a role was in the proof of (3.94), and more precisely for the uniqueness 

of the measure # in that proof. For this uniqueness we only need 

(aij (')) is nonnegative definite and twice continuously differentiable on ~\{0} ; 

(4.3) 

(see [17], Theorem 2.3 and Remark 2.1; note that the b~(v) of (2.4) is uniformly 

Lipschitz continuous and bounded on any set {vs Nd :t Vt => 5}, 5 > 0, by (II)-(IV)). 

The stronger requirement (4.1) and the requirement d > 3 are used only to prove 

Lemma 6. Therefore, our theorem and corollary will remain valid in any dimension 

if in (V) we only require (4.3) of the coefficients and (2.6), provided we add (4.2) 

as a separate hypothesis. Actually, it is likely that even for Lemma 6 only a finite 

number of derivatives of aifl') and hi(') are needed, but we have not pursued this. 

The proof of Lemma 6 will come after we discuss a sufficient condition for 

(2.6), and (III) and explicit examples. Formula (2.6) can often be verified by means 

of the following criterion of Khasminskii's [18] (see also [9], Chap. 4.5). 

Lemma 7. Let ~ and V t be as in ( V). For v # 0 and F = ( F ~ i) a nonsingular (constant) 
d × d matrix define (F t= transpose of F) A(v)= A(v ,F)= ~(Fa(v)Ft)~j(Fv)i(Fv)j, 

i , j  

A + (r, F) = max A(v, F), 
t r v l  = r 

B_ (r) = B_ (r, r )  

1 

= , or r a i n  ri [2 + 

and 

C_(r, F) = exp - sB_(s, F)ds . 

I f  there exists a nonsingular F such that 

i tdt ~ C (s, F) 
- -  j - - -  "as = 02 (4 .4 )  

o C_ (t, F) t A + (s, r )  

then (2.6) holds. 

Remark 6. Take d >- 3 and 

_ o % a  

for some constant symmetric positive definite matrix c~, as discussed in Remark 4. 

Then (4.4) holds for F = c~- 1/2 (the positive symmetric square root), so that also 

(2.6) holds in this case. In general the criterion of Lemma 7 is only helpful if for 

some F the diffusion {FV~}t~ - o is close to being radially symmetric (see the examples 

in [9], Chap. 4.5). 

Lemma 7 too will be proved later. First we discuss two situations which 
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guarantee the mixing conditions (III). (a) (III) holds for what we called the trivial 
Gaussian examples in [6]. These are Gaussian fields {V(x, v)} . . . .  ~d× ed with mean 

zero, stationary in x, and such that the correlation function 

rii(y, v a , vz) = E{Fi(x, v,)Fj(x + y, v2} (4.5) 

vanishes for all i,j, v 1, v 2 as soon as [y[ > L  where L < oe is some constant. In 

this case (¢A1 and ffa2 are actually independent as soon as d(A1, Az)> L. Thus 

fi(p) = 0 for p > L and (2.2) certainly holds. (It is not hard to show that for these 

stationary Gaussian fields it is actually necessary for (2.2) that fl(p) vanishes 

for large p). One can obtain such examples by taking (fi is the complex conjugate 

of p) 

rij(Y, Vl, v2) = • ~ Pi,k(Y + Z, Vl)fij,k(Z, vz)dz (4.6) 
k Na 

for any measurable complex matrix valued function p on R e x N ~ with p(z, v) = 0 
for I z l >  L/2, as long as 

I Ip.(z)l =d= < o0 for all i. 
~ a  

It is easy to see that (4.6) is indeed positive definite, hence a correlation function, 

and has support in [Yl < L .  This leads to the following explicit example: The 
Theorem and Corollary apply if d > 3 and {F(x, v)} is a mean zero Gaussian field 
independent of v and stationary in x, with correlation function given by (4.5) and 
(4.6) with 

p(y, v) = p*(y) = p*(ly[) 

(depending on ]Yl only), whenever p*~C2(~ d) and the following properties hold: 

p*(z)=O for I z[ >½L. (4.7) 

2 0 2 1 

~ , ( ~ z l ) P * ( Z + U ) - ( ~ z z ) P * ( z ) d z < K ( I ° g ~ )  ( 4 . 8 )  

for some K < 0% ~ > 1 and all ]u[ < 1, 1 < i, 1 < d, and finally, 

co 

~ i j  = ~, ~ dt I p~(te + z)p*k(Z)dz 
k 0 @a 

is nonsingular for e = (1, 0 . . . . .  0). 

In this case 

(4.9) 

cP 1 
~o = ~ cqj (4.10) 

Ovi I vl av/ 

See below for a proo£ 

(b) (III) also holds for the following special case of the "Poisson blobs" of [6]: 

Let Pp be a Poisson point process on R d with intensity p, i.e. N ( B ) -  number of 

points of Pp in the Borel set B c Nd has a Poisson distribution with mean p ]B I 
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(tBI denotes the Lebesgue measure of B). Moreover, if B~ . . . . .  B k are disjoint, 

then N(B1) . . . . .  N(Bk) are independent. In addition, let H °, H ~, H 2 . . . .  be indepen- 

dent identically distributed random fields, independent of Pp and with the follow- 

ing properties: 

Each H (") is indexed by R e, i.e. H ~") = H~")(x, ~0), x ~ R d, ~o in our basic probability 

space. H(°)(x) = 0 for tx [ > L for some constant L. 

Let 

K(x) = ~ H(")(x + p,) (4.11) 
n = l  

where p~, P2 . . . .  are the (random) points of Po, and let f be some deterministic 

function from Nd x R d to R e. Then the field 

F(x, v) = f(K(x),  v) (4.12) 

satisfies the mixing condition (III). Again we can make this into an explicit example. 

Assume that H ~°) also has the following properties: 

The joint distribution of H¢°)(xl) and H¢°)(x2) is the same as that of H~°)(Oxl) 
and H¢°)(Ox2) for any xl , x z e R ~ and orthogonal matrix O. 

E{H¢°)(x)} = O, x e ~  d (4.13) 

H ~°) is twice continuously differentiable and 

E~maxlD~H'°)(x)l p -<L <Co, (4.14) 

forlfl  I <2,  p < 16d + 64. 

The d x d matrix with entries 

aij = p ~ dt ~ E{H~°)(z)H~°)(te + z) }dz, 
0 t~a 

is nonsingular (e = (1, O, O, ... ,0)). 

Then our Theorem and Corollary apply i f  we take d > 3 and 

F(x, v) = ~ H~")(x + p,) 
n 

(independent of v; corresponding to f ( K ,  v)= K in (4.12)). 

In this case 

(4.15) 

e3 1 
&o = ~ c~i,j . (4.16) 

We turn to the proofs. 

Proof of  Lemma 6. We are indebted to Daniel W. Stroock for pointing out how 

to use hypoellipticity in the first part of this proof. Let 

t 

0 
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Then (V t, Zt),>= o is a singular diffusion with generator 

d 

i= 1 ~ Z i  

Since the coefficients of 2 '  may be badly behaved at the origin we first replace 
L~ by 

1 ~ ~M ~2 (~ 

for any choice of the coefficients aM.(x), 5Y(X) which agrees with the a..(v) and 

b~(v) of 5~ on the set ~----I~I = M and which makes 5~] and 5ff infinitely 

differentiable on R d and 5ff symmetric and strictly positive definite on [R d. (V~, 2if) 

will be the corresponding process replacing (Z t, V~). For the time being we shall 
suppress the superscript M. Let 

1 ~ ~ ~ / ~  a ( v )  \ o 

be the formal adjoint of the generator 

1 ~ c ~2 c ~  c? 

G = ~ZaO(v)~vit, v.i + Zgi(v) ~ + £v,  Oz---~i 

of the process {Vt, ;gt}t>=o" For fixed initial point (w, y), let 

u(t, d~, dztw, y) = P{ r/~ ~d~, 2~ ~dz I Vo = w, Zo = y} 

be the distribution of (~,Zt). Then the formal density u of U is a distribution 
solution of the equation 

( - ~ t  + G * ) u = 0 o n ( 0 , o o ) x R d x R  d, (4.17) 

More precisely, for any function jeC~((O, 0o) x Na x Na) (C ° denotes the C ~ 

functions with compact support) 

dt ~ U(t, dr, dz) + G j(t, v, z) = 0 
0 (v,z)sU~a x Na 

(see [9], p. 61). We now show that - ~ / & +  G* is hypoelliptic by means of 

H6rmander's theorem 1.1 in [19]. For this purpose let (ci~(v)) be the positive 

symmetric C ~ square root of aij(v) (see [9], p. 83) and define the linear differential 
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operators 

1 ( c q ) c ~  c~ 

a a a 

i,j \ OVj / t  01) i i GVi i aZi  " 

Then 

3 1 ~ X 2  -a5+~*=~£ ~ 
1 ~  6 2 ~ 

A simple calculation verifies that each of the operators c~/&, c~/c~v~ and c3/c~zj is a 

linear combination of the Xi(v ) or [Xi(v), Xj(v)],0 N i,j <=d. This is clear for 

the c3/c3vi, because c(v) = al/Z(v) is nonsingular. Moreover 

[Xi, Xo] = - ~ q.k(V)~Z k + linear combination of the 

Thus also the 3/c3z k and hence a/c~t are in the Lie algebra generated by the Xz. 

By Theorem 1.1 of [-17] this guarantees the hypoellipticity of - 0/c3t + G* and 

we conclude from (4.17) that we can write 

U(t, dr, dzlw, y) = u(t, =lw, y)dvdz, 

for some u which is in C~((0, co) x R d x [R d) as a function of (t, v, z). For our 

purposes it is necessary to have u a continuous function of all its arguments 

(t, v, z, u, y) on (0, co) x (Nd)4. Following McKean ([9], p. 64) this can be done 

by combining the forward and the backward equation, u (as a function of all 

its arguments) is a distribution solution of Ku = 0 on (0, ~ )  x (Rd) 4, where 

0 , 
K = - 2~7 + G~,= + Gw,y 

One shows as above that K is hypoelliptic which gives the desired conclusion. 

We need only a very weak consequence of the existence of a smooth density 

u. This is that for every M, 0 < r /<  T, 2 there exists a K = K(M, it, T, ~)< co 
such that 

r { l Z ~ - z l ~ p l L = w , z = y } ~ g / ,  
(4.18) 

Now let e > 0, T < co, and choose M = M(~, T) such that 

vvo{[vtl 1 M } <~or[Vt]~-~-forsomet__<t __<~, 
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For such an M we have 

{!, } pro da < ~ for some 0 < s, t __< r with } t - s I > t/ 

P f ! ~U da < a for some O <--_ s, t <= T <~+ 

2 } 
with [t - s [ > t/, while ~ < ]L I  < T for all a < T . (4.19) 

This is so because if 1/~ is killed at the first time ] V~[ leaves (l/M, M) and similarly 

for ~'y, then the killed processes have the same distribution ([11], Chap. 5.24). 

Clearly 

= = 2M' 

and 

8 

! ~Mda <TM, s, t<T, 

on the set {I V~I < M/2 for a < T}. We can use this to estimate the probability 

on the right-hand side of (4.19) by looking only at times which are multiples of 

p--T /N for some integer N with (~/4M < T/N < 6/2M. The probability in 

question is bounded by 

{ ~ <_a M 
E P ~ ~ d a  but ]~'/~t < - -  

ON i<j<N ip = 2  = 2 ' 
J- ig t lP-  * ~M } 

and t Zip I =< TM 

< N  2 max P{Z,M--y,<~ P ~ = w , Z , = y }  
l~-sI>. 

O <=s,t ~ T 
I wl a M/2,ly] < TM 

(6 )  e (4MT~2(~Y 
=<N2K ~ (by (4"18)) =<- K \ T  } \ 2 ]  " 

For d > 3 the last expression tends to zero with 6 so that (4.2) follows fi'om (4,19). 

Proof of Lemma 7. Apart from going over to the diffusion W,-  FV t and letting 

the origin play the role of oo, the proof of this lemma is in [9], Chap. 4.5. It is 

based on the observation that if u is the positive function on [0, 1] which solves 

C (s) s 
u -~ =l+2S~-7~dt~,-;=5-,';su 

r e - i t )  ~A+(s~ \ / 

then 

Y,-- e-'A~U(IFV, A~I2/2) 
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is a positive supermartingale, where r = i n f { t > 0 : l V t ]  > 1}, and on the fact 

that u(r) --+ co as r+0 if(4.4) holds. (We have C in contrast to C+ in [9] because 

our u is decreasing rather than increasing). V3 

Example a. We already remarked that if rij in (4.5) vanishes for ]Yl >L ,  then 

(2.2) trivially holds. If we take in addition ri~ of the form (4.6) with p(y, v) = P*(tYl) 
then a~j and b i of (2.3) and (2.4) become 

+co 

alj(v ) = ~ dtrij(tv, v, v) 
- c o  

+co 

= Z S at S p (lt  + zi)p . (lzl)a  
k - co N a 

= ~v] ~ ~dto ~P*(Ite + zl)P~(lzl)dz' 

1 0 
j uvj 

In this case ~ has the form (4.10). With this ~ (2.6) is valid by Remark 6. Condition 

(IV) can be verified in the same way as for the Gaussian examples of [6], Theorem 4, 

since (4.8) and (4.9) assure that 

( ~  \ 2 /  ~ \2 

- - 1  l ~ - I  ru(y ) exists, and 
~Yk J \ oYl ,/ 

2 0 2 ~ 2 ~ 2 6~ 

[]  

Example b. It is clear that any field F of the form (4.11), (4.12) is stationary in x, 

because of the translation invariance of the point process Pp. It is also clear that 

the randomness in K(x) and hence in F(x, v) depends only on the position of 

the points p, within distance L of x and the corresponding H (n). This is so because 

all H(")(x) vanish for Ix[ > L. In particular F(xl, vl) and F(x2, v2) will be indepen- 

dent when [x 1 - x2[ > 2L. More generally NA, and (4A2 will be independent when 

d(A1, A2) > 2L and hence fl(p) = 0 for p > 2L. Formula (2.2) is again immediate. 

Let us now specialize to (4.15) with the distribution of H(°)(xl) and H(°)(x2) 

invariant under the change x ~  Oxi, and (4.13), (4.14). Clearly, E{F(x)} = 0  

by (4.13), so that (II) holds. (IV) is easily derived from (4.14), and (I) holds for F 

because the H(")(x) are assumed to be C2(~a). As for (V), the coefficients aij(v) 
and bi(i ) of (2.3) and (2.4) now are 

+co 

ai)(v ) = ~ dt Z E{H~")(P.)H~")( tv + P,,,)} 
- -  c o  n ~ m  

+co 

= ~ dtZE{Hl")(p,)H}")(tv + p,)} (by (4.13)) 
--CO n 

+CO 

= ~ dt ~ pdzE{Hl°)(z)H~°)(tv + z)} 
- oc  Na 



Stochastic Acceleration 63 

cl9 

= zp, I dt ~ E{Hl°)(z)H}°)(te + z)}dz. 

(v = [ v[ Oe for some orthogonal 0), and 

b,(v) = 12 jE ~ a,j(v). 

This ~ is given by (4.6) and (2.6) is again guaranteed by Remark 6. 
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