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A limit theorem for sums of i.i.d. random variables
with slowly varying tail probability
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Yuji KASAHARA

§ 1 .  Introduction.

Let X1 , X2 , ••• be nonnegative independent random variables with common
distribution function F(x) belonging to the domain of attraction of stable law with
index a (0 < a < l ) ;  i.e.,

(1.1) 1 - F(x) 1 / (eL (x )) a s  x-> 00

for some slowly varying L(x) 0). Here f (x )- -g (x ) means that lim f(x)/g(x)=1.
Let Sn - X 1 +X 2  ±  •  •  •  + A Ç, n=1, 2, •••. It is well known as Skorohod's invariance
principle that, for suitably chosen v(t), Sri/v(n) converges in law to the one-sided
stable process in the function space D([0, co)-*R) endowed with .4-topology (see
[7] for the definition and [9] for the result).

In this paper we will consider the extreme case of (1.1) as a  0; we treat the
case where

(1.2) 1 - F(x) 1/L(x) a s  x--3•00 .

As is well known, under condition (1.2), every linear normalization an S ±b „  leads
to a degenerate limiting distribution. However, if we allow non-linear normali-
zations, we have

Darling's Theorem ([2]). If (1.2) is satisfied, then

1lirn Pr L ( S ) x ] x> 0 .
n

(In [2] some technical conditions are assumed but they may be removed.) The

convergence of the semi-group of the process t/V\- —

1  
L (S r i) was obtained by S.

Watanabe [10], and the purpose of this paper is to show the weak convergence of
this process in 4-topology. Our idea of the proof is quite different from that of
Darling or Watanabe and so may be read independently.
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§ 2 .  Main theorem.

Let e=(e(0),,0 b e  the symmetric Cauchy process such that E[e i et ( f ) ]= e i n
O R. I n  other words, e is the Levy process with Lévy measure x 'd x .  Define

(2.1) m (t) =- max 4 e ( s )  w here 4e(s) = e(s)— e(s— ) .0< s t

Thus m --(m ( t) ) ,, (m (0)=0) is the maximum process of the Poisson point process
with intensity measure x 'd x  d t ,  and therefore it is easy to compute the finite-
dimensional marginal distributions; for 0,< t, <••• <t„ and 0._- _.x1 <••• <x„,

(2.2) P[m(ti)_-<x,, • • • , x„] F(x i )ti F(4 2 - ti •  •  •  plx,p - t”--1

where F(x )=e - 1 1 x ,  x > 0 .  Processes with the property (2.2) are often referred to
as extrema! processes (see [3]). Our main result is

Theorem 2 . 1 .  L et L(x) . 0, x  0 , be a  nondecreasing function varying slowly
at infinity. T hen, under the assumption (1.2),

L (S ri) ---> m (t) a s  n--> 0 0  i n  D([0, 00)-->R)

where ---> denotes the weak convergence in .11-topology.

Pro o f . Since the convergence of finite-dimensional marginal distributions are
obtained by [10], it remains to prove the tightness of the processes. However,
it does not seem easy to check the well-known conditions for tightness such as
Chentsov's moment condition (see page 128 of [1]), so we will adopt a direct meth-
o d :  On the probability space where e (and hence m) is defined we will construct
processes C„, n =1 , 2 , •••  which are distributed like (1111)L(S[]), n = 1 , 2 , •••  and
which converge to m  almost surely in ./1-topology.

Now let 72(t) = E , , ,  (4±e(s)) 2 where d'e(s)— m ax -Pe(s), 0} . In other words,
r+

77(t)=- x2 N(du dx), N (du dx) being the Poisson random measure defined by
O. > ( )

the jumps of the Cauchy process e. Clearly 72 =(77(t)) 1 0 is a one-sided stable pro-
cess with index 1/2 and the Levy measure is given by ,u[x, 00)=

x - 1 / 2 ,  

O. Ob-
serve that m (t) may be expressed by using 72 instead of e ;
(2.3) m (t) =  {max 477(s)} 112 , t i n ( s )  =  n(s)-77(s— ).

o s t

Indeed th is is im m ediate from  (2 .1 )  a n d  th e  definition o f  77. L e t  f ax )
=P[72(1) - x ] ,  x E R .  It is well known that

(2.4) 1 — fax) x - 1 1 2  a s  x---> .

This may be confirmed as follows. Since 77(n)/n2 clearly converges in law to 72(1),
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appealing to Theorem 4 in page 124 of [5] we have that for every x > 0 ,

n  {1 —F0(n2x)} x-112 as n — oo,

which proves (2.4). We also define 0 (x )=F - 1 (F0 ( x ) )  ( x E R ) .  Throughout the
inverse of a nondecreasing function is chosen so that it is right-continuous;

F - 1 (x )  = in f {u : F(u )>x } , 0 < x < 1  .

Let, for n =1 , 2, •••,

(2.5) ni
n

1 ) —  1 ,  2, ••• ,
n

(2.6) C (t)  = L ( E in t

(max i ,„, n

(112 7 )), t0 ,

t 1/n,

(2.7) m ( t )  = -0 ,
O t < l/n

We are now ready to explain the story of the proof. We will prove the following
three.

(1) C„ = (C(t)), 0 is identical in law to

(
1

L ( E i  n t  X i)) Jac), n 1, 2, ••• .

(2)

(3)

m n  — > m  (in JO a.s.

sup I Cn (t)— m n (t) I --> 0, a . s . ,  for every T > 0.06 is T

Indeed, (2) and (3) imply that C„—>m (in .I1 )  a.s., which together with (1) clearly
proves our Theorem.

The proof of (1) and (2) are easy. To see (1) it suffices to show that 0(77(1))
(and hence 0(n 2 n ) )  is distributed like X , .  However, this is obvious from the
definition 0 (x )=F - 1 (F0 (x)). In fact 0  was defined so that (1) holds. To see (2)
define 77„(t)=-77([nt]In), n=1, 2, •••. Since 77„(t)—>72(t) (in JO, we have from the
continuity theorem that

max 7 i =  max dn„(t) — > max z ln ( t )  (in JO .
i S nt OlçsS t 0 5 s _ s

Therefore, considering the square root of each side, we obtain from (2.3) and (2.7)
that in(t)— m (t) (in .11) a.s., which is the desired result.

For the proof of (3) we need the next two key lemmas.

Lemma 2 .2 . For every 2>0 and T > 0,

l i r n  sup I L(20(n 2 x 2 )) — x j= 0 .
0 5 x 6 T  n
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Lemma 2 .3 . For every e>0 an d  T >0  ( e <T )  and for almost sure co, there
exist K „ K2>0  and n, depending on le , T , col such that, f o r every t G [e, T ] and
11 no ,

(2.8) K1s5(n2 m(t)2) gb(n2 77.i) -5, K2 OW m (t) 2 )t •

We postpone the proof until next section and return to the proof of (3). Since
L (x) is nondecreasing, applying L (•) to each side of (2.8) and dividing by n, we
obtain

1 L(K,O(n2
n  

L(K2 95(n2 mn(t)2)) •

Therefore, we have

(2.9) sup I C„(t)—m n (t)1

1sup max I L(K i  sb(n2 inn (t)2) —mn (t)!
0 5 1 5 T  i= 1 ,2 n

m a x  su p  I  —

1  

L(K i  0(n 2 x2)) —x
i = 1 , 2  0 5 x 5 m , , ( T )  n

which converges to 0 as. by Lemma 2.2. and (2). Since C (t) and m n (t) are mono-
tone in t, we also see

lim lim sup sup I C„(t)—m n (t)
e÷o n.-» * 05te

liM  lim sup (C,i(e) - Fmn(e))

= lim 2m(e) = 0 a.s.
e-o-o

This completes the proof of (3) and hence of Theorem 2.1.

Remark 2 .4 . We have a very simple proof for the special case where L(x)—
lo g (x +1 ) . Let M 0 = 0  and M„ =max(X„ • • • , X„), n l. Then we have

1 1 (2.10) — L(M[ne])5 
1

_ L(S[n1])5 L(nMbai) •
17

Since log(nx)—logn+logx, it is easy to see that the first and the third process (and
hence the second) should have the same limiting processes. Thus our problem
may be reduced to the study of M,„ which was treated by [4] and [6]. However,
for general slowly varying L (x), we cannot apply this argument. For example,
let L(x)--exp .V log(x +1) • L(x) is a slowly varying function and we can show that
the first and the second processes in  (2.10) converge to  m (t) but the third to
.\/ e m(t).
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§ 3 .  Proofs of Lemmas.

Proof  of  L em m a 2.2. Since 0(x)=F - 1 (F0 (x)), we have 1 —F(0(x))=1 —F0 (x)
provided that F(x) is continuous. In general it holds that

(3.1) I —F(ç5(x)) -5- I — TA) 1 —F(sb(x)/2)

By (1.2) both 1—F(0(x)) and 1 —F(0(x)/2) are asymptotically equal to 1/L(ç5(x)) as
while 1 —F0 (x)---x - 1 /2 (see (2.4)). Therefore, (3.1) implies that L(tb(x))—

x112 , or equivalently, L(0(x2))-- , x as x—>00. This also proves that

(3.2) lim L(20(x2))/x =1, 2>0,

since L(x) is a  slowly varying function. Thus we have for every 2>0 and

(3.3) lim  1  L(20(n2 x2 )) =  X .
'1 -> w  n

Since  1 L(20(n2x2 )) is monotone in x and the limiting function is continuous, the

convergence in (3.3) is automatically uniform for x on every finite interval, which
completes the proof.

Proof  of  L em m a 2.3. It is easy to find IC1 ; K1 -1  is the desired number. To
find K,, define L(x)—F eT1 (F(x)) (= 0 - 1 (x)). By (2.4) we see that F (71 (x)--, 11(1 — x)2

as x--> 1 — 0. Therefore, L(x)-17(1 — F(x))2 — L(x)2 a s  x--> 0 0 ,  from which it fol-
lows that L(x) is also a  slowly varying function, and so has the canonical repre-

sentation L(x)—c(x)exp 6 ( t )   dt, where c(x)—+c>0  and e(x)—>0 as x -+ 00 (see

[8] page 2). Therefore O(x)=L - 1 (x) may be expressed as

(3.4) 0(x) exp r x ) x  E (

;

)  dt
1

where g(x)—>00 and q(x)—).1/c as x—,.00 . Using (3.4) we easily see that, for every
a> 0,

(3.5) lim n2 sb(n2 a)/(2n2 )  =  0 .

Now let a=a(co)—m(s) 213. Note that a>0, a.s. Since in (e )— m (e) a.s., we
may and do assume that there exists n1>0 such that

(3.6) m„(t)2_ m„(e)2 2a, t -, n n .

We divide E i ,„, 0(112 n„,) into three parts;

Si ,„(t) E i n i  001 2  77.0 1(77„i<n- 2 )

S2 ,„(t) = E i n t  00'12 n 1(n - 2  5_77 ,
S3 ,„(t) E i n t  0(n2  „ i ) n i > a) .
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Here, /(•) denotes the indicator function. Since g5 is monotone, we clearly have

(3.7) S i ( t ) n T O W , t  T

On the other hand, using (3.4), we see that lim n ,  nI0(2n2a )= 0 .  Therefore, by
(3.7) and (3.6) there exists 112 > 0 such that

(3.8) Si,n(t): 0(212 2 a) _- _¢.(n2 in ( t ) 2), e n> n2 .

We next consider S',, n (t). 1 f then we have

(3.9) x).._ 0(a2 ri2x

Combining this with (3.5), we see that there exists n3> 0 such that

(3.10) x ).. 0(17 2 a) x, .

Therefore, we obtain that for e t T and n  n 3 ,

(3.11) S2,n(t) q5(2n 2 a) E j ,„, 77„,

0(2n2 a) n([nd' 12)_‹. 0(n2 m ( i ) 2)  (T )  .

In the last inequality we used (3.6). Finally let us consider S3 ,n (t). Notice that
there are only finitely many t [0 , T] such that zbi(t)> a .  Thus if we denote by
K 3=- K3(0)) the number o f such t 's , then E ,<„T  1(77 „i > a)= K3 fo r all sufficiently
large n (a.s.). Thus we have

(3.12) 0  5 3 . „(t) K3 max 0(112 nn i )

= K 3 0(n 2 m„(t) 2) ,  e T, n n 4 •

See (2.7) for the last equality. Now combining (3.8), (3.11) and (3.12) we obtain

(3.13) 0(n2 777,3 K2 0 0 2 in ( t ) 2), e t  T , no

where K 2=1 + 77(T )+ K 3 and no —max (n2 , n 3 , n4).
Thus Lemma 2.3 is proved.
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