
A Limit Theorem on Subintervals of 
Interrenewal Times 

LINDA GREEN 
Columbia University, New York, New York 

(Received December 1980; accepted February 1981) 

Consider a renewal process {X,, n 2 1} for which there is defined an 
associated sequence of independent and identically distributed random vari- 
ables {Bn, n 2 1 } such that Bn is the length of a subinterval of Xn. We show 
that when attention is restricted only to B-intervals, the asymptotic joint 
distribution of the residual life and total life of a B-interval is that of a renewal 
process generated by (Bn, n 2 1}. 

TN THE STUDY of stochastic systems, successful analysis is often 
dependent upon the process being regenerative. As part of the anal- 

ysis, it may be essential to focus attention on a particular event that 
occurs during the regeneration cycle. For example, in Oliver's [1964] 
derivation of the expected waiting time in the M/G/1 queue, it is 
necessary to calculate the expected remaining service time of the cus- 
tomer in service, if any, at an arrival epoch. By considering only those 
times when the server is working, Oliver implied that the service times 
generate a renewal process and so the remaining service time is the 
equilibrium excess random variable. (Terms are defined in Section 1.) 
Though this argument is not rigorous, it provides the correct expression 
for the expected remaining service times as confirmed by Wolff [1970] 
and Brumelle [1971]. Questions remain, however, as to what other char- 
acteristics of a renewal process are inherited by these service times and 
whether such characteristics are also inherited by other types of events 
within regeneration cycles. 

Consider the general setting of a renewal process in which each renewal 
interval X, contains a subinterval Bn such that {Bn, n ? 1} is a sequence 
of nonnegative independent and identically distributed (i.i.d.) random 
variables. We prove that the limiting distributions of excess (residual) 
life and total life (spread) of such subintervals are the equilibrium 
distributions for the corresponding quantities in a renewal process gen- 
erated by {Bn, n - 1}. This is true even if Bn is dependent on another 
part of the regeneration cycle. Such a case arises in Kleinrock's ([19751, 
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p. 222) busy period analysis of the M/G/1 queue. Therein he recursively 
defines, for each busy period, a sequence { Yi, i - 01 such that Yo is the 
service time of the customer who initiates the busy period and Yi, i - 1 
is the interval in which all customers who arrive during Yi-1 are served. 
Kleinrock asserts, without proof, that the joint density of excess and total 
life for Yi is identical to the corresponding density in a renewal process 
with interrenewal times distributed as Yi. This conclusion is confirmed 
by the theorem presented in this paper. 

1. NOTATION 

Let {X, n - 1) be a sequence of nonnegative i.i.d. random varia- 
bles, representing the time between events in a renewal process. 
Let So, S1, * * * be the times at which renewals occur, i.e., X. = Sn - Sni, 

n - 1 for SO < Si < S2 *. .. Let {(An) B, Cn), n - 1) be an associated 
sequence of i.i.d. nonnegative random elements of R2 such that 

An= Un- Sn1 Bn = vn- Un C. = S. -v 

where un and vn are epochs within the nth renewal period, i.e., 

Sn-i C Un C Vn C Sn. 

Each renewal interval is divided into a beginning (A-interval), a middle 
(B-interval), and an end (C-interval) as shown in Figure 1. We allow 
Ai, Bi, and Ci to be dependent, but assume that the pairs (Xi, B1), 
(X2, B2) *- are independent. 

Let { Y(t), t - 0) be a continuous time stochastic process defined by 

O if t E [Sn+,, un) for some n; 
Y(t) = 1 if t E [unF vn) for some n, (1) 

l2 if t E [vn Sn) for some n, 

{N(t), t - 0) be the renewal process generated by Xi, X2, * * , and 

[SN(t) + AN(t)+1 - t; Y(t) = 0 
E'(t) = SN(t) + AN(t)+1 + BN(t)+i- t; Y(t) = 1 (2) 

L SN(t)+l - t; Y(t) = 2 

xn xn+ 

A B C 
in nf f 

I i I 
S U v S Sn+ 

n-F n n 1 
Figure 1 
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[AN(t)+1; Y(t) = 0 
St(t) = BN(t)+l; Y(t) = 1 (3) 

CNY(t)+1; Y(t) = 2. 

Thus 

limt,. P(E'(t) > a, S'(t) > bl Y(t) = 1) 

is the asymptotic joint distribution function of the excess (residual) life 
and total life (spread) of a B-interval when attention is restricted only to 
B-intervals. 

Consider a renewal process where the times between events are dis- 
tributed as fB., n 2: 1}, and let E(t) and S(t) be the excess and spread at 
time t for this process. From Kleinrock (p. 172), the joint equilibrium 
density for these random variables is given by dB(x)dy/E(B) where 
B(x) = P(B1 ' x). Therefore, 

r0 
limru. P(E(t) > a, S(t) > b) = (x - a)dB(x)/E(B), 0 c a c b. 

2. ASYMPTOTIC EXCESS AND SPREAD 

THEOREM. Let Y(t), E'(t) and S'(t) be given by (1), (2) and (3). If 
F(x) = P{Xi c x} is nonlattice and E(X) < x, then 

limos P{E'(t) > a, S'(t) > bI Y(t) = 1} 

74, 

- J Xa)dB(x)1E(B), 0 a cb. 

Proof. Define the indicator function 

I(ta, b) = if YQ(t) = 1, E'(t) > a, S`(t) > b I~ta, {O otherwise 

and the "rewards" 
Si 

Ci Ci(a, b) = j I(t, a, b)dt. 

Then 

limt,(E(total reward by time t)/t) 
rt 

= limtn J P{I(r, a, b) = 1}dT/t = Amd. P[I(t, a, b) = 1] 

since F is nonlattice and I(t, a, b) lies in D([0, oo)) (i.e., right-continuous 
and left-hand limits exist, see Miller [1972]). Therefore, we can apply the 
renewal-reward theorem (see, e.g., Ross [1970], p. 52) to get 
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limtb P{I(t, a, b) = 1} = E [f I(t, a, b)dtl E(X). 

It is clear that 
fI B a -a if B1-b 

0 otherwise 

so 

lim". P{I(t, a, b) = 1) = (x - a)dB(x)/E(X). 

Now 

limeoo P{E'(t) > a, S'(t) > bI Y(t) = 1) 

- lim". P{I(t, a, b) = 1}/lim". P{Y(t) = 1) 

and 

limtbe P{Y(t) = 1) = E(B)/E(X), 

hence 
00 

limbo P{E'(t) > a, S'(t) > bI Y(t) = 1) = f (x - a)dB(x)/E(B). 

3. APPLICATIONS 

Server Vacation Models 

Levy and Yechiali [1975] study two M/G/1 systems in which the server 
leaves for a "vacation" whenever a busy period ends. In the first model, 
the server returns at the end of a single vacation and either begins serving 
customers who arrived during the vacation, or waits for the first customer 
to arrive. In the second model, if the server returns from a vacation to 
find the system empty, the server immediately takes another vacation 
and continues in this manner until there is at least one customer upon 
return. For each model, Levy and Yechiali use an extended Markov-chain 
representation to obtain the generating function of the number of cus- 
tomers in the system. This generating function is then used to derive the 
Laplace-Stieltjes transform of the waiting time and ultimately the ex- 
pected waiting time in system. 

Using the main result of this paper, these waiting time transforms (and 
the expected waits) can be obtained directly from probabilistic arguments. 
For example, consider Model 2 and let A be the arrival rate, Vthe service 
time, and U the length of a single vacation. For any random variable Y, 
we denote its expectation by E (Y). 



214 Technical Notes 

In this system, the server takes successive vacations until returning to 
find at least one customer waiting. Therefore, whenever the server is not 
busy, the server is on vacation. Since the system is work-conserving, the 
steady-state probability that the server is busy is SE(V) as in the ordinary 
M/G/1 system. Let Wq be the steady-state waiting time in queue and N 
the number of customers seen by an arrival. Since Poisson arrivals see 
time averages, 

E(Wq I N= n) = nE(V) + E(VE).XE(V) + E(UE)(1 - KE(V)) 

where VE is the remaining service time of the customer in service, if any, 
and UE is the remaining vacation time if any, at the arrival epoch. 
Unconditioning and using Little's formula, 

E(Wq) = E(VE)XE(V)/(1 - XE(V)) + E(UE). 

From the theorem, VE and UE are the equilibrium excess random vari- 
ables for V and U. So 

E(Wq) = E(V2)XE(V)/(2E(V)(1 - XE(V))) + E(U2)/(2E(U)), 

and the mean wait in system is given by 

E(W) = E(V) + XE(V2)/(2(1 - XE(V))) + E(U2)/(2E(U)) 

which corresponds to Equation 35 in Levy and Yechiali. Results for the 
other model can be similarly derived. 

Approximation of MIGIc Queues 

One of the major difficulties in analyzing the MIGIc queueing system 
is dealing with the joint distribution of the remaining service times of 
busy servers. This is apparent in two recent papers in which analysis is 
based on an approximation assumption designed to handle this difficulty. 

Let the service time distribution be denoted by G and the equilibrium 
excess distribution of G be denoted by Ge. Nozaki and Ross [1978] obtain 
an approximation for average delay by assuming that at epochs when a 
customer enters service, the remaining service times of the services in 
progress, if any, are i.i.d. random variables with common distribution Ge. 
Tijms et al. [1980] use a recursive scheme at departure epochs to obtain 
approximations for the limiting probabilities of queue length. Their 
assumption is that at service completion epochs at which j, i c j c 

c - 1, customers are left behind, the remaining service times of the j 
customers being served are i.i.d. random variables with distribution Ge. 
For service completion epochs at which j > c customers are left behind, 
they assume that the time until the next service completion has distri- 
bution G*(t) = G(ct). Though each paper provides motivation for its 
assumption, neither addresses the issue of what in the assumption is 
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approximate and what is exact. Using the major result of this paper, the 
ambiguities are easily resolved. 

Each of the assumptions involves three issues: the marginal distribution 
of each remaining service time, the times at which the process is observed, 
and the independence among the remaining service times. The first of 
these issues is resolved as a direct consequence of our theorem. By 
defining, for example, a sequence (B 

W , n : 1) for any k : 1 where B RI 

is the kth service of the nth busy period, we can apply the theorem to 
obtain Ge as the limiting marginal distribution of the remaining service 
time of each server. Therefore this element of the assumptions is exact. 
The approximations result from using this equilibrium distribution at 
departure epochs which do not, in general, give rise to general-time 
probabilities, and from the independence assumption. This helps to 
clarify why the results can be expected to be more accurate in light traffic 
as noted in Nozaki and Ross, and when the number of servers increases 
to oo, as noted in Timjs et al. In both of these cases, the probability of a 
queue forming decreases. One effect of this with respect to the assumption 
in Nozaki and Ross is that a greater proportion of the times at which 
customers enter service will be arrival epochs which, because of the 
Poisson assumption, give rise to equilibrium probabilities. The assump- 
tion in Timjs et al. also becomes more accurate in this respect since as 
the proportion of customers who have zero delay in queue increases, the 
system behaves more like an M/G/oo queue. This is significant since the 
departure process of the M/G/co system is Poisson (see Gross and Harris 
[1974], p. 274) and therefore also results in general-time probabilities. In 
both assumptions as the probability of a queue decreases, the indepen- 
dence among the remaining service times increases. For the M/G/oo 
queue, where there is no queueing at all, the assumptions are equivalent 
and exact (see Takacs [1962], p. 161). 
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The probability of detection in the search for a randomly moving target is 
calculated for the case of a target whose motion is a diffusion process and 
known searcher path. The probability of detection can be calculated by 
solving a backward diffusion equation. Corwin [1980] gives a solution of the 
backward equation for a special case. In general, exact solutions do not exist 
and other methods are needed. In this paper, the backward equation is solved 
approximately by using a formal asymptotic method, valid when the intensity 
of the random motion is small. The general solution is illustrated for the case 
of spatially homogeneous drift and diffusion coefficients. In this case, the 
asymptotic solution can be evaluated analytically. 

AL THOUGH PROBLEMS of search for moving targets have received 
considerable attention in recent years, some apparently simple 

problems remained unsolved. These problems are actually not simple, 
and it is the motion of the target which makes them hard to solve. One 
of these problems is the calculation of the probability of detection in a 
search when the search path is specified. In this case, one does not try to 
find an "optimal" path, but gives a search path and then calculates the 
probability of detection at the end of the search. We shall find this 
probability by solving a backward diffusion equation. This procedure is 
not as removed from optimal search as it seems. First, once the probability 
of detection is known, the optimal path can be obtained by a nonlinear 
programming procedure (e.g. Ciervo [1976]). Second, it turns out that 
when studying optimal search problems, in order to solve the conditions 
giving an optimal path, one needs to solve the equation treated in this 
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