
The Annals of Statistics
1997, Vol. 25, No. 1, 105–137

A LIMIT THEORY FOR LONG-RANGE DEPENDENCE AND
STATISTICAL INFERENCE ON RELATED MODELS1

By Yuzo Hosoya

Tohoku University

This paper provides limit theorems for multivariate, possibly non-
Gaussian stationary processes whose spectral density matrices may have
singularities not restricted at the origin, applying those limiting results to
the asymptotic theory of parameter estimation and testing for statistical
models of long-range dependent processes. The central limit theorems are
proved based on the assumption that the innovations of the stationary pro-
cesses satisfy certain mixing conditions for their conditional moments, and
the usual assumptions of exact martingale difference or the (transformed)
Gaussianity for the innovation process are dispensed with. For the proofs
of convergence of the covariances of quadratic forms, the concept of the
multiple Fejér kernel is introduced. For the derivation of the asymptotic
properties of the quasi-likelihood estimate and the quasi-likelihood ratio,
the bracketing function approach is used instead of conventional regularity
conditions on the model spectral density.

0. Introduction. This paper investigates vector-valued stationary pro-
cesses with long-range dependence which possess a variety of singularities not
necessarily limited to zero frequency, giving a limit theory for quadratic forms
of observations from those processes. Then it considers the statistical infer-
ence based on the quasi-likelihood function giving the asymptotic properties
for the quasi-maximum likelihood (QML) estimate and the quasi-likelihood
ratio (QLR) statistics based on the limit theory under very general conditions.
The asymptotic results obtained reveal a particular feature of long-range de-
pendence whose modeling produces different asymptotics for related statistics
based on the quasi-likelihood function.

A general framework for the asymptotic theory for parameter estimation
and testing for short-range dependent stationary time-series models was given
by Whittle (1952). Dealing with a linear scalar-valued process �zt; t ∈ J�
given by

zt =
∞∑
j=0

αj�θ�et−j;

where �et� is an i.i.d. �0; σ2� process with finite fourth-order moment, he pro-
posed the minimizing value θ̂ of

∫ π
−π In�z;ω�/f�ωy θ�dω for the estimate of

θ, where f�ωy θ� is a spectral density of the process �zt� and In�z;ω� is
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the periodogram for z1; : : : ; zn. Assuming that σ2 does not depend on θ, he
then proposed σ̂2 =

∫ π
−π In�z;ω�/g�ωy θ̂�dω for the estimate of σ2, where

g�ωy θ� = �∑∞j=0 αj�θ�eijω�2. Hannan (1973) gave the asymptotic properties
of θ̂ and σ̂2 under explicit regularity conditions. As for the case where σ2

depends on θ, Hosoya (1974) and Dzhaparidze (1974) proposed the estimate
which minimizes

∫ π
−π�log f�ωy θ� + In�z;ω�/f�ωy θ��dω and gave the asymp-

totic properties. Those minimized objective functions approximate the normal
log-likelihood up to a constant-order term, and, if �et� is Gaussian, the min-
imizing value θ̂ is first-order efficient and the

√
n�θ̂ − θ� is asymptotically

normal N�0;J�θ�−1�, where J�θ� = limn→∞�1/n�Jn�θ� for the Fisher infor-
mation matrix Jn�θ� based on z1; : : : ; zn. The Whittle result was extended
for vector-valued processes by Dunsmuir and Hannan (1976) and Dunsmuir
(1979). Furthermore, assuming milder mixing conditions on the innovation
process �et�, Hosoya and Taniguchi (1982) gave the asymptotic theory for
the estimate which minimizes

∫ π
−π�log detf�ωy θ� + trf�ωy θ�−1In�z;ω��dω,

where f�ωy θ� and In�z;ω� denote this time a spectral density matrix and the
periodogram matrix, respectively. That estimate will henceforth be called the
quasi-maximum likelihood (QML) estimate.

A number of authors noted that long-range dependent models are imper-
ative for some empirical time series [see, e.g., Mandelbrot and Wallis (1969),
Granger and Joyeux (1980) and Cox (1984, 1991)], and out of the necessity to
develop statistical methods to deal with them, some authors have extended
the asymptotic theory of the Whittle estimate to long-range dependent sta-
tionary processes; Yajima (1985), Fox and Taqqu (1986) and Dahlhaus (1989)
investigated Gaussian processes, and Giraitis and Surgailis (1990) dealt with
non-Gaussian processes. Their investigations, however, are limited to the case
where �zt� is a scalar-valued process whose spectral density is given by

�0:1� f�ωy θ� = �ω�−β�θ�g�ωy θ�; 0 < β�θ� < 1;

for regular g�ωy θ�, and the et are i.i.d. Recently Heyde and Gay (1993) dealt
with a vector-valued non-Gaussian case under milder conditions on the in-
novation process, and Robinson (1995) proposed a semiparametric approach
based on the local quasi-likelihood integration.

The approach of this paper has the following distinctive features: (1) It has
a framework general enough to deal with a variety of multiple singularities of
the spectral density not restricted to the type given in (0.1). (2) The innovation
process is assumed only to satisfy a set of mixing conditions with respect to
conditional moments (see Assumption A below) and does not require the as-
sumption of Gaussianity (or contemporaneously transformed Gaussianity) or
of martingale differences, and the limit theorems for quadratic forms (in par-
ticular, the convergence of the covariances) are shown under mild conditions.
(3) The asymptotic theory of the QML estimate is based on the bracketing
function method, and weaker regularity conditions for the spectral density
matrix f�ωy θ� with respect to θ are employed in contrast to the conventional
approaches. As for the bracketing function approach, Daniels (1961), Huber
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(1967) and Pollard (1985) dealt with the maximum likelihood estimate for
i.i.d. sequences of observations, and Hosoya (1989a) dealt with the QML for
short-range dependent stationary processes. While investigating multivariate
non-Gaussian stationary processes, Heyde and Gay (1993) dealt with a lim-
ited case where Assumption E or F of this paper holds and also conventional
regularity conditions for spectral density hold. Consequently, their asymp-
totic theory of the QML estimate does not reveal the role of the fourth-order
cumulants.

The paper proceeds as follows. Section 1 is about limit theorems of quadratic
forms. Theorem 1.1 shows the convergence of their expectation. Fox and Taqqu
(1987) showed that, in case the weight function of a quadratic form effectively
annihilates the singularities of the spectral density at the origin in the fre-
quency domain, the clt of quadratic forms holds for a broad class of long-range
dependent Gaussian stationary processes. Theorem 1.2 extends their idea to
a general setup where the stationary process need not be Gaussian and the
singularities of the spectral density matrix are not limited to the origin. In
order to prove that theorem, the concept of the multiple Fejér kernel is effec-
tively used in Lemma 1.1, which deals with the convergence of the covariances
of quadratic forms. Employing the bracketing condition approach in place of
the usual stringent regularities of the spectral density, Section 2 investigates
the asymptotic properties of the QML estimate and the quasi-likelihood ra-
tio (QLR) statistics in the presence of long-range dependent fourth-order sta-
tionary processes. Theorem 2.1 pertains to consistency of the estimates and
Theorem 2.2 applies to the asymptotic normality. In both theorems the true
structure of the observed process need not belong to a fitted parametric model.
A similar result was given already in Hosoya (1989a), which, however, dealt
only with short-range dependent processes. Theorem 2.3 gives a version of
Theorem 2.2 under specific conditions so that the asymptotic theory of the
QML estimate is in conformity with the Whittle result. A point to be empha-
sized is that, for non-Gaussian long-range dependent processes, one of those
conditions (Assumption E) is likely to be violated except for such specific pro-
cesses as the fractional ARIMA. Based on that theorem, Theorem 2.4 derives
a nested χ2 distribution of a set of QLR statistics. Section 3 gives the proofs
of the lemmas and theorems.

Throughout the paper J denotes the set of all integers and L denotes the
backward shift operator, that is, Lx�t� = x�t−1�; δ�·; ·� signifies the indicator
function such that δ�x;y� = 1 if x = y and δ�x;y� = 0 otherwise. Here Ip
is the identity matrix of order p. The conjugate transpose of a matrix A is
denoted A∗ and the notation is retained also for the transpose of real A. For
a square matrix A;detA and trA imply the determinant and trace of A, re-
spectively. The Lp-norm of a complex-valued function g on �−π;π� is denoted
by ��g��p, namely, ��g��p = �

∫ π
−π �g�ω��p dω�1/p, and c1; c2; : : : denote generic,

positive constants pertaining to each context of the proofs. For subscripted
symbols Aij;Bi, the symbols A or B without subscripts imply either a matrix
or a column vector with components Aij or Bi, respectively, unless otherwise
indicated.
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1. Limit theorems of quadratic forms. Let �z�t�y t ∈ J� be the vector-
valued linear process

�1:1� z�t� =
∞∑
j=0

G�j�e�t− j�; t ∈ J;

where the z�t�’s are q-vectors and the e�t�’s are p-vectors such that
E�e�m�e�n�∗� = δ�m;n�K for K a nonsingular p × p matrix; the matri-
ces G�j� are q × p and the components of z, e and G are all real. This
representation accommodates a rectangular G, which is useful for a state-
space-type model. Assume throughout the paper that

∞∑
j=0

trG�j�KG�j�∗ <∞;

so that the process �z�t�� is a second-order stationary process and has a spec-
tral density matrix f�ω� representable as

f�ω� = 1
2π
k�ω�Kk�ω�∗; −π < ω ≤ π;

where k�ω� =∑∞j=0G�j�eiωj.
This section investigates the limiting properties of the quadratic form of the

form
∫ π
−π tr�g�ω�In�z;ω��dω, where g�ω� is a q × q matrix-valued function

with complex-valued components gαβ�ω�, 1 ≤ α;β ≤ q, such that gαβ�ω� =
gαβ�−ω� and g�ω� = g∗�ω�, and In�z;ω� is the periodogram matrix defined
by

In�z;ω� = wn�ω�wn�ω�∗; −π < ω ≤ π;
where wn�ω� is the finite Fourier transform defined by

wn�ω� =
1√
2π

n∑
t=1

z�t�eitω:

The following theorem gives a condition for asymptotic unbiasedness of∫ π
−π tr�g�ω�In�z;ω��dω.

Theorem 1.1. Suppose that the pair �g;f� satisfies tr�g ·f� ∈ Lu for some
u, 1 < u ≤ 2, and suppose that there exists c > 0 such that

�1:2� sup
�λ�<ε
�� tr�g�·��f�·� − f�· − λ�����u = O�εc�

as ε→ 0. Then
∫ π
−π

tr�g�ω�E�In�z;ω�� − g�ω�f�ω��dω = O�n−c�:

Assume in what follows that the process �z�t�� in (1.1) is full rank and lin-
early regular; therefore,

∫ π
−π log detf�ω�dω > −∞, so that the process �z�t��

is nondeterministic. Moreover, assume that �e�t�� is fourth-order stationary
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and that

�1:3�
∞∑

t1; t2; t3=−∞
� Q̃e

β1;:::;β4
�t1; t2; t3� �<∞;

where Q̃e
β1;:::;β4

�t1; t2; t3� is the joint fourth cumulant of eβ1
�t�; eβ2

�t+t1�; eβ3
�t+

t2�; eβ4
�t + t3�, so that the process �e�t�� has a fourth-order spectral density

Qe
β1;:::;β4�ω1;ω2;ω3� given by

Qe
β1;:::;β4�ω1;ω2;ω3�

= 1
�2π�3

∞∑
t1; t2; t3=−∞

exp�−i�ω1t1 +ω2t2 +ω3t3��Q̃e
β1;:::;β4

�t1; t2; t3�:

In contrast to Heyde and Gay (1993), Assumptions A(i) and (ii) are imposed
on �e�t�� to ensure the central limit theorem of quadratic forms, where their
assumption of exact martingale difference is replaced by weaker conditional
mixing conditions and also their ergodicity assumption is replaced by the
Lindeberg-type condition A(ii). Assumption A(iii) is used for the convergence
of the covariances of quadratic forms.

Assumption A. (i) There exists ε > 0 such that, for any t < t1 ≤ t2 ≤ t3 ≤
t4 and for each β1; β2,

Var�E�eβ1
�t1�eβ2

�t2��B�t�� − δ�t1 − t2;0�Kβ1β2
� = O��t1 − t�−2−ε�;

and also

E�E�eβ1
�t1�eβ2

�t2�eβ3
�t3�eβ4

�t4��B�t�� −E�eβ1
�t1�eβ2

�t2�eβ3
�t3�eβ4

�t4���
= O��t1 − t�−1−ε�

uniformly in t, where B�t� is the σ-field generated by �e�s�y s ≤ t�.
(ii) For any ε > 0 and for any integer M ≥ 0, there exists Bε > 0 such that

E�T�n; s�2�T�n; s� > Bε�� < ε
uniformly in n; s, where

T�n; s� =
[ p∑
α;β=1

M∑
r=0

{ n∑
t=1

�eα�t+ s�eβ�t+ s+ r� −Kαβδ�0; r��/n1/2
}2]1/2

;

and �T�n; s� > Bε� is the indicator, which is equal to 1 if T�n; s� > Bε and
equal to 0 otherwise.

(iii) Each component Qe
β1;:::;β4

�ω1;ω2;ω3� is uniformly γ-Lipschitz for some
γ > 0; namely,

�Qe
β1;:::;β4

�ω1 + ε1;ω2 + ε2;ω3 + ε3� −Qe
β1;:::;β4

�ω1;ω2;ω3�� <
{
max
i
�εi�

}γ

uniformly in ω1;ω2;ω3.
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Hosoya and Taniguchi (1982, 1993) and Hosoya (1989a) showed the asymp-
totic convergence of the covariances of quadratic forms

∫ π
−π

tr�g�ω�In�z;ω��dω

and a central limit theorem in the case where the spectral density matrix
f�ω� is square-integrable under an assumption weaker than Assumption A.
In order to prove the corresponding results on the quadratic forms for long-
range dependent �z�t�� with possibly non-square-integrable f�ω�, this paper
imposes a condition on g which has the effect of annulling the singularities
of the spectral density f, and, by exploiting that effect, modifies the proofs in
the preceding papers so as to apply to long-range dependent processes. For
that purpose, the following condition seems pertinent.

Condition B. The pair �g�1��ω�; k�1��ω�� of complex-valued functions sat-
isfies the following:

(i) g�1� is uniformly γ-Lipschitz for some γ > 0, that is, �g�1��ω�−g�1��ω+
ε�� < �ε�γ uniformly in ω;

(ii) there exists u > 1 such that
∫ π
−π �k�1��ω��2u dω <∞;

(iii) there exists γ1 > 0 such that

sup
�ε�≤ε1

��g�1��·��k�1��· + ε� − k�1��·��2��2 = O��ε1�γ1�y

(iv) ��g�1��k�1��2��2 <∞.

The following example illustrates how Condition B is justified for long-range
dependent processes.

Example 1.1. Suppose �z�t�� is a scalar-valued fractionally integrated
process:

�1−L�dz�t� = e�t�; 0 < d < 1/2;

where �e�t�� is a white-noise process with mean 0 and with unit variance.
In this case the frequency-response function k�ωy d� and the spectral density
f�ω;d� are respectively given by

k�ωy d� = �1− eiω�−d; f�ωy d� = 1
2π
�k�ωy d��2:

Set h�ωy d� = ∂f�ωy d�−1/∂d = �4 sin2�ω/2��d log�4 sin2�ω/2�� for ω 6= 0 and
set h�ωy d� = 0 for ω = 0. Now consider the pair �h�ωy d�; k�ωy d�� for a
fixed d, 0 < d < 1/2. It is evident that the pair satisfies Condition B(ii).
Set s�ω� = 4 sin2�ω/2� so that h�ωy d� = s�ω�d log s�ω�. Partition the torus
�−π;π� into two subsets �1 = �ω ∈ �−2ε;2ε�� and �2 = �ω 6∈ �−2ε;2ε��. If
ω ∈ �1, �h�ωy d� − h�ω + εy d�� ≤ �h�ωy d�� + �h�ω + εyd�� ≤ εc1 , due to the
boundedness of �s�ω��c2 log�s�ω�� for any small c2 > 0. On the other hand, if
ω ∈ �2, since s�ω�c3 is uniformly Lipschitz for any c3 > 0, so is the product in
view of the boundedness of �s�ω��c2 log�s�ω��. Thus Condition B(i) is satisfied.
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In order to show Condition B(iii), �ε� is assumed, without loss of generality, to
be sufficiently small so that ε+ a > 0 for some a such that

∫ π
−π
� log s�ω��4�s�ω��−4a dω <∞;

which is possible because both
∫ π
−π � log s�ω��8 dω and

∫ π
−π �s�ω��−8a dω are fi-

nite if a is small enough. Then Condition B(iii) is satisfied, since
∫ π
−π
��h�ωy d�� �k�ωy d+ ε� − k�ωy d��2�2 dω

≤
∫ π
−π
��s�ω�d log s�ω�� �s�ω�−d+ε − s�ω�−d��2 dω

=
∫ π
−π
� log s�ω�s�ω�−a�2�s�ω�a+ε − s�ω�a�2 dω

≤ c3ε
2:

We have the last inequality in view of the Schwarz inequality and the Taylor
expansion of s�ω�a+ε around ε = 0.

Lemma 1.1. Suppose that each pair of �g�1�α2α1; kαβ�, α = α1 or α2, and

�g�2�α4α3; kαβ�, α = α3 or α4, β = 1; : : : ; p, satisfies Condition B and suppose
that Assumption A(iii) holds. Then we have

lim
n→∞

nCov
{∫ π
−π
g�1�α2α1

�ω�Iα1α2
�z;ω�dω;

∫ π
−π
g�2�α4α3

�ω�Iα3α4
�z;ω�dω

}

= 2π
∫ π
−π
g�1�α2α1

�ω�g�2�α4α3�ω�fα1α3
�ω�fα2α4

�ω�dω

+ 2π
∫ π
−π
g�1�α2α1

�ω�g�2�α4α3�−ω�fα1α4
�ω�fα2α3

�ω�dω

+ 2π
∫ π
−π

∫ π
−π
g�1��ω1�g�2��−ω2�Qz

α1;:::;α4
�ω1;ω2;−ω2�dω1 dω2:

(1.4)

Remark 1.1. Fox and Taqqu (1987) gave a convergence result (1.4) in case
g and f are scalar-valued and the product gf is bounded. However, since
they exploit the Gaussian moment properties in such an essential way, their
approach does not seem to allow straightforward extension to non-Gaussian
cases.

Remark 1.2. Heyde and Gay (1993) gave a result similar to Lemma 1.1,
but without an explicit proof necessary for that. Although they claim the re-
lationship

lim
T→∞

TEGT;X�θ�G′T;X�θ� = 4π
∫ π
−π
f2
X�ω; θ�g�ω; θ�g′�ω; θ�dω;

to use their notation on pages 177–178, that does not seem to follow from their
Lemma 1.
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Since the process �z�t�� is assumed full rank and linearly regular, the spec-
tral density f has a factorization

f�ω� = 0�e−iω�0�e−iω�∗;
where 0�e−iω� is the boundary value of a q × q matrix-valued analytic func-
tion 0�z� in the unit disk [see Rozanov (1967)]. Using this 0, set k′�ω� =
0−1�e−iω�k�ω� and g′�ω� = 0�e−iω�∗g�ω�0�e−iω�. Let M be any integer such
that M ≥ 1.

Theorem 1.2. Suppose that the process �e�t�� satisfies Assumption A and

suppose that all the pairs �g�j�α1α2; kαβ� and �g′�j�α1α2
; k′αβ�, α1; α2 = 1; : : : ; q, α =

α1 or α2, β = 1; : : : ; p, j = 1; : : : ;M, satisfy Condition B. Moreover, assume
the pair �g�j�; f� satisfies (1.2) for some c > 1/2. Then, as n→∞,

�i�
∫ π
−π

tr�g�j��ω�In�z;ω��dω→
∫ π
−π

tr�g�j��ω�f�ω��dω

in probability.
(ii) The quantities

√
n
∫ π
−π

tr�g�j��ω��In�z;ω� − f�ω���dω; j = 1; : : : ;M;

have, asymptotically, a jointly normal distribution with zero mean vector and
covariance matrix whose �j; l� element is

4π
∫ π
−π

tr�g�j��ω�f�ω�g�l��ω�f�ω��dω

+ 2π
q∑

α1;:::;α4=1

∫ π
−π

∫ π
−π
g�j�α1α2

�ω1�g�l�α3α4
�ω2�Qz

α1;:::;α4
�−ω1;ω2;−ω2�dω1 dω2;

where the second member above is equal to

2π
p∑

β1;:::;β4=1

∫ π
−π

∫ π
−π
�k∗�ω1�g�j��ω1�k�ω1��β1β2

�k∗�ω2�g�l��ω2�k�ω2��β3β4

×Qe
β1;:::;β4

�ω1;ω2;−ω2�dω1 dω2:

Remark 1.3. Giraitis and Surgailis (1990) gave the clt for the quadratic
forms for the case where �z�t�� is a scalar-valued process and the innovations
�e�t�� are i.i.d. without the assumption of Gaussianity. However, they deal only
with the singularity of the type (0.1) with respect to long-range dependency
and besides they assume the convergence in (1.4) instead of establishing it.

Remark 1.4. There are cases where, even if the spectral density f is not
square-integrable or the pair �g;f� does not satisfy Condition B, the clt of
serial covariances or quadratic forms, respectively, is still valid. See Hosoya
(1993).
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2. The quasi-likelihood approach to statistical inference. This sec-
tion applies Theorems 1.1 and 1.2 for the derivation of the asymptotic prop-
erties of the QML estimate and the QLR statistics in long-range dependent
situations. The results are given for a somewhat wider class of statistics than
required. The asymptotic theory is based on the bracketing function method.

2.1. The quasi-likelihood function. For the purpose of statistical inference
on a q-dimensional stationary process �z�t�; t ∈ J� based on its finite realiza-
tion z�1�; : : : ; z�n� when the generating mechanism is unknown, suppose that
a parametric model which is structured by

z�t� =
∞∑
j=0

G�j;ψ�e�t− j�; t ∈ J;

is fitted where the matrices G�j;ψ� and the vectors e�t� are of the same size
as in (1.1), E�e�t�� = 0 and E�e�t�e�s�∗� = δ�t; s�K�ψ�. Suppose that ψ ∈ 9,
where 9 is a compact subset of Rs with nonempty interior. The coefficient
matrices G�j;ψ� are assumed to satisfy

∑∞
j=0 trG�j;ψ�K�ψ�G�j;ψ�∗ < ∞

and thus the fitted model process has a spectral density

f�ωy ψ� = 1
2π
k�ωy ψ�K�ψ�k�ωy ψ�∗; −π < ω ≤ π;

where k�ωy ψ� =∑∞j=0G�j;ψ�eiωj. For the sole purpose of deriving the quasi-
likelihood function, assume that the process �z�t�� is Gaussian. Choose the
frequencies ωj, j = 1; : : : ; n, equispaced in the torus �−π;π� in such a way
that f�ω� is continuous at ω = ωj. Then the finite Fourier transforms wn�ωj�,
j = 1; : : : ; n, have a complex-valued multivariate normal distribution and for
large n they are approximately independent, each with probability density
function

π−2�detf�ωjy ψ��−1/2 exp
[
− 1

2 tr�f−1�ωjy ψ�wn�ωj�wn�ωj�∗�
]
; j=1; : : : ; n

[see Hannan (1970), pages 224 and 225]. Sincewn�ωj�, j = 1; : : : ; n, constitute
a sufficient statistic for ψ, an approximate log-likelihood function of ψ based
on z�1�; : : : ; z�n� is given, up to constant multiplication, by

�2:1� −
n∑
j=1

�log detf�ωjy ψ� + trf−1�ωjy ψ�In�z;ωj��:

In integral form, (2.1) has the expression

�2:2� L̄n�ψ� = −n
[∫ π
−π

log detf�ωy ψ�dω+
∫ π
−π

tr�f−1�ωy ψ�In�zy ω��dω
]
:

The function L̄n�ψ� is called the quasi-log-likelihood function [the approxi-
mation was originally proposed by Whittle (1952) for scalar-valued stationary
processes; see also Dunsmuir and Hannan (1976) and Hosoya and Taniguchi
(1982)].
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Example 2.1. Consider a bivariate fractional ARIMA process �z1�t�; z2�t��
which is generated by
[
Ā11�L� Ā12�L�
Ā21�L� Ā22�L�

][
�1−L�d1

�1−L�d2

][
z1�t�
z2�t�

]
=
[
B̄11�L� B̄12�L�
B̄21�L� B̄22�L�

][
e1�t�
e2�t�

]
;

where �e1�t�; t ∈ J� and �e2�t�; t ∈ J� are white-noise processes with mean
0 and Cov�ei�t�; ej�s�� = δ�t; s�Kij; i; j = 1;2; the covariance matrix K =
�Kij� is assumed positive definite; moreover, 0 < dj < 1/2; j = 1;2, and
L is the backward shift operator. The polynomials Āij�L� and B̄ij�L� of L
are of order a and b, respectively, where Āij�L� =

∑a
k=0Aij�k�Lk such that

Ā�0� = I2 and det Ā�z� and det B̄�z� have all 0’s outside the unit circle. Let θ
be the vector whose components consist of d1; d2, the coefficients Aij�k� and
Bij�k�, and let µ be the vector �K11;K12;K22�∗. Define the parameter ψ by ψ =
�θ∗; µ∗�∗. The process �z�t�� then has the infinite-order MA representation:
[
z1�t�
z2�t�

]
=
[
�1−L�−d1

�1−L�−d2

][
Ā11�L� Ā12�L�
Ā21�L� Ā22�L�

]−1[
B̄11�L� B̄12�L�
B̄21�L� B̄22�L�

][
e1�t�
e2�t�

]

≡
[
Ḡ11�L;θ� Ḡ12�L;θ�
Ḡ21�L;θ� Ḡ22�L;θ�

][
e1�t�
e2�t�

]
;

where the infinite-order polynomials Ḡij�L� =
∑∞
k=0Gij�k; θ�Lk are deter-

mined by the last equation in (1.2) in view of the relationship

�1−L�−di = 1+
∞∑
k=1

0�di + k�
k!0�di�

Lk:

It is obvious that
∑∞
k=0 trG�k; θ�K�µ�G�k; θ�∗ <∞.

Example 2.2. Let Cd�z� be the analytic function, defined in the unit circle
of the complex plane, which is given by

Cd�z� =
√

2π exp
[

1
4π

∫ π
−π

log
{
�ω�−d e

−iω + z
e−iω − z

}
dω

]
; 0 < d < 1:

Then the boundary value Cd�eiω� of Cd�z� satisfies �Cd�eiω��2 = �ω�−d. Suppose
a bivariate process �z1�t�; z2�t�� is generated by

[
Ā11�L� Ā12�L�
Ā21�L� Ā22�L�

][
z1�t�
z2�t�

]
=
[
C̄d1
�L�

C̄d2
�L�

][
e1�t�
e2�t�

]
;

where Ā�L� is defined as in Example 2.1 and C̄d�L� is the lag polynomial gen-
erated by Cd�z�. Let K�µ� be the covariance matrix of e�t�. Then the spectral
density matrix has the representation

f�ωy ψ� = 1
2π
A�eiω�−1C�eiω�K�µ�C∗�eiω�A∗�eiω�−1;
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where

C�eiω� =
[
Cd1
�eiω� 0

0 Cd2
�eiω�

]
:

In this model the spectral densities of �z1�t�� and �z2�t�� have singularities
of the types �ω�−d1 and �ω�−d2 at zero frequency, respectively.

As will be seen in the following theorems, the functional dependency of the
component

∫ π
−π log detf�ωy ψ�dω in the quasi-log-likelihood function L̄�ψ� on

the parameter θ determining the coefficients G�j� plays an important role
in the determination of the asymptotic properties of the maximum-likelihood
estimate and the likelihood ratio statistic if the observation process is non-
Gaussian. To see this, consider the fractional ARIMA model given in Exam-
ple 2.1. Since, for that process, we have

∫ π
−π

log detA�eiω�dω =
∫ π
−π

log detB�eiω�dω =
∫ π
−π

log �1− eiω�dω = 0;

it follows that

�2:3�
∫ π
−π

log detf�ωy ψ�dω = 2πK�µ�:

In view of (2.3) the quasi-log-likelihood function is expressed, up to constant
multiplication, by

�2:4� L̃n�ψ� ≡ L̃n�θ;µ� = −n
[
2π detK�µ� +

∫ π
−π

tr�f−1�ωy ψ�In�ω; z��dω
]
y

whence the member on the left-hand side of (2.3) is independent of θ for frac-
tional ARIMA models. In case the quasi-log-likelihood is given by (2.4), the
likelihood ratio based on it has the usual χ2 asymptotic distribution if the
innovation process �e�t�� satisfies a suitable fourth-order moment condition
(Theorem 2.4). Otherwise, this asymptotic result is no longer valid. Consider
the process of Example 2.2, for which
∫ π
−π

log detf�ωy ψ�dω = const.− �d1 + d2�
∫ π
−π

log �ω�dω+ 2π log detK�µ�:

In this case the left-hand-side member is a function of d1 and d2. Thus (2.3)
is violated.

Example 2.3. Suppose that a bivariate process �z�t�� is generated by
[
z1�t�
z2�t�

]
=
[
�1−B�−d1 a�1−B�−d2

b�1−B�−d2 �1−B�d1

][
e1�t�
e2�t�

]
; d1 6= d2:

Namely, each of z1�t� and z2�t� is a sum of two types of fractional difference
processes. In general, the relation (2.3) does not hold for this kind of process,
either.
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The preceding examples illustrate that the quasi-likelihood function L̄n�ψ�
is preferred to L̃�ψ� as a general expression, since the former function bet-
ter approximates Gaussian likelihood functions while L̃n�ψ� does so only for
a limited class of long-memory time series. Statistical estimation theories so
far developed in the literature do not seem to make this distinction, giving
consequently the same asymptotic result originally given by Whittle [see Ya-
jima (1985), Fox and Taqqu (1986), Giraitis and Surgailis (1990) and Heyde
and Gay (1993)]. As Theorem 2.2 shows, if (2.3) is violated, the large-sample
theory based on the quasi-likelihood L̄n�ψ� produces distinctly different re-
sults according to whether observations are Gaussian or not, and this has a
consequence in the validity of the χ2 asymptotics of the likelihood ratio test.

2.2. The asymptotics of the quasi-maximum-likelihood estimate. Assume
henceforth that

∫ π
−π log detf�ωy ψ�dω is differentiable with respect to ψ and,

for each ω, f�ωy ψ�−1 is differentiable with respect to ψ almost everywhere.
The derivatives are denoted, respectively, by Hj�ψ�= ∂

∫ π
−πlog detf�ωy ψ�/∂ψj

and hj�ωy ψ� = ∂f−1�ωy ψ�/∂ψj and hj is assumed to be measurable with re-
spect to ψ a.e. ω. Here H�ψ� and tr�h�ωy ψ�f�ω�� represent, respectively, the
s-vectors whose jth elements are Hj�ψ� and tr�hj�ωy ψ�f�ω��. The hj�ωy ψ�
are assumed separable throughout.

Let Snj�ψ� be defined as

Snj�ψ� =Hj�ψ� +
∫ π
−π

tr�hj�ωy ψ�In�ω��dω; j = 1; : : : ; s;

and let Sn�ψ� be the vector �Snj�ψ��. A value ψ̂n such that Sn�ψ̂n� = 0 is said
to be a quasi-maximum-likelihood (QML) estimate of ψ. Consistency of the
QML estimate is established in Theorem 2.1 under the following assumption.

Assumption C. (i) The true process �z�t�� has a spectral density f�ω� =
�2π�−1k�ω�Kk�ω�∗ that satisfies:

(1)
∫ π
−π �kαβ�ω��2u dω <∞ for some u such that 1 < u ≤ 2;

(2) there exists c > 0 such that

�2:5� sup
�λ�<ε

max
α;β

���f−1�·��f�·� − f�· − λ���αβ��u = O�εc�:

(ii) For any ε > 0, there exist a > 0 and Hermitian matrix-valued bounded
functions h̃j and h̄j such that, if �ψ1 − ψ� < a,

h̃j�ω� ≤ hj�ω;ψ1� ≤ h̄j�ω�
and

�2:6� max
α;β
����h̄j�·� − h̃j�·��f�·��αβ��v < ε;

where the inequality A ≤ B implies that B −A is nonnegative definite and
v = �u− 1�/u for u given in (i)(2) above.
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(iii) Rj�ψ� ≡Hj�ψ� +
∫ π
−π tr�hj�ω;ψ�f�ω��dω has a unique zero for all j

at ψ = ψ0 where ψ0 is an interior point of 9.
(iv) Hj�ψ� is continuous on 9.

Remark 2.1. The assumption of Hermitian matrix-valued bracketing func-
tions is not essential, but it is assumed only for the sake of expositional sim-
plicity. Componentwise bracketing with respect to each real and imaginary
part of hj also works, but makes the exposition and proofs very tedious. The
same remark applies also to Assumption D.

Theorem 2.1. Suppose ψ̃n is a sequence of measurable functions of
�z�1�; : : : ; z�n�� taking values in 9 such that Sn�ψ̃n� → 0 in probability as
n→∞. Then, under Assumption C, ψ̃n tends to ψ0 in probability.

In order to deal with the clt of ψ̂n, the bracketing function approach is
employed in the following way, where u and v are set as in Assumption C.

Assumption D. (i) For some c > 1/2, the relationship (2.5) holds.

�ii� lim
r→0

sup
�ψ−ψ0�≤r

����hj�·; ψ� − hj�·; ψ0��f�·��αβ��v < c1

for some c1 > 0, j = 1; : : : ; s and α;β = 1; : : : ; q.
(iii) Given ε>0, there exist an integerm�ε�, a partitionU1�r�; : : : ;Um�ε��r�

of the ball in 9 with center ψ0 and radius r and square-integrable Hermitian
matrix-valued functions h̄ij�ω�; h̃ij�ω� such that, for all sufficiently small r and

for all j, h̃ij�ω� ≤ hj�ωy ψ� ≤ h̄ij�ω� if ψ is in Ui�r�. Also

���k∗�h̄ij − h0
j�k�β1β2

��v ≤ εr;

���k∗�h̃ij − h0
j�k�β1β2

��v ≤ εr;
(2.7)

where h0
j = hj�·; ψ0�.

(iv) �R�ψ�� ≥ a1�ψ−ψ0� for some a1 > 0 in a neighborhood of ψ0. Moreover,
Condition B holds for all the pairs �h̄jα2α1

; kαβ�, �h̃jα2α1
; kαβ� and �h0

jα2α1
; kαβ�,

where α = α1 or α2 and 1 ≤ β ≤ p.

Theorem 2.2. Suppose
√
nSn�ψ̃n� → 0 and ψ̃n −ψ0 → 0 in probability as

n → ∞, and Assumptions A, C and D hold. If R is differentiable at ψ = ψ0
and the matrix of the derivatives Wij = ∂Ri/∂ψj is denoted by W,

√
n�ψ̃n−ψ0�

has the asymptotic normal distribution with mean 0 and covariance matrix
W−1U�W∗�−1, where U is the matrix whose �j; `�th element is represented as

Uj` = 4π
∫ π
−π

tr�hj�ωy ψ0�f�ω�h`�ωy ψ0�f�ω��dω

+ 2π
p∑

β1;:::;β4=1

∫ π
−π

∫ π
−π
�k∗�ω1�hj�ω1y ψ0�k�ω1��β1β2

× �k∗�ω2�h`�ω2y ψ0�k�ω2��β3β4
Qe
β1;:::;β4

�ω1;ω2;−ω2�dω1 dω2:
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Example 2.4. Suppose that �z�t�� is a scalar-valued process with spectral
density f�ωy d�= �ω�−d, 0 < d < 1, and let d0 and d̂n be the true value and
the QML estimate, respectively. Let Cd�eiω� be the function defined in Ex-
ample 2.2 so that �Cd�eiω��2 = �ω�−d. For this model the quasi-likelihood is
given by

L̄n�d� = −
[
−d

∫ π
−π

log �ω�dω+
∫ π
−π
�ω�dIn�zyω�dω

]
;

whence R�ψ� in Theorem 2.2 has the expression

R�d� = −
∫ π
−π

log �ω�dω+
∫ π
−π
�log �ω���ω�d−d0 dω;

which has a unique zero d = d0. Moreover, W�ψ� is given by

W�d� = ∂V�d�/∂d =
∫ π
−π
�log �ω��2�ω�d−d0 dω;

so that W�d0� =
∫ π
−π�log �ω��2 dω. Accordingly, if the innovation �e�t�� of

this process satisfies Assumption A, Theorem 2.2 implies that
√
n�d̂n − d0�

is asymptotically normally distributed with mean 0 and with variance

{∫ π
−π
�log �ω��2 dω

}−2[
4π

∫ π
−π
�log �ω��2 dω

+ 2π
∫ π
−π

∫ π
−π

log �ω1� log �ω2�Qe�ω1;ω2;−ω2�dω1 dω2

]
;

whence if the fourth-order spectrum Qe vanishes as in the Gaussian case,
the variance reduces to 4π�

∫ π
−π�log �ω��2 dω�−1; otherwise, the reduction is not

justified.

Remark 2.2. Note that Theorem 2.2 is not far-reaching enough to cover
such nonregular statistical models which involve as an unknown parameter
the location of an unbounded peak of the spectral density. Suppose �z�t�� is a
scalar-valued process where the spectral density is given by f�ω� = c�ω−θ�−α,
where θ is the unknown parameter and c and α are positive constants, 0 <
α < 1. For such a model

hθ�ωy θ� ≡ df−1�ωy θ�/dθ =
{
cα�ω− θ�α−1; if ω > θ;
−cα�θ−ω�α−1; if ω < θ;

whence there do not exist bounded bracketing functions h̃ and h̄ such that
h̃�ω� ≤ hθ�ω; θ� ≤ h̄�ω� for any nonempty interval �θx �θ− θ0� < r�. However,
Theorem 2.2 applies to such cases where the locations of unbounded peaks are
known or, even if the locations of singularities are unknown, the singularities
produce only bounded peaks.
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Remark 2.3. All of the theorems of this paper are based on the assump-
tion that the fourth-order spectral density of the process �e�t�� is bounded.
Long-range dependence in fourth-order serial moments of �e�t�� and hence
the existence of singularities in the fourth-order spectra would produce
consequences different from the results of this paper. This problem remains
open.

2.3. The quasi-likelihood-ratio test. For testing purposes, it is desirable to
have a more specific characterization of the asymptotic distribution in The-
orem 2.2. Suppose now that the fitted model in the last subsection has the
following parametric structure: let 2 and M be compact subsets of Rl and
Rm with nonempty interior, respectively, and 9 = 2 ×M; s = l +my ψ =
�θ∗; µ∗�∗; G�j;ψ� = G�j; θ� and K�ψ� =K�µ�. Namely, the coefficients of the
linear process �z�t�� and the covariance of �e�t�� are separately parametrized.
In contrast to Theorem 2.2, the true process generating the observations is also
assumed to belong to this parametric model. Denote by �θ0; µ0� the true value
of �θ;µ�. Let 8 be the covariance matrix of the innovation of the model process
�z�ω��. Then, due to the known prediction theory of stationary processes, it
holds that

log det8 = 1
�2π�q

∫ π
−π

log detf�ω;ψ�dω:

Assumption E. The determinant det8 is functionally independent of θ,
namely, det8 = S�µ� for some function S of µ.

Remark 2.4. The relation (2.3) holds for a general q-dimensional fractional
ARIMA process with stationary ARMA part if each component process has
the same fractional-difference order. Thus Assumption E is satisfied for that
process, but not for the process exhibited in Example 2.2.

Assumption F. The joint fourth cumulant of ea�t1�; eb�t2�; ec�t3�; ed�t4� is
equal to κabcd if t1 = t2 = t3 = t4 and is equal to 0 otherwise.

Assumption G. (i) The hj�ωyψ� are jointly Borel measurable with respect
to �ω;ψ�;

(ii) there exists a neighborhood N of ψ0 such that
∫ π
−π � tr�hj�ωy ψ1� ·

f�ωy ψ2���dω is bounded for ψ1; ψ2 ∈N and j = 1; : : : ; l+m;
(iii) Vjk�ψ� ≡

∫ π
−π tr�f�ωy ψ�hj�ωy ψ�f�ωy ψ�hk�ωy ψ��dω is continuous at

ψ = ψ0 and the matrix V�ψ0� = �Vjk�ψ0�y 1 ≤ j; k ≤ l+m� is invertible;
(iv) limψ1→ψ

∫ π
−π �hj; αβ�ωy ψ1� − hj; αβ�ωy ψ��dω = 0; 1 ≤ α;β ≤ q.

Under these additional assumptions, the asymptotic covariance matrices in
Theorem 2.2 have more specific expressions. In particular, the matrix U in
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Theorem 2.2 has the following expression. If 1 ≤ j; k ≤ l, Ujk = 4πVjk, if
l+ 1 ≤ j; k ≤ l+m,

Ujk = 4πVjk +
∑

β1;:::;β4

1
�2π�2

[∫ π
−π
k∗�ω�hj�ωy ψ0�dω

]

β1β2

×
[∫ π
−π
k∗�ω�hk�ωy ψ0�dω

]

β3β4

and Ujk = 0 otherwise.

Theorem 2.3. Suppose that Assumptions A, C, D, E, F and G hold. Then√
n�θ̃n − θ0� and

√
n�µ̃n − µ0� are asymptotically independently normally dis-

tributed with mean 0 and the covariance matrices which are given, respectively,
by 4πV−1

�1� and V−1
�2�U�2�V

−1
�2�, where ψ̃n = �θ̃n; µ̃n� and V�1�;V�2�;U�2� are sub-

matrices of V and U such that V�1� = �Vijy 1 ≤ i; j ≤ l�, V�2� = �Vijy l+ 1 ≤
i; j ≤ l+m� and U�2� = �Ujky l+ 1 ≤ j; k ≤ l+m�.

Theorem 2.3 enables the derivation of the asymptotic χ2 distribution of the
quasi-likelihood-ratio statistic based on the quasi-likelihood function (2.2). As
Hosoya (1989b) pointed out, model selection problems often require testing
a null hypothesis in the presence of a hierarchy of alternative hypotheses.
In view of their application to such situations, a set of quasi-log-likelihood
ratio statistics is considered below instead of the conventional LR statis-
tic. Let 20 ⊂ 21 ⊂ · · · ⊂ 2r ⊂ 2 be nested sebsets of 2 such that, for
0 ≤ l0 < l1 < · · · < lr ≤ l,

2i = �θ ∈ 2; θj = 0 for li + 1 ≤ j ≤ l�; i = 0; : : : ; r:

This requirement can be imposed without loss of much generality since a
suitable transformation of 2 could reduce a hierarchical structure into the
above type. Now suppose that a null hypothesis is given by 20 ×M and the
hierarchy of alternative hypotheses is given by 2i ×M; i = 1; : : : ; r. Assume
that, for each i = 0;1; : : : ; r, there exists a sequence of statistics ψ̃n�i� =
�θ̃n�i�∗; µ̃n�i�∗�∗ ∈ 2i ×M such that:

1.
√
nSn�ψ̃n�i�� → 0 in probability as n→∞;

2. ψ̃n�i� → ψ0 = �θ∗0; µ∗0�∗ ∈ 20 ×M in probability as n→∞.

Define the quasi-log-likelihood ratios L̄n; ij by L̄n; ij = L̄n�θ̃n�i�; µ̃n�i�� −
L̄n�θ̃n�j�; µ̃n�j��, where L̄n is defined in (2.2).

Theorem 2.4. Suppose that Assumptions A, D, E, F and G hold. Then
L̄n;01; : : : ; L̄n;0r are asymptotically jointly distributed as −2π

∑i
j=1 χ

2
j; i =

1; : : : ; r, where the χ2
j’s are independent χ2 random variables with lj − lj−1

degrees of freedom.
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3. Proofs.

3.1. Proofs for Section 1.

Proof of Theorem 1.1. Let Kn�ω� be the Fejér kernel which is defined
by Kn�ω� = �sin�nω/2�/ sin�ω/2��2/n and let v = u/�u − 1�. For any h ∈ Lv
such that � h �v< 1, we have

∣∣∣∣
∫ π
−π
h�ω� tr

[
1

2π
g�ω�

{∫ π
−π
f�λ�Kn�ω− λ�dλ− f�ω�

}]
dω

∣∣∣∣

≤ 1
2π

∫ π
−π
Kn�ω��� tr�g�f− f−ω����u dω;

where f−ω is defined by f−ω�λ� = f�λ−ω�. On the other hand, it follows from
the relationship

Kn�ω� ≤ min��n+ 1�; c1/��n+ 1�ω2��

that

1
2π

∫ π
−π
Kn�ω� � tr�g · �f− f−ω�� �u dω

≤ n+ 1
2π

∫ 1/n

−1/n
� tr�g · �f− f−ω�� �u dω

+ c2

2π

∫
1/n≤�ω�≤π

� tr�g · �f− f−ω�� �u
�n+ 1�ω2

dω:

(3.1)

For sufficiently large n, (1.2) implies that

�3:2� n+ 1
2π

∫ 1/n

−1/n
� tr�g · �f− f−ω�� �u dω ≤

(
1
n

)cn+ 1
πn

:

On the other hand, for the second member on the right-hand side of (3.1), we
have

�3:3� 1
n+ 1

∫
1/n≤�ω�≤π

� tr�g · �f− f−ω�� �u /ω2 dω ≤ c3n
−c

[see Hosoya (1989a), page 408]. Then it follows from (3.2) and (3.3) that

�� tr�g�·���2π�−1
∫ π
−π
f�ω�Kn�· −ω�dω− f�·�����u = O�n−c�:

It follows from the Hölder inequality that
∣∣∣∣
∫ π
−π

tr�g�ω�E�In�z;ω�� − g�ω�f�ω��dω
∣∣∣∣

≤ c1

[∫ π
−π
� tr�g�ω��E�In�z;ω�� − f�ω����u dω

]1/u

:
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Since

E�In�z;ω�� =
1

2π

∫ π
−π
f�ω− λ�Kn�λ�dλ;

the desired result follows. 2

The next theorem is necessary in order to establish the clt of quadratic
forms in Theorem 1.2; it is given without proof [for the proof see Hosoya and
Taniguchi (1982, 1993), and for a related approach see Findley and Wei (1993)].
Denote by Czαβ�r�; 1 ≤ α;β ≤ q, the sample serial covariance constructed from
the partial realization �z�1�; : : : ; z�n��; namely, Czαβ�r� = �1/n�

∑n−r
t=1 zα�t� ×

zβ�t+ r� for 0 ≤ r ≤ n − 1 and Czαβ�r� = Czαβ�−r� for −n + 1 ≤ r ≤ 0. Denote
the population serial covariances by γzαβ�r� = E�zα�t�zβ�t+ r��.

Theorem 3.1. If Assumption A holds and if the spectral densities
fββ; β = 1; : : : ; q are square-integrable, then

√
n�Czα1α2

�r�−γzα1α2
�r��; α1; α2 =

1; : : : ; q; 0 ≤ r ≤ M, for any M ≥ 0 have the joint asymptotic normal
distribution whose mean is 0 and with asymptotic covariance between√
n�Czα1α2

�r1� − γzα1α2
�r1�� and

√
n�Czα3α4

�r2� − γzα3α4
�r2�� given as

2π
∫ π
−π

[
fα1α3

�ω�fα2α4
�ω� exp�−i�r2 − r1�ω�

+ fα1α4
�ω�fα2α3

�ω� exp�i�r1 + r2�ω�
]
dω

+ 2π
p∑

β1;:::;β4=1

∫ π
−π

∫ π
−π

exp�ir1ω1 + ir2ω2�kα1β1
�ω1�kα2β2

�−ω1�

× kα3β3
�ω2�kα4β4

�−ω2�Qe
β1;:::;β4

�ω1;−ω2;ω2�dω1 dω2:

Proof of Lemma 1.1. Since the proof is very involved, it is divided into
two separate lemmas (Lemmas 3.1 and 3.2) in what follows. For simplicity,
write g�1�α2α1 = g�1� and g�2�α4α3 = g�2� and also set

g̃�1��t� = 1
2π

∫ π
−π
g�1��ω�eitω dω;

g̃�2��t� = 1
2π

∫ π
−π
g�2��ω�eitω dω:

Then we have

nCov
{∫ π
−π
g�1��ω�Inα1α2

�z;ω�dω;
∫ π
−π
g�2��ω�Inα3α4

�z;ω�dω
}

= 1
n

n∑
t1;:::;t4=1

g̃�1��t1 − t2�g̃�2��t3 − t4��γzα1α3
�t3 − t1�γzα2α4

�t4 − t2�

+ γzα1α4
�t4 − t1�γzα2α3

�t3 − t2� + Q̃z
α1;:::;α4

�t2 − t1; t3 − t1; t4 − t1��:
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Now define ϕn and K�4�n , respectively, by

ϕn�ω� =
1√
2π

n∑
t=1

exp�itω�

and

K
�4�
n �ω1;ω2;ω3;ω4� =

1
n
ϕn�ω1�ϕn�ω2�ϕn�ω3�ϕn�ω4�

[K�4�n is regarded as the quadruple Fejér kernel in view of the properties
below]. In the following arguments, we frequently use the bound �ϕn�ω�� ≤
min �n/�2π�1/2; �π/2�1/2ω−1�. First, it is shown that, as n→∞,

Dn ≡
1
n

∑
g̃�1��t1 − t2�g̃�2��t3 − t4�γz�t3 − t1�γz�t4 − t2�

→ 2π
∫ π
−π
g�1��ω�g�2��ω�fα1α3

�ω�fα2α4
�ω�dω:

(3.4)

The convergence of

1
n

∑
g̃�1��t1 − t2�g̃�2��t3 − t4�γzα1α4

�t4 − t1�γzα2α3
�t3 − t2�

can be shown similarly and the proof is omitted. Now Dn is expressed as
follows:

Dn =
∑ 1
n�2π�2

∫
· · ·
∫

exp�i�t1 − t2�ω1� exp�−i�t3 − t4�ω2�

× exp�i�t3 − t1�ω3� exp�−i�t4 − t2�ω4�

× g�1��ω1�g�2��ω2�fα1α3
�ω3�fα2α4

�ω4�dω1 · · ·dω4

=
∫
· · ·
∫
K
�4�
n �ω1 −ω3;−ω1 +ω4;−ω2 +ω3;ω2 −ω4�

× g�1��ω1�g�2��ω2�fα1α3
�ω3�fα2α4

�ω4�dω1 · · ·dω4:

(3.5)

Since for any ω1 it holds that
∫ π
−π
· · ·
∫ π
−π
K
�4�
n �ω1 −ω3;−ω1 +ω4;ω2 −ω3;ω2 −ω4�dω2 dω3 dω4 = 2π;

we have the equality
∫ π
−π
g�1��ω1�g�2��ω1�fα1α3

�ω1�fα2α4
�ω1�dω1

=
∫ π
−π
· · ·
∫ π
−π

1
2π
K
�4�
n �ω1 −ω3;−ω1 +ω4;−ω2 +ω3;ω2 −ω4�

× g�1��ω1�g�2��ω1�fα1α3
�ω1�fα2α4

�ω1�dω1 dω2 dω3 dω4:

(3.6)
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Set λ2 = ω2 −ω1, λ3 = ω3 −ω1, λ4 = ω4 −ω1, and set

g�1��ω�g�2��λ2 +ω�fα1α3
�λ3 +ω�fα2α4

�λ4 +ω�

− g�1��ω�g�2��ω�fα1α3
�ω�fα2α4

�ω�

= g�1��ω��g�2��λ2 +ω� − g�2��ω��fα1α3
�λ3 +ω�fα2α4

�λ4 +ω�

+ g�1��ω�g�2��ω��fα1α3
�λ3 +ω� − fα1α3

�ω��fα2α4
�λ4 +ω�

+ g�1��ω�g�2��ω�fα1α3
�ω��fα2α4

�λ4 +ω� − fα2α4
�ω��

≡ C1 +C2 +C3:

Then, in view of (3.5) and (3.6), what is needed to prove (3.4) is the three
propositions given in the following lemma. Let D be the domain of integration
for �λ2; λ3; λ4�.

Lemma 3.1.

�3:7:j�
lim
n→∞

1
n

∫ π
−π

[∫
D
K
�4�
n �−λ3;−λ4;−λ2 + λ3; λ2 − λ4�Cj dλ2 dλ3λ4

]
dω=0;

j = 1;2;3:

Proof. In order to prove (3.7.1), set β so that 1/�2 + γ� < β < 1/2 and
define D1;D2;D3;D4, the subsets of D, as follows:

D1 = ��λ2; λ3; λ4� ∈ Dy �λ3 ± λ4� ≤ n−βy �λ2� ≤ 2n−β�;
D2 = the complement of D1 in D, D3 = ��λ3 ± λ4� ≤ n−β; �λ2� > 2n−β�;
D4 = ��λ3 + λ4� > n−β or �λ3 − λ4� > n−β�:

Then set

A1 =
∫ π
−π
dω

∫
D1

1
2πn

K4
n�−λ3;−λ4;−λ2 + λ3; λ2 − λ4�

× g�1��ω�
{
g�2��λ2 +ω� − g�2��ω�

}

× fα1α3
�λ3 +ω�fα2α4

�λ4 +ω�dλ2 dλ3 dλ4

and let A2;A3 be the integral for which the domain of integration D1 is re-
placed by D2 and D3, respectively. It follows from Condition B(i) that

�A1� ≤ c1n
−�1+γβ�

∫
�λ2±λ3�<n−β

�fα1α3
�λ3�fα2α4

�λ4��

×
{∫ π
−π
�ϕn�−λ3 +ω�ϕn�−λ4 +ω��dω

}

×
{∫ π
−π
�ϕn�−λ2 + λ3�ϕn�λ2 − λ4��dλ2

}
dλ3 dλ4
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≤ c2n
1−γβ

∫
�λ3±λ4�<n−β

�fα1α3
�λ3�fα2α4

�λ4��dλ3 dλ4

≤ c2n
1−�γβ+2β�;

where the last inequality is due to Condition B(ii). Since β > 1/�2+γ�; �A1� →
0 as n→∞. For �λ2; λ3; λ4� ∈ D2, we have the inequality

∫
�λ2�>2n−β

�ϕn�−λ2 + λ3�ϕn�λ2 − λ4��dλ2

≤
∫
�λ2�>2n−β

�ϕn�−λ2�ϕn�λ2 + �λ3 − λ4���dλ2 = O�nβ�y

hence

�A2� ≤ c4n
β
∫
�λ3±λ4�<n−β

�fα1α3
�λ3�fα2α4

�λ4��dλ3 dλ4 ≤ c5n
βn−2β:

Thus it is concluded that limn→∞ �A2� = 0. For �λ3 − λ4� > n−β, we have
∫ π
−π
�ϕn�−λ3 +ω�ϕn�−λ4 +ω��dω

∫ π
−π
�ϕn�−λ2 + λ3�ϕn�λ2 − λ4��dλ2

= O�n−2β�;

and the same relationship holds for �λ3+λ4� > n−β as is seen by changing the
variable λ3 to −λ3 in the above integral. Consequently, �A3� ≤ c6n

2β/n, and
then since β < 1/2, limn→∞ �A3� = 0. Similarly, we have �A4� → 0. This proves
(3.7.1).

In order to deal with (3.7.2), note first that we have the relationship
∫ π
−π
K4�−λ3;−λ4;−λ2 + λ3; λ2 − λ4�dλ2 =

√
2πϕn�−λ3�ϕn�−λ4�ϕn�λ3 − λ4�;

because
∫ π
−π
ϕn�−λ2 + λ3�ϕn�λ2 − λ4�dλ2

= 1
2π

∫ π
−π

n∑
t=1

n∑
t1=1

exp�i�t− t1�λ2� exp�itλ3� exp�−it1λ4�dλ2

=
n∑
t=1

exp�it�λ3 − λ4��:

Now set

F1�λ3� =
∫ π
−π
�g�1��ω�� �fα1α3

�λ3 +ω� − fα1α3
�ω��dω

and

F2�ω;λ3� =
∫ π
−π
�fα2α4

�λ4 +ω�� �ϕn�−λ4�ϕn�λ3 − λ4��dλ4:
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If �λ3� ≥ n−β, F1�λ3� is bounded and

�F2�ω;λ3�� ≤
[∫ π
−π
�fα2α4

�λ4 +ω��u dλ4

]1/u

×
[∫ π
−π
�ϕn�−λ4�ϕn�λ3 − λ4��vdλ4

]1/v

;

(3.8)

where v = u/�u − 1�. Since the first factor above is bounded and the second
factor is O�nβ+�v−1�/v�, it follows that, if D′ and D′′ are the subdomains of
integration with respect to �λ2; λ3; λ4� in which �λ3� ≥ n−β and �λ3� < n−β,
respectively,

∣∣∣∣
1
n

∫ π
−π

∫
D′
Kn�−λ3; λ4;−λ2 + λ3; λ2 − λ4�C2 dλ2 dλ3 dλ4 dω

∣∣∣∣

=
∣∣∣∣
2π
n

∫ π
−π

∫
D′
g�1��ω�g�2��ω��fα1α3

�λ3 +ω� − fα1α3
�ω��fα2α3

�λ4 +ω�

× ϕn�−λ3�ϕn�−λ4�ϕn�λ3 − λ4�dωdλ3 dλ4

∣∣∣∣

≤ c8

n

∫
�λ3�≥n−β

dλ3

∫ π
−π
�ϕn�−λ3�F1�λ3�F2�ω;λ3��dω

≤ c9n
β+��v−1�/v�−1

∫
�λ3�≥n−β

�ϕn�−λ3��dλ3

≤ c10n
2β+��v−1�/v�−1 log n:

(3.9)

Hence, if β is set this time so as to satisfy 0 < β < �2v�−1, the left-hand-side
member of (3.9) can be made arbitrarily small for sufficiently large n. Consider
then the case �λ3� < n−β. The domain of integration D′′ is divided into two
parts D′′�1� = ��λ3; λ4� ∈ D′′y �λ4� ≥ 2n−β� and D′′�2� = �D′′y �λ4� ≤ 2n−β�. The
integration on D′′�1� can be dealt with quite similarly as above in view of the
inequalities:
∫
n−β≤�λ4�≤π

�fα2α4
�λ4 +ω�� �ϕn�−λ4�ϕn�λ3 − λ4��dλ4

≤
[∫ π
−π
�fα2α4

�λ4 +ω��u dλ4

]1/u[∫
�λ3−λ4�≥n−β

�ϕn�−λ4�ϕn�λ3 − λ4��v dλ4

]1/v

= O�nβ+�v−1�/v�:

In order to consider the integration on D′′�2�, set

1
n

∫ π
−π

∫
D′′�2�

g�1��ω�g�2��ω��fα1α3
�λ3 +ω� − fα1α3

�ω��fα2α4
�λ4 +ω�

× ϕn�−λ3�ϕn�−λ4�ϕn�λ3 − λ4�dωdλ3 dλ4



INFERENCE ON LONG-RANGE DEPENDENCE 127

= 1
n

∫ π
−π

∫
D′′�2�

g�1��ω��g�2��ω���fα1α3
�λ3 +ω� − fα1α3

�ω��

× �fα2α4
�λ4 +ω� − fα2α4

�ω��
× ϕn�−λ3�ϕn�−λ4�ϕn�λ3 − λ4�dωdλ3 dλ4

+ 1
n

∫ π
−π

∫
D′′�2�

g�1��ω�g�2��ω��fα1α3
�λ3 +ω� − fα1α3

�ω��fα2α4
�ω�

× ϕn�−λ3�ϕn�−λ4�ϕn�λ3 − λ4�dωdλ3 dλ4

≡ E1 +E2:

By the Schwarz inequality and Condition B(iii), there exists c11 > 0 such that
∫ π
−π
�g�1��ω��fα1α3

�λ3 +ω� − fα1α3
�ω���

× �g�2��ω��fα2α4
�λ4 +ω� − fα2α4

�ω���dω
≤ c11�λ3�γ1 �λ4�γ2 :

(3.10)

Moreover, we have

�3:11�
∫
�λ3�≤n−β

�λ3�γ1 �ϕn�−λ3�ϕn�λ3 − λ4��dλ3 = O�n1−βγ1�

and

�3:12�
∫
�λ4�≤2n−β

�λ4�γ1 �ϕn�−λ4��dλ4 = O�n−βγ1�:

Therefore, it follows that �E1� = O�n−2βγ1�. As for E2, in view of the Schwarz
inequality and Conditions B(iii) and (iv), we have

∣∣∣∣
∫ π
−π
g�1��ω�g�2��ω��fα1α3

�λ3 +ω� − fα1α3
�ω��fα2α4

�ω�dω
∣∣∣∣ = O��λ3�−γ1�:

Hence, since
∫ π
−π �ϕn�λ4��dλ4 = O�log n�, it follows from (3.11) that �E2� ≤

c13n
−1�log n�n1−γ1β = o�1�. This completes the proof of (3.7.2). Finally, since

g�1��ω� is essentially bounded, and ��g�1�fα1α3
��v <∞, and also since

∫ π
−π

∫ π
−π
Kn�−λ3;−λ4;−λ2 + λ3; λ2 − λ4�dλ2 dλ3 = �2π�2�ϕn�−λ4��2;

it follows that
∣∣∣∣
∫
· · ·
∫
g�1��ω�g�2��ω�fα1α3

�ω��fα2α4
�λ4 +ω� − fα2α4

�ω��

×Kn�−λ3; λ3;−λ2 + λ3; λ2 − λ4�dωdλ2 dλ3 dλ4

∣∣∣∣
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≤ c14

n

∫ π
−π

∫
G1

g�1��ω�g�2��ω�fα1α3
�ω��fα2α4

�λ4 +ω� − fα2α4
�ω��

× �ϕn�−λ4��2 dλ4 dω

+ c15

n

∫
G2

��g�2��·��fα2α4
�· + λ4� − f�·����2�ϕn�−λ4��2 dλ4

≡ F1 +F2;

where G1 = �n−�1−ε�/2 < �λ4� ≤ π� and G2 = ��λ4� ≤ n−�1−ε�/2� for some
sufficiently small positive ε. Then it evidently follows that F1 = O�n−ε�. As
for F2, we have

F2 ≤
c15

n

∫
G2

�λ4�γ1 �ϕn�−λ4��2 dλ4 ≤
c16

n
n1−γ1 = O�n−γ1�:

This proves (3.7.3). 2

Lemma 3.2. IfQe�ω1;ω2;ω3� is uniformly γ2-Lipschitz, γ2 > 0, g�1��ω� and
g�2��ω� are essentially bounded, and if Conditions B(i) and (iii) hold,

lim
n→∞

1
n

n∑
t1;:::;t4=1

g̃�1��t1 − t2�g̃�2��t3 − t4�Q̃z
α1;:::;α4

�t2 − t1; t3 − t1; t4 − t1�

=
∫ π
−π

∫ π
−π
g�1��ω1�g�2��ω2�Qz

α1;:::;α4
�ω1;ω2;−ω2�dω1 dω2:

Proof. What is required to show is that

∫ π
−π

∫ π
π
�g�1��ω1�g�2��ω2�� �Qz

α1;:::;α4
�ω1 + λ3;−ω2 + λ4;ω2 + λ5�

−Qz
α1;:::;α4

�ω1;−ω2;ω2��dω1 dω2

is bounded in �λ3; λ4; λ5� and its supremum for �λj� < ε is of the order O�εγ2�
for some γ2 > 0. Since

Qz
α1;:::;α4

�ω1;ω2;ω3� =
p∑

β1;:::;β4=1

kα1β1
�ω1 +ω2 +ω3�kα2β2

�−ω1�kα3β3
�−ω2�

× kα4β4
�−ω3�Qe

β1;:::;β4
�ω1 +ω2 +ω3;ω2;ω3�;

the difference Qz
α1;:::;α4

�ω1 + λ3;−ω2 + λ4;ω2 + λ5� −Qz
α1;:::;α4

�ω1;−ω2;ω2� is
expressed as the sum of the product terms, for example, such as

�kα1β1
�ω1 + λ3 + λ4 + λ5� − kα1β1

�ω1 + λ4 + λ5��kα2β2
�−ω1 − λ3�kα3β3

�ω2 − λ4�
× kα4β4

�−ω2 − λ5�Qe
β1;:::;β4

�ω1 + λ3;−ω2 + λ4;ω2 + λ5�
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and

kα1β1
�ω1�kα2β2

�−ω1�kα3β3
�ω2�kα4β4

�−ω2�
× �Qe

β1;:::;β4
�ω1;−ω2;ω2 + λ5� −Qe

β1;:::;β4
�ω1;−ω2;ω2��:

The former product, however, is seen to be in modulus less than or equal to

c11

∫ π
−π
�kα1β1

�ω1 + λ3 + λ4 + λ5� − kα1β1
�ω1 + λ4 + λ5��2g�1��ω1�dω1

in view of the Schwarz inequality. Then Conditions B(i) and (iii) imply the
required result. For the latter, the Schwarz inequality and the uniform Lip-
schitz condition imply that it is of the orderO�εγ2� in modulus for �λ5� < ε. The
boundedness can be proved quite similarly by means of the Schwarz inequality
and the boundedness of Qe. 2

Proof of Theorem 1.2. Set f′�ω� = 0−1�e−iω�f�ω�0−1�e−iω�∗ where, in
view of the construction, f′�ω� is equal a.e. to the identity matrix. Also de-
fine the coefficients G′�j� by k′�ω� ≡ ∑

G′�j�eiωj, and define a new process
�z′�t�; t ∈ J� by z′�t� = ∑∞

j=0G
′�j�e�t − j�. It is evident in view of the as-

sumptions of this theorem and Theorem 1.1 that

lim
n→∞
√
n
∫ π
−π

tr�g�j��ω�E�In�z;ω�� − g�j��ω�f�ω��dω

= lim
n→∞
√
n
∫ π
−π

tr�g�j��ω�E�In�z′;ω�� − g′�j��ω�f′�ω��dω = 0:
(3.13)

It is shown below that
√
n
∫ π
−π tr�g�j��ω�In�z;ω� − g�j��ω�f�ω��dω has the

same asymptotic distribution as
√
n
∫ π
−πtr�g′�j��ω�In�z′;ω�−g′�j��ω�f′�ω��dω.

In order to see this, let �z̃�t�� be the joint process �z�t�; z′�t��; then, in view
of the construction of �z′�t��, the process �z̃�t�� has a joint spectral density
matrix

f̃�ω� =
[
f�ω� h�ω�∗
h�ω� f′�ω�

]
where h�ω� = 0�e−iω�−1f�ω�:

Let g̃�j��ω� be the matrix of the form either

g̃�j��ω� =
[
g�j��ω� 0

0 0

]
or g̃�j��ω� =

[
0 0

0 g′�j��ω�

]
;

and apply Lemma 1.1 to the quadratic form

√
n
∫ π
−π

tr�g̃�j��ω�In�z̃; ω� − g̃�j��ω�f̃�ω��dω; j = 1; : : : ; s:
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For example,

lim
n→∞

nCov
[∫ π
−π

tr�g�j��ω�In�z; x��dω;
∫ π
−π

tr�g′�j��ω�In�z′; x��dω
]

= 4π
∫ π
−π

tr�g�j��ω�h�ω�g�j��ω�h�ω��dω

+ 2π
p∑

β1;:::;β4=1

[∫ π
−π

∫ π
−π
�k�ω1�∗g�j��ω1�k�ω1��β1β2

× �k�ω2�∗g�j��ω2�k�ω2��β3β4

×Qe
β1;:::;β4

�−ω1;ω2;−ω2�dω1 dω2

]
:

Now it follows from the equalities

tr�g�j��ω�f�ω�g�j��ω�f�ω�� = tr�g′�j��ω�f′�ω�g′�j��ω�f′�ω��
= tr�g�j��ω�h�ω�∗g�j��ω�h�ω��

and

k�ω�∗g�j��ω�k�ω� = k′�ω�∗g′�j��ω�k′�ω�
that

lim
n→∞

nVar
[∫ π
−π

tr�g�j��ω�In�z;ω��dω
]

= lim
n→∞

nVar
[∫ π
−π

tr�g′�j��ω�In�z′;ω��dω
]

= lim
n→∞

nCov
[∫ π
−π

tr�g�j��ω�In�z;ω��dω;
∫ π
−π

tr�g′�j��ω�In�z′;ω��dω
]

= 4π
∫ π
−π

tr�g�j��ω�f�ω�g�j��ω�f�ω��dω

+ 2π
p∑

β1;:::;β4=1

[∫ π
−π

∫ π
−π
�k�ω1�∗g�j��ω1�k�ω1��β1β2

× �k�ω2�∗g�j��ω2�k�ω2��β3β4

×Qe
β1;:::;β4

�ω1;ω2;−ω2�dω1 dω2

]
:

(3.14)

The equalities (3.13) and (3.14) imply that the variance of the difference be-
tween

√
n
∫ π
−π

tr�g�j��ω�In�z;ω� − g�j��ω�f�ω��dω
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and
√
n
∫ π
−π

tr�g′�j��ω�In�z′;ω� − g′�j��ω�f′�ω��dω

tends to 0 as n→∞ for each j so that the former quantities for j = 1; : : : ; s
have the same joint asymptotic distribution as the latter. On the other hand,
the process �z′�t�� satisfies the conditions of Theorem 3.1, so that the quanti-
ties

√
n
∫ π
−π

tr�g′�j��ω�In�z′;ω� − g′�j��ω�f′�ω��dω; j = 1; : : : ; s;

are seen to have the limit normal distribution with mean 0 and covariance
matrix determined by the formula (1.4) in view of Lemma 1.1 and the Berstein
lemma [see Hannan (1970), page 242]. This completes the proof. 2

3.2. Proofs for Section 2.

Lemma 3.3. If gα2α1
�ω� is essentially bounded and fα1α2

�ω� is in Lu, u > 1,
then

lim
n→∞

Var
{∫ π
−π
gα2α1

�ω�Iα1α2
�z;ω�dω

}
= 0:

Proof. It follows from (3.5) that
∣∣∣∣n
−2∑ g̃α1α2

�t1 − t2�g̃α1α2
�t3 − t4�γzα1α1

�t3 − t1�γzα2α2
�t4 − t2�

∣∣∣∣

≤ n−1
∫ π
−π
· · ·
∫ π
−π
�K4�ω1 −ω3;−ω1 +ω4;−ω2 +ω3;ω2 −ω4��

× �fα1α1
�ω3�fα2α2

�ω4��dω1 · · ·dω4

≤ n−1
∫ π
−π
· · ·
∫ π
−π
�ϕn�−ω2 +ω3�� �ϕn�ω2 −ω4��

× �fα1α1
�ω3�fα2α2

�ω4��dω2 dω3 dω4;

where, by means of the decomposition of the domain of integration into ��ω3−
ω4� ≤ n−1/2� and ��ω2 −ω4� > n−1/2� and by an argument similar to the proof
of Lemma 3.1, the last member in the above inequalities is seen to be of order
o�1�. In the same way, we have

∣∣∣∣n
−2∑ g̃α1α2

�t1 − t2�g̃α1α2
�t3 − t4�γzα1α2

�t4 − t1�γzα2α1
�t3 − t2�

∣∣∣∣ = o�1�:

As for the member involving the fourth-order cumulants,
∣∣∣∣n
−2

n∑
t1;:::;t4=1

g̃α1α2
�t1 − t2�g̃α1α2

�t3 − t4�Q̃z
α1α2α1α2

�t2 − t1; t3 − t1; t4 − t1�
∣∣∣∣

≤ n−1 ∑
β1;:::;β4

∫
· · ·
∫
�K�4��ω1 −ω3 −ω4 −ω5;

−ω1 +ω3;ω2 +ω4;−ω2 +ω5��
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× �kα1β2
�ω3 +ω4 +ω5�kα2β2

�−ω3�kα1β3
�−ω4�kα2β4

�−ω5��dω1 · · ·dω5

≤ c1n
−1 ∑

β1;:::;β4

∫
· · ·
∫
�ϕ�ω2 +ω4�ϕ�−ω2 +ω5��

× �kα1β1
�−ω4�kα2β4

�−ω5��dω2 dω4 dω5:

Again, by means of the decomposition of the domain of integration into ��ω4−
ω5� ≤ n−1/2� and ��ω4 − ω5� > n−1/2�, the last member is seen to be of order
o�1�, since kα1β3

; kα2β4
∈ L2u for some u > 1. 2

Proof of Theorem 2.1. Given ε1 > 0, let B�a�ψ�� be the open ball
�ψ1x �ψ1 − ψ� < a�ψ�� and let ĥj�ω� and h̃j�ω� be the bracketing functions
which satisfy (2.2) for ε1 and a = a�ψ�. Then we have

sup
B�a�ψ��

�Snj�ψ1� −Snj�ψ�� ≤ sup
B�a�ψ��

�Hj�ψ1� −Hj�ψ��

+
∫ π
−π

tr��h̄j�ω� − h̃j�ω��f�ω��dω

+
∫ π
−π

tr�h̄j�ω� − h̃j�ω���In −E�In��dω

≤ c1ε1 + op�1�;
so that

sup
B�a�ψ��

�Sn�ψ1� −Sn�ψ�� ≤ c1sε1 + op�1�:

Since R�ψ� is continuous due to Assumption C, given an open neighborhood
N of ψ0, there is ε2 > 0 such that inf9/N �R�ψ�� > ε2. Suppose that Bj =
B�r�ψj��; j = 1; : : : ; k, is an open finite subcover of 9/N. Then

inf
9/N
�Sn�ψ�� ≥ inf

j
�R�ψj�� − sup

Bj

�Sn�ψ�� + sup
j

�Sn�ψj� −R�ψj��

≥ ε2 − c1sε1 + op�1�;
since supj �Sn�ψj� − R�ψj�� → 0 in probability in view of Lemma 3.3. Now
choose ε1 so that ε2 − c1sε1 > 0 and set ε = ε2 − c1sε1. Then the proof is
complete. 2

The next lemma constitutes the main part of Theorem 2.2.

Lemma 3.4.
√
n�Sn�ψ0� + R�ψ̃n�� → 0 in probability as n → ∞ if√

nSn�ψ̃n� → 0 in probability and Pr��ψ̃n − ψ0� ≤ d0� → 0 as n → ∞ given
any sufficiently small d0 > 0.

Proof. It is shown below that in probability

�3:15� sup
�ψ−ψ0�≤d0

�Sn�ψ� −Sn�ψ0� −R�ψ��/�n−1/2 + �R�ψ��� → 0
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as n → ∞. Then the lemma follows from it by an argument quite similar to
that given by Huber (1967), page 230. For the sake of notational simplicity,
denote hj�ω;ψ� − hj�ω;ψ0� by h − h0 and set Tn�g� =

∫ π
−π tr��g − h0��In −

E�In���dω. Also set d0 = 1 without loss of generality. Notice in the inequality

sup
�ψ�≤1

∣∣∣∣
∫ π
−π

tr��h− h0��In − f��dω
∣∣∣∣

≤ sup
�ψ�≤1
�Tn�h�� + sup

�ψ�≤1

∣∣∣∣
∫ π
−π

tr��h− h0��EIn − f��dω
∣∣∣∣;

the second member on the right-hand side is bounded by

c1

q∑
α;β=1

����h− h0�f�αβ��v���f−1�EIn − f��βα��u;

where, by Assumption C(ii), ����h − h0�f�αβ��u < c2 for some c2 > 0 and
���f−1�EIn − f��βα��uu = O�n−c� for some c > 1/2 in view of Assumption D(i)
and Theorem 1.1. Therefore, it suffices to show that, as n→∞,

sup
�ψ�≤1
�Tn�h��/�n−1/2 + �R�ψ��� → 0:

Choose l0 such that n/2 < 4l0+1 < n and let B�l� be the ball with center ψ0 and
radius 2−l, l = 0;1; : : : ; l0, and let A�l� denote the difference B�l − 1�\B�l�.
Given ε > 0, let U1; : : : ;Um be a partition of A�l� which satisfies (2.7) for
ε′ determined below. Set Q�2−l� = maxβ1β2

����k∗�h̄i − h0�k�β1β2
��v + ���k∗�h̃i −

h0�k�β1β2
��v�. Now in view of the property that the product of nonnegative

definite Hermitian matrices is nonnegative definite, we have, for a pair of
Hermitian bracketing functions h̄ij and h̃ij,

Tn�h� ≤ Tn�h̄i� +
∫ π
−π

tr��h̄i − h̃i�E�In��dω;

whereas, for ψ ∈ Ui, it follows from Assumption D(iii) that
∣∣∣∣
∫ π
−π

tr��h̄i − h̃i�E�In��dω
∣∣∣∣

≤ �� tr��h̄i − h̃i�f���v�� tr�f−1�E�In� − f����u + �� tr��h̄i − h̃�f���1

≤
(
c1ε

4

)
2−l;

since

�� tr��h̄i − h̃�f���1 ≤ �� tr��h̄i − h̃�f���v
≤ c1 max

β1β2

����k∗�h̄i − h0�k�β1β2
��v + ���k∗�h̃i − h0�k�β1β2

��v�:
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Therefore, in view of Assumption D(iii), we have

Pr
[
sup
A�l�

Tn�h�/�n−1/2 + �R�ψ��� > ε
]

≤m�ε′�max
i

Pr
{√
nTn�h̄i� > εa1

√
n2−�l+1�}:

(3.16)

It follows from the asymptotic covariance formula of Theorem 3.1 that, for
sufficiently large n,

Var�Tn�h̄i�� ≤ c2

[
max
α1α2

����h̄i − h0�f�α1α2
��22

+max
β1β2

���k∗�h̄i − h0�k�β1β2
��22
]

≤ c3Q�2−l�:
Thus, in view of the Schwarz inequality, the right-hand-side member in (3.16)
is not greater than

m�ε′�c3Q�2−l�/�εa1
√
n2−�l+1��2 =m�ε′�c3Q�2−l�4l+1/�nε2�:

A similar bound can be given to Pr�infA�l�Tn�h� > −ε� by the bracketing
method and consequently we have

Pr
[
sup
A�l�
�Tn�h��/�n−1/2 + �R�ψ��� > ε

]
≤ 8m�ε′�c3Q�2−l�4l/�nε2�:

Furthermore, it is shown in a similar way that

Pr
[
sup
B�l0�
�Tn�h��/�n−1/2 + �R�ψ��� > ε

]
≤ c3Q�2−l0�/ε2:

Set l′ and ε′ such that, for l ≥ l′, 8m�ε′�c3Q�2−l�/ε2 < ε. Then

Pr
[
sup
B0

�Tn�h��/�n−1/2 + �R�ψ��� > ε
]

≤
( l′−1∑
l=0

+
l0∑
l′

)
Pr
[
sup
A�l�
�Tn�h��/�n−1/2 + �R�ψ��� > ε

]

+ Pr
[
sup
B�l0�
�Tn�h��/�n−1/2 + �R�ψ��� > ε

]

≤ 8m�ε′�c3Q�1��4l
′ − 1�/�3nε2� + ε�4l0+1 − 1�/�3n� + c3Q�2−l0/ε2�:

Since l′ is independent of n, the first and the third terms above tend to 0 as
n→∞ and the second term is less than ε, whence the lemma follows. 2

Proof of Theorem 2.2. Theorem 1.2 implies that, under the assumptions
of Theorem 2.2,

√
nSn�ψ0� tends to a multivariate normal distribution with

mean 0 and with covariance matrix U. Then the theorem is the immediate
consequence of Lemma 3.4. 2
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Proof of Theorem 2.3. The theorem is a specific case of Theorem 2.2, and
the proof proceeds similarly to Hosoya (1989a), pages 414 and 415. The latter
result is extended straightforwardly to non-square-integrable f�ω;ψ� under
Assumption D. 2

Proof of Theorem 2.4. Assumption D(iv) implies that, in a neighborhood
of ψ0,

∂L̄n/∂ψj = −n
[
Hj�ψ� +

∫ π
−π

tr�hj�ωyψ�In�zyω��dω
]
:

Set ψt�l� = tψ0 + �1− t�ψ̃n�l�. Then, for i = 0; : : : ; r,

L̄�ψ̃n�i�� − L̄�ψ0� =
l+m∑
j=1

∫ 1

0

√
n�Snj�ψt� −Snj�ψ̃n�i���dt

√
n�ψ̃n − ψ0�j + op�1�

= 1
2

∑
j

∑
k

Vjk

√
n�ψ̃n�i� − ψ0�j

√
n�ψ̃n�i� − ψ0�k + op�1�;

where the last equality holds in view of Lemma 3.4. Therefore, Theorem 2.3
implies that

L̄n;0i = �L̄n�ψ̃n�0�� − L̄n�ψ0�� − �L̄n�ψ̃n�i�� − L̄n�ψ0��

has the same asymptotic distribution as

− 1
2

{ li∑
j;k=1

Vjk�i�√nSnj�ψ0�
√
nSnk�ψ0� −

l0∑
j;k=1

Vjk�0�√nSnj�ψ0�
√
nSnj�ψ0�

}
;

where V�i� = �Vij; i; j = 1; : : : ; li�; and Vjk�i� signifies the �j; k� ele-
ment of V�i�−1. Let C be a lower-triangular real matrix such that C∗C =
4πV−1. Let C�i� be the triangular matrix �Cj; ky j; k = 1; : : : ; li�. Set v�n� =
C−1√nS̄n�ψ0�, where S̄n�ψ0� is the vector �Snj�ψ0�; j = 1; : : : ; li�. Then The-
orem 2.3 implies that the vj�n�; j = 1; : : : ; li, are asymptotically indepen-
dently standard normally distributed. Denote by v�i��n� the column li-vector
�vj�n�; j = 1; : : : ; li�. Then, since

L̄n;0i = − 1
2

{
v�i��n�C�i�∗−1V�i�−1C�i�−1v�i��n�
− v�0��n�∗C�0�∗−1V�0�−1C�0�−1v�0��n�

}

= −2π
li∑

j=l0+1

vj�n�2;

the theorem follows. 2
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