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A limitation of the diagnostic-odds ratio in
determining an optimal cut-off value for a
continuous diagnostic test
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Science, University of Miinster, Germany and Valentin Patilea Centre de
Mathématiques—-IRMAR, Institut National des Sciences Appliquées (INSA) de Rennes, France

The article considers the diagnostic odds ratio, a special summarising function of specificity and sensitivity
for a given diagnostic test, which has been suggested as a measure of diagnostic discriminatory power. In
the situation of a continuous diagnostic test a cut-off value has to be chosen and it is a common practice to
choose the cut-off value on the basis of the maximised diagnostic odds ratio. We show that this strategy is
not to be recommended since it might easily lead to cut-off values on the boundary of the parameter range.
This is illustrated by means of some examples. The source of the deficient behaviour of the diagnostic odds
ratio lies in the convexity of the log-diagnostic odds ratio as a function of the cut-off value. This can easily
be seen in practice by plotting a non-parametric estimate of the log-DOR against the cut-off value. In fact,
it is shown for the case of a normal distributed diseased and a normal distributed non-diseased population
with equal variances that the log-DOR is a convex function of the cut-off value. It is also shown that these
problems are not present for the Youden index, which appears to be a better choice.

1 Introduction and background

We are interested in the diagnostic test accuracy of a diagnostic test B for diagnos-
ing the presence of a specific condition. A typical setting is described as follows.
The outcome of B is binary where B =1 indicates the presence of the condition
(test is positive) and B = 0 indicates the absence of the condition. Here the objec-
tive lies in determining the discriminating power of the diagnostic test in separating
persons with a specific condition (diseased) from those without this condition (non-
diseased). Widely, two measures of diagnostic accuracy are considered: the sensitiv-
ity defined as S+ = Pr(test positive|diseased) = (1 — B) and the specificity defined as
S— = Pr(test negative|non-diseased) = (1 — «). The sensitivity measures the capability
of the diagnostic test to recognise a diseased person correctly, whereas the specificity
measures the capability of diagnosing a healthy person correctly. Consequently, 8 is the
error probability of falsely classifying a diseased person as healthy and « is the error
probability of falsely classifying a healthy person as diseased. Ideally, « and B should
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be small if not zero at all. In some situations, sensitivity has precedence over specificity,
for instance to assess the clinical utility of prognostic biomarkers in cancer. Then, the
focus will be on constructing a diagnostic test with a desired sensitivity. In the absence
of a clear preference, however, one turns to summary measures. A natural summary
measure of sensitivity and specificity is Youden’s index J! defined as

J=S"+S —1=1—(a+p). (1)

For a more general discussion see Pepe? or Greiner.3 In addition, Le* summarises a
number of positive properties of the Youden index. We mention also the possibility of
weighted Youden index | = pS+ + (1 — p)S— to incorporate potential different roles of
sensitivity and specificity by means of a weight p.

As an alternative the diagnostic odds ratio (DOR) has been suggested and utilised
frequently in the literature. The diagnostic odds ratio as a single indicator of diagnostic
performance, as proposed and recommended for example by Glas et al.5 is defined as

S+ S-
D= . 2
1—§+ “1-5- 2)
Note that (2) can be written as the ratio of the odds % for diagnosing a diseased
1-§-

person as diseased to the odds 52— for diagnosing a healthy person as diseased.

Now, we suppose that the diagnostic procedure is providing a continuous outcome
or an ordered categorical outcome, which we denote as T. For example, a psychological
test is used (potentially among other procedures) to determine a certain condition such as
the presence of dementia in an elderly person. Often these diagnostic tests deliver a score
and a cut-off value c is used to decide about the presence or absence of the condition.
Note that T and the binary test result variable B are connected via B = Ij1~}, where Ig
denotes the indicator function for a set S defined as Ig(s) = 1 if s € S and 0 otherwise.
This situation is illustrated in Figure 1(a) for a continuous outcome T which is normally
distributed in the two populations.

In the healthy population we have a normal distribution with mean puy = 0 and
variance of; = 1, in the diseased population we have a normal distribution with mean

pp =2 and variance o = 4. A cut-off value ¢ determines sensitivity as S+(c) = 1 —

d (C;ﬂ) and specificity as S—(c) = @ <67“H), assuming that values above ¢ indicate
D oy

positivity of the test and @ is the cumulative distribution function of the standard
normal. As has been underlined, if ¢ is shifted to the right, the sensitivity decreases
whereas the specificity increases, and vice versa if ¢ is shifted to the left. Consequently,
the discriminatory power of the diagnostic test becomes a function of the cut-off value
and the question of the choice of the cut-off value ¢ for the diagnostic test arises.2:3
Ideally, as Leeflang et al.6 point out, the optimal choice for this cut-off is ultimately
determined by the consequences associated with false-positive and false-negative test
results (see also the comments by Greiner et al.7). For example, if preference is on
sensitivity, a desired value for sensitivity will determine the cut-off uniquely and no
further consideration is necessary. But Leeflang et al.6 also continue saying that in the
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Figure 1 Diagnostic situation illustrated with two normal distributions: (a) one has mean 0 and variance
1 (healthy population), the other has mean 2 and variance 4 (diseased population) and log D(c) as a func-
tion of the cut-off value, ¢, for three scenarios of two normal distributions; (b) one has always mean 0
and variance 1 (healthy population), the other has mean 2 and varies in the variance (diseased population):

02 =1,1.22% and 22.
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Table 1 Performance of various PHQ-9 cut-off scores in
detecting major depression (following Lotrakul et al.?)

Cut-off  Sensitivity Specificity Youden index
6 0.95 0.48 0.43
7 0.95 0.55 0.50
8 0.89 0.65 0.54
9 0.84 0.77 0.61

10 0.74 0.85 0.59

1 0.68 0.89 0.57

12 0.68 0.90 0.58

13 0.63 0.94 0.57

14 0.47 0.96 0.43

15 0.37 0.97 0.34

early phases of test development preference for choosing the optimal cutoff is often
a criterion that weighs both sensitivity and specificity equally. Similarly, Magder and
Fix8 argue that when the test is used for research purposes and treatment decisions are
not based on the test results, the choice of the cut point should be based on scientific
(statistical) considerations.

Indeed, it has become common practice to choose the cut-off value to maximise some
function of sensitivity and specificity, often the Youden index. To illustrate we choose
one example out of many. Lotrakul et al.? consider choosing an optimal cut-off for the
Thai version of the Patient Health Questionnaire (PHQ-9), which has been developed as
a screening tool for major depression in primary care patients. Sensitivity and specificity
were estimated in a diagnostic study involving 279 patients for different cut-off values
using the Mini International Neuropsychiatric Interview and and the Hamilton Rating
Scale for Depressions as gold standards. Lotrakul et al.” consider different cut-off values
and determine associated sensitivities and specificities. The values are reproduced here
as Table 1. The authors recommend as choice of the cut-off value the score-value 9,
which evidently is the largest value for the Youden index. See also Table 1 for details.
It is also common practice to report a number of measures associated with a diagnostic
test. In fact, Fisher ef al.10 develop a reader’s guide to the interpretation of diagnostic test
properties. They recommend for enhancing the critical appraisal on articles on diagnostic
tests to report several measures of test accuracy including besides sensitivity, specificity,
ROC, likelihood ratios also the diagnostic odds ratio. In fact, in applied papers it is now
common practice to report the DOR besides other values. However, it is often less clear
which measure has been used to determine the cut-off value. In fact, the original paper
by Glas et al.5 suggested the DOR as a single indicator of test performance to facilitate
the formal meta-analysis of studies on diagnostic test performance. Magder and Fix8
suggest to use the precision of the DOR as a criterion for choosing the cut-off value. The
DOR was clearly suggested as a measure of discriminatory power and, consequently, it
is not surprising that practitioners understand it in this way. The DOR is increasingly
used in the applied field as criterion for choosing the cut-off value optimally. An example
is Wei et al.11 who use the DOR for a diagnostic test on bone metastasis in prostate
cancer. There is also software available to analyse data from diagnostic test accuracy,
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which allows to choose the DOR as a cut-off value optimising criterion.12 Hence, given
these practices we feel that it is appropriate to take a deeper look into the behaviour of
the DOR as a function of the cut-off value. If the DOR in the data set on depression
in Thai primary care patients is plotted against the PHQ-9 cut-off score a U-shape
pattern arises. This shape of the function occurs in many data sets on diagnostic testing
and is more the rule than the exception. In Figure 1(b) the graph of the log-DOR as
function of the cut-off is plotted for various situations of normal distributions. If the
variances are identical or similar a U-shaped pattern arises. Consequently, optimising
values for the DOR will have the tendency to occur near the boundary of the observed
data leading to implausible and statistical inferior cut-off values as will be seen below.
The major point of the paper is a finding that implies that this U-shape pattern, the
log-convexity of the DOR, is not an accidental property but rather a systematic feature
of the DOR. Hence, it out-rules the DOR as a criterion for selecting the cut-off value in a
continuous test.

2 The convexity result for the DOR

We now come to the general result and consider the situation that the diagnostic test
has the same variance 03 = o/ = 02 in the diseased and the non-diseased population.
Without limitation of generality we set 02 = 1, up = u, upg = 0. Hence, the following
result is proved under the assumption of normality with equal variances in the two

populations of healthy and diseased individuals.

Theorem 1. Let ®(-) be the cumulative distribution function of the standard normal
distribution. Also, let

Dic) = S+(c) S=(c) 1—-®(c—u) ®(c)
=150 X180~ ®e—p) “T-o@
Then:
D(c) > D(un/2), forall 0 <c<pu, butc# u/2, (3)
ilogD(c) > 0 for all ¢ € [0, u]. (4)
de?

The theorem says that D(-) is actually minimised at ¢ = u/2 and that log D(-) is
convex. As a consequence, points maximising the D(c) will be on the boundary of the
parameter space [0, u], leading to useless cut-off values. In conclusion, the DOR is not
useful as a criterion for maximising discriminatory power.

The proof is not given here for the sake of brevity, but is provided completely at

http://ww. personal . readi ng. ac. uk/ ~sns05dab/ pr oof . pdf.
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In it’s first part, it will not use the assumption of normality and the proof is done without
reference to normality. At a particular stage, however, normality is used and we will
draw the attention of the reader to this point.

Finally, we would like to mention that these problems do not exist for the
Youden index. The following results are fairly known13.14 but we summarise here for
completeness and correctness what can be said in the normal case with different vari-
ances for the healthy and diseased population. We do so since the results are frequently
loosely stated, in particular, the regularity condition (7) is often ignored. It is easy to
see that in the normal case we have for Youden’s index that

](C)=S+(6)+S_(c)—1:1_¢(C_“D)+¢<C—MH)_1

oD

Taking derivatives with respect to ¢ we obtain

1 - 1 -
Jlc)=——2¢ (C “D) +—¢ (C “H> :
oD oD OH OH

where ¢(-) = ®/(-). Setting the derivative J/(c) to zero provides the result that the optimal
cut-off value ¢, which maximises the Youden index, is found as the point of intersection
of the two normal curves, lying between the means pug and up:

1 ¢ — 1 ¢ —
__¢<c MD):__¢<C MH). 5)
oD oD OH OH

Hence, the cut-off value needs to be moved to the point of intersection, depicted in
Figure 1, between the two means. Note that there is a second point of intersection when
the two normals have different variances which can be excluded. Analytically, ¢ is found
to be the solution of the quadratic equation in ¢

1 1 2 2
— - |+2 M—?—M—I; c+ M—Ij—u—? +210g<0—H)=0 (6)
og op op o oy op oD

which lies between puy and up.
Furthermore, we find for the second derivative that

1 c—pp, (c—up 1 c—pn  (c—pnu
]//(C) = 2 (b ( - 2 d) < O
oD 0op oD OH Oy oH

for ¢ € (um, up), since (¢ — up) < 0 and (¢ — uy) > 0 for ¢ € (upy, up). Hence, J(c) is
a strictly concave function on (g, up). We summarise this result without further proof
(which is available from the authors) in the following theorem.
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Theorem 2. Let 8 = up — uy and p = op/op. If T ~ N(up,op) in the diseased
population and T ~ N(un, of) in the non-diseased population, then:

1. J(c) is a strictly concave on (1, UD);

2. The cut-off value ¢ maximising the Youden index |(c) is found as the point of
intersection of the two normal curves (a solution of (6)) which lies between juy and
up if

82 > max{—ZGI% log p, 20&, log p} ; (7)

3. If both normals have the same variance, then ¢ = (up + up)/2.

Note the importance of the condition (7). If condition (7) fails to hold the maximum
is one of the end points of the interval [y, up]. The regularity condition will hold in
most situations of practical interest and it will fail to hold only if the ratio p differs
largely from unity. Note that a more general discussion of estimation of the Youden
index including the consideration of non-parametric techniques has been provided by
Fluss et al.15

Example: Screening for hearing impairment in newborn babies. We would like to
illustrate the results from Theorem 1 and 2 with an example. Pepe2 (p. 72) discusses
data on screening for hearing impairment in newborn babies going back to Norton
et al.16 The complete data set contains 5058 observations and three passive hearing
tests as well as the gold standard and other covariate information. As diagnostic test
we have considered the values from the DPOAE 65 at 2 kHz. Ignoring the clustered
structure of the data (right and left ear of baby) we have constructed nonparametric
estimates of the functions J(c) and log D(c) and the graphs are provided in Figure 2(a)
and (b). The Youden index shows reasonably concave pattern over a wide range of
the central sample space. Indeed, if we compute estimates for the two populations we
find g = —8.917, 6y = 7.781, ap = —4.872, 6p = 8.581 with condition (7) being
fulfilled (with population parameters replaced by sample estimates). The estimate of p
is p = 1.10281 which is close to unity. This will lead to a solution for ¢ between —8.917
and —4.872, not far from the midpoint between these two values. For the diagnostic

odds ratio the situation is completely different, as shown in Figure 2(b). The log D(c)
appears to be convex (as it is suggested by Theorem 2 for the equal variance case) for a
wide sample range. Maximising the diagnostic odds ratio will lead to values of ¢ near
the boundary of the sample space.

3 Discussion

We have shown a convex property for the log D(c) as a function of ¢ in the case of
normal distributions with equal variances. Now, as illustrated in the example of Section
2 this behaviour occurs in many situations and we have included the result to point
out a structural failure in discriminatory power of the DOR. A reviewer remarked
that our result would be more powerful if it would include the unequal variance case.
Now, we know the convexity of the log-DOR does not hold for unequal variances
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Figure 2 J(c) (dots) (a) and log D(c) (dots) (b) with LOWESS smoother (solid line) for the data on screening
for hearing impairment of newborn babies provided in Pepe?2; screening test is the DPOAE.

as Figure 1(b) shows. Other patterns than convexity arise, which are neither suitable
for using the DOR as an optimising criterion. So, it is not worthwhile looking for a
generalisation of the convexity property — it does not generalise. But it is just this strange
behaviour of the DOR that outrules it’s usefulness as a selection criterion for a cut-off. In
practice it is easy to construct a plot of a non-parametric estimate of the log D(c) against
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the cut-off value ¢ as done in Section 2 to support the failure of the DOR in choosing an
optimal cut-off value. In a similar flavour, Pepe et al.17 point out the limitations of the
odds ratio for a diagnostic, prognostic, or screening marker. In summary, the authors
state that odds ratios do not characterise the discriminatory capacity of a marker.

It was pointed out by Hasselblad and Hedges!8 that the diagnostic odds ratio expe-
riences very little change over a wide range of the cut-off value, a fact already noted by
Edwards.1? In fact, they point out that if both distributions are logistic with equal vari-
ances, the DOR is invariant with respect to the cut-off value. This is a beneficial property
if it is desired to combine results from different studies (as it is in meta-analysis). Deeks20
mentions in the context of systematic reviews of diagnostic and screening tests that the
diagnostic odds ratio often is reasonably constant regardless of the diagnostic threshold.
However, in the context of finding a measure, which maximises discriminatory power
(in separating diseased and non-diseased populations) it is less advantageous.

Frequently, the consequences of false-positive and false-negative decisions are needed
to be incorporated in the choice of the threshold value.21.22 For example, the conse-
quences of a false-negative decision might be more severe than a false-positive leading to
attaching more weight to sensitivity than to specificity. This could be achieved and incor-
porated into an index by generalising the Youden index to J(c) = wS+(c) + (1 — w)S—(c)
where w is a number between 0 and 1. Here, clearly the difficulty lies in the specification
of the number w, similar to the specification of a trade-off function balancing harm and
benefit for the patient.

Often it is desirable to include the disease prevalence into the determination of the
cut-off value, in particular if a population screening is the application of the diagnostic
test. Again, the Youden index can be generalised to take the disease prevalence p into
account:22 J(c) = pS+(c) + (1 — p)S—(c). The prevalence weight p will not change the
concavity property of /(.). Hence, the positive behaviour of the Youden index is retained.
Of course, the optimal cut-off value will depend now on the prevalence value of p. In
any of the above generalisations of Youden’s index, the result provided in Theorem 2
will still hold.

Finally, it might be argued that instead of investigating a summary measure of sen-
sitivity and specificity it might be more fertile to focus on curve modelling techniques
such as Receiver Operating Curves as discussed in Pepe? or Greiner.3 Pepe? points out
that the receiver operating characteristic (ROC) curve is currently the best-developed
statistical tool for describing the performance of diagnostic tests. ROC curves have
been developed in signal detection theory. Later their potential for medical diagnostic
testing was recognised.2 The clear benefit lies in the direct modelling of the dependency
of specificity and sensitivity from the cut-off value and offers a global characterisation
of the behaviour of the continuous test outcome. If, however, a cut-off value needs to
be determined the question of optimising an optimality criterion (such as the Euclidean
distance of the ROC curve to the upper left corner of the unit square) arises as well.
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