
A LIMITATION THEOREM FOR CESRO SUMMABLE SERIES

1. Introduction
We consider the Ces/ro summability, for integral orders of the series
%oa &. In this paper we establish a limitation theorem for this series.

Results of this character, but not overlapping with those in this paper, were
given by Hardy and Littlewood [7] and by Andersen [1]. Andersen’s re-
sult was extended by Bosanquet and Chow [5], and further extended by
Bosanquet [4].

Notation. We write

A A a0-ba,-b -ba, A A0--bA--b -bA-and we get the identities [6]

A ,’=o (’-;+-’) A, A ,L0 (-+*) a, E A
when a0 1, a 0, for n > 0 i.e. when A 1, for all n. So

k

’ a is said to be summable (C, A,/E, --, A as n -- , or
k kequivalently if k! A/n ---> A.

We write A d, d, d,_, following L. S. Bosanquet [3]. We will use
the following identity (see L. S. Bosanquet [3]):

2. Statement of the theorem and two Jemmas.
To.: 1. Suppose that d > 0, for n >_ 0, and

(i) d, o(1) as n ---->

(ii) ,(,-+) 1 0(1),

(iii) I(1/d -t-

j= 1, 2,...,k

Then A o (n/d,+) whenever 0a, d is summable (C, k).
We require the following lemmas.
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LEMMiA. In order that t c..S.--0 (m--. ) (m 1,2, ...)
whoever S 0 (n ), it is necessary and sucient that

(i) C., < H, where H is independent of m and
(ii) C., 0 for each n, when m .
Lemma A is given by Hardy [6, Theorem 4], which follows from a theorem

given by Toeplitz [9]. Toeplitz considers only "triangular" transformations
in which C.. 0 for n > m. Steinhaus [8] made extension for general
transformations.

LEx B. If d, satisfies conditis of Theorem 1 then

d,+ A+((,-)} 0(1

We have

d.+ ,
,k

(2.1)

.Jr.. oldn.blk =n ik’bl(n"-1

using identity (1.1), where the a’s are various constants.
By (2.1) it will be enough to prove that

(2.2) -,--0’ A(’-’+-) A+-
d+/l 0(1), j 0, 1, ..., k -t- 1.

But we have

(2.3)
< K(’-;+)

where j 0, 1, ..., k -}- 1 and the ’s are various positive constants; and

(2.4) A+1-"(1/d,+k+l) < g’ Ia-(1/d,+k+l) j 0, ..., .,
by hypothesis (iii).
Then since

dn+l (+) 0((2.5)
n ,-o d++

by hypothesis (ii), (2.2) follows immediately from (2.3), (2.4) and (2.5).
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3. Proof of the theorem
We can assume that ,-0, d, is summable (C, k) to 0.

as n --* o. Let C, ,’-0 a, d, then

So

where

nk

(3.3) (--1)k+ldn+lkAk+lflnkV+k+i (n--I t)
Then, by Lemma B,

(3.) 1.,, n--0 --0

Next from (3.5),

+... + +

Ak+l {d,.l.1/.t.1

Then C./n -, 0

<H

(by (3.1))

(using identity (1.1) where the a’s are various constants)

dn+l
n O(n) o(1) (by hypothesis (i)).

So 7,., --* 0 as n --, o, for each . It follows that conditions (i) and (ii) of
Lemma A are satisfied and hence d,+l A/n o(1).
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Added in proof. Condition (ii) of the theorem could be replaced by (3.4),
and this would then widen the class d. covered by the theorem.
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