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We have produced RNA sequencing data for 53 primary cells from different locations in the human body. The clustering of

these primary cells reveals that most cells in the human body share a few broad transcriptional programs, which define five

major cell types: epithelial, endothelial, mesenchymal, neural, and blood cells. These act as basic components of many tis-

sues and organs. Based on gene expression, these cell types redefine the basic histological types by which tissues have been

traditionally classified. We identified genes whose expression is specific to these cell types, and from these genes, we estimat-

ed the contribution of the major cell types to the composition of human tissues. We found this cellular composition to be a

characteristic signature of tissues and to reflect tissue morphological heterogeneity and histology. We identified changes in

cellular composition in different tissues associated with age and sex, and found that departures from the normal cellular

composition correlate with histological phenotypes associated with disease.

[Supplemental material is available for this article.]

Transcriptional profiles reflect cell type, condition, and function.
In tissues and organs, they are monitored in RNA extracted from
millions to billions of cells (116–109) (Haque et al. 2017), likely in-
cluding multiple cell types. As a consequence, the transcriptional
profiles obtained from tissue samples represent the average expres-
sion of genes across heterogeneous cellular collections, and gene
expression differences measured in bulk tissue transcriptomes
may thus reflect changes in cellular composition rather than
changes in the expression of genes in individual cells. Single-cell
RNA sequencing (scRNA-seq) has indeed revealed large cellular
heterogeneity in many tissues and organs (Trapnell 2015), and
the Human Cell Atlas (HCA) project (Regev et al. 2017) has been
recently initiated to define all human cell types and to infer the
cellular taxonomy of the human body. As a step in that direction
and to bridge the transcriptomes of tissueswith the transcriptomes
of the constituent primary cells, and to understand how these im-
pact tissue phenotypes, we have generated bulk expression profiles
of 53 primary cell lines isolated from 10 different anatomical sites
in the human body. These profiles include long- and short-strand-

specific RNA-seq and RAMPAGE data (Fig. 1A; Supplemental
Tables S1–S4).

Results

Major cell types in the human body

Clustering of the primary cells based on gene expression profiles
revealed a number of well-defined clusters (Fig. 1B,C; Supple-
mental Figs. S1, S2A,B; Supplemental Methods 1). One cluster
was composed of endothelial cells; a second large cluster included
a mixture of cell types: fibroblasts, stem cells, and muscle cells,
among others, which we collectively termed as mesenchymal.
Two smaller clusters, which clustered together, were composed
of epithelial cells; finally, the melanocytes clustered separately.
Almost all of the individual primary cells are assigned to the proper
major cell type. The exceptions are renal mesangial cells, which
have contractile properties but are classified as epithelial, and
lung epithelial cells, that are classified as mesenchymal. These
two cell types, however, are of embryonic origin—in contrast to
the vast majority of primary cells in our study, which are adult
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(Supplemental Table S1)—and their transcriptomes may not re-
flect the transcriptomes of fully differentiated cells.

The clustering of primary cells does not appear to be dominat-
ed by body location or embryological origin. Body location con-
tributes very little to the expression profile of primary cells,
explaining only ∼4% of the variance in gene expression

(Supplemental Fig. S2C). Variation of gene expression among or-
gans is similar for the different clusters (Supplemental Fig. S2D).
The transcriptional diversity among cells within a given organ
can be as high as that across the entire humanbody (Supplemental
Fig. S2E). A similar clustering is obtained using FANTOM CAGE-
based transcriptomic data on 105 primary cells (Fig. 1D;

E

F

B

A C

D

Figure 1. Basic transcriptional programs of human primary cells. (A) Overview of primary cells analyzed in this study and the body location they are ex-
tracted from. (B) Hierarchical clustering of human primary cells based on the correlation of gene expression. The clustering in four major clusters is sup-
ported by the silhouette analysis and the elbow method (Supplemental Fig. S2A,B). t-SNE of human primary cells based on gene expression measured
here (C), on gene expression measured by CAGE by the FANTOM Consortium (D), and on candidate regulatory elements (cREs) by the ENCODE
Encyclopedia scored DNase I hypersensitivity signal (E). (F) Correspondence between transcriptionally derived major cell types and classical histological
types.
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Supplemental Fig. S3A,B; Supplemental Table S5; Supplemental
Methods 2; The FANTOM Consortium and the RIKEN PMI and
CLST (DGT) 2014), which reveals, in addition, two clusters corre-
sponding to blood and neural cells, which were not represented
in our set of primary cells. The analysis of a different set of primary
cells from the ENCODE Encyclopedia Registry of candidate regula-
tory elements (cREs) (Supplemental Table S6; The ENCODE Project
Consortium 2020), based on DNase I hypersensitive sites (DHSs),
also recapitulates the clustering (Fig. 1E; Supplemental Fig. S3C;
Supplemental Methods 3). The clustering remains in the set of
146 nonredundant primary cells that results from merging the
RNA-seq, the CAGE, and the DHS data. The clustering is thus con-
served despite the heterogeneity of the underlying assays and ex-
perimental protocols used to generate these different data sets
(Supplemental Fig. S4). In the clustering, neural cells (mostly astro-
cytes from different brain regions and neurons) cluster together
with a few neuroepithelial primary cells (we labeled them epithe-
lial, but they are mostly ciliated cells from different sites in the
eye). Although the neural cells profiled by CAGE seem to have a
distinct transcriptional signature (Supplemental Fig. S3A), neural
cells profiled by DNase-seq show a gene expression pattern similar
to mesenchymal cells (Supplemental Fig. S3C). However, the neu-
ral cells profiled byDNase-seq are, in contrast tomost primary cells
investigated here, of embryonic origin; thus, they are unlikely to
express the transcriptional program characteristic of adult neural
cells. The analysis of publicly available transcriptomics data from
nervous tissues, including single-cell and bulk RNA-seq, strongly
support that the neural cell type is a proper major type differenti-
ated from the other types (Supplemental Figs. S5–S7; Supplemen-
tal Methods 1).

Comparable multitissue RNA-seq data have become recently
available at the single-cell level for 20 mouse organs and tissues
through the Tabula Muris project (The Tabula Muris Consortium
2018). Principal component analysis (PCA) of the individual cells
and hierarchical clustering of the primary cell types show that
most individual cells, andmost cell types, clustered into the afore-
mentioned five major cell types, irrespective of the organ of origin
(Supplemental Figs. S8, S9; Supplemental Methods 4). As in the
case of melanocytes, we also found a few specialized cell types
which do not properly belong to these types. Hepatocytes are a no-
table example (Supplemental Figs. S8A, S9A). Although closer to
the epithelial cells than to cells of other types, they seem to have
a quite specialized transcriptional program.

Altogether, these results suggest the existence of a limited
number of core transcriptional programs encoded in the human
genome, and likely inmammalian genomes, in general. These pro-
grams underlie the morphology and function common to a few
major cellular types, which are at the root of the hierarchy of the
many cell types that exist in the human body (Table 1). They all
show similar transcriptional heterogeneity, with blood and epithe-
lial within the solid tissues being themost transcriptionally diverse
(Supplemental Fig. S10). These transcriptionally definedmajor cell
types correspond broadly, but not exactly, the basic histological
types in which tissues are usually classified (e.g., Eroschenko
2013;Mescher 2013; Young et al. 2013): epithelial, of which endo-
thelial is often considered a subtype; muscular; connective, which
includes blood; and neural. However, from the transcriptional
standpoint, endothelial constitutes a separate type, closer, if any,
to themesenchymal than to the epithelial type. Blood is also a sep-
arate major cell type, and the connective (but not blood) and the
muscular histological types cluster together into a single mesen-
chymal transcriptional type (Fig. 1F).

Within each of themajor types, further hierarchical organiza-
tion of cell typesmay exist. Althoughwe have not profiled enough
diversity of primary cells to resolve the taxonomic substructure
within each major cell type, hints of this substructure can be
seen in the epithelial type. Within the epithelial cluster, two
well-defined subclusters can be identified (Fig. 1B–E; Supplemental
Fig. S2A). One of the clusters is mademostly by renal cells, indicat-
ing that body location may play a role in subtype specialization.
The epithelial cluster includes primary cells of all embryonic ori-
gins (ectoderm, endoderm, and mesoderm), suggesting that the
transcriptional programs of cells may not be fully inherited
through development, but partially adopted through function.
The more heterogeneous composition of the epithelial type is
also apparent in the mouse scRNA-seq (Supplemental Figs. S8, S9).

Our results also suggest that althoughmany cells are likely to
adhere to these basic transcriptional programs, many other prima-
ry cells are likely highly specialized and very tissue-specific. Aswith
melanocytes and hepatocytes in our analyses, these specialized
cells are likely to have their unique transcriptional program.

Cell-type-specific genes

We identified a total of 2871 genes (including 2463 protein-coding
genes, 283 long noncoding RNAs, and 125 pseudogenes), the ex-
pression of which is specific to epithelial, endothelial, mesenchy-
mal or melanocyte cell types (Fig. 2A; Supplemental Fig. S11;
Supplemental Table S7). These cell-type-specific genes include
nearly all genes that we identified as the major drivers of the clus-
tering (Supplemental Fig. S12; Supplemental Methods 1).
Examples of these genes include collagen (COL1A2, COL3A1,

COL6A1/A2/A3), expressed in mesenchymal cells; epithelial tran-
scription factors genes OVOL1/2; VWF gene encoding for the en-
dothelial marker von Willebrand Factor; and TYR gene encoding
for the melanocyte-specific enzyme tyrosinase (for a list of manu-
ally curated driver genes, see Supplemental Table S8). Figure 2B
shows the expression pattern of LINC01235, an endothelial-specif-
ic long noncoding RNA (lncRNA) of unknown function. The gene
is expressed in nearly all endothelial cells analyzed here, but not in
cells from other types, and its expression is correlated to protein-
coding genes with endothelial-related functions (Supplemental

Table 1. Cell types in the human body

Cell type Sets of cells with similar phenotype (morphology
and functions). The similarity threshold
induces a taxonomic hierarchy of cell types, by
means of which similar cell types are
recursively aggregated into higher order types.

Primary cell type Cell types at the bottom of the taxonomic
hierarchy. They denote specialized cells
phenotypically identical (to some resolution);
they cannot further be segregated into
biologically meaningful subtypes; for example,
pancreatic beta cells. In our work, we do not
include cell lines here, which are primary cells
that have been transformed to proliferate
indefinitely.

Major cell type Cell types at the root of the taxonomic hierarchy.
They cannot be further aggregated in
biologically meaningful higher order types; for
example, epithelial cells.

Tissue-specific cell
type

Cell type topologically restricted to a specific
anatomical region (tissue, organ, body
location); for example, hepatocytes.

Transcriptional
program

The pattern of gene expression characteristic of a
given cell type.

Transcriptional programs define major cell types
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Figure 2. Cell-cluster-specific genes. (A) Expression of 2871 genes specific to major cell types. (B) Expression of the endothelial-specific lncRNA
LINC01235. Separate strand-specific signal tracks are shown for endothelial cells, and the other tracks contain overlaid signal for each cell type. The
lncRNA has highly correlated (correlation coefficient >0.9) expression with 72 protein-coding genes across our set of primary cells. Nearly all these genes
are endothelial specific, and they are functionally enriched for vessel development and angiogenesis (Supplemental Fig. S13A). The gene appears to be
under relatively strong regulation, because it has almost 1500 eQTLs across multiple tissues in GTEx (v7), well above the average eQTLs for lncRNAs (about
450). (C) Network of themost strongly coexpressed (Pearson’s r>0.85) cell-type-specific transcription factors (TFs). Nodes are colored according to the cell
type specificity of the TF, and they shaped based on the availability of sequence motif: (square) available; (circle) not available. (D) Proportion of cell-type-
specific genes with predicted TF binding over cell-type-specific genes that harbor a DHS around their TSS (−10 kb/+5 kb), individually for each cell-type-
specific TF (with binding motif available) and cell line for which DNase-seq data was available. In general, we found that genes specific to a given type are
enriched for binding motifs for TFs specific to that type. For example, the proportion of endothelial-specific genes with DHS sites that harbor motifs for the
endothelial-specific TF ERG in dermal blood endothelial cells (HDBEC) is larger than the proportion of genes with DHS sites specific of othermajor cell types.
Primary cells highlighted in red, although included within the epithelial major cell type, they have been labeled as neural/epithelial in Figure 1D, and they
are therefore not proper epithelial; consistently, they do not show the enrichment in binding motifs for epithelial-specific transcription factors. Refer to
Supplemental Table S6 for a complete description of the acronyms. Enrichment adjusted P-values: (∗) <0.05; (∗∗) <0.01; (∗∗∗) <0.001.
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Fig. S13A). The gene, however, is expressed in multiple tissues;
therefore, it is not tissue specific.

The functions of annotated tissue-specific genes closely
match the expected biology of the primary cells in each type (Sup-
plemental Fig. S13B). Cell-type-specific
genes show consistent restricted expres-
sion in the FANTOMCAGE data (Supple-
mental Fig. S14), and they are enriched
for encyclopedia cREs (Sheffield et al.
2013) specifically in the primary cells of
that type (Supplemental Fig. S15). Using
ChIP-seq histone modification data ob-
tained in a number of primary cells (Sup-
plemental Table S9; Supplemental
Methods5; TheENCODEProjectConsor-
tium 2012), we found the promoters of
genes specific to a given type to be en-
riched for activating chromatin marks in
primary cells of that type compared
with primary cells of different type (Sup-
plemental Fig. S16A). However, overall,
except for H3K4me1,we found low levels
of most activating marks in the promot-
ers of cell-type-specific genes compared
with all genes, even after controlling for
differences in gene expression. In con-
trast, the promoters of cell-type-specific
genes show similar or higher levels of re-
pressive histonemodifications compared
to all genes (Supplemental Fig. S16B).
This is consistent with previous reports
showing that genes under tighter regula-
tion show lower levels of activating his-
tone modifications than broadly
expressed genes (e.g., Rach et al. 2011;
Pervouchine et al. 2015).

Among cell-type-specific genes, we
identified 167 transcription factors (TFs)
from a total of 1544 TFs annotated in
the human genome (Zhang et al. 2012).
We focused on 56 that showed the stron-
gest coexpression patterns (Pearson’s r≥
0.8) (Fig. 2C; Supplemental Fig. S17).
They include previously annotated cell-
type-specific transcriptional regulators,
such as ERG, which has been shown to
regulate endothelial cell differentiation
(McLaughlin et al. 2001), and TP63,
which is an established regulator of epi-
thelial cell fate and is often altered in tu-
mor cells (Yoh and Prywes 2015).
Consistent with the hypothesis that the
cell-type-specific TFs might regulate cell
type specificity, we found that genes spe-
cific to a given type are enriched for bind-
ing motifs for TFs specific to that type in
most cell lines (Fig. 2D). The enrichment
arises specifically when the motifs occur
in open chromatin domains in primary
cells of that type (e.g., in epithelial pri-
mary cells, epithelial-specific genes are
enriched, compared to genes specific to

other types, in epithelial-specific TFmotifs occurring in open chro-
matin domains) (Fig. 2; Supplemental Fig. S18).

We found that transcriptional regulation appears to play a
major role compared to post-transcriptional (splicing) regulation,

BA

C

D

(Barbosa-Morais et al. 2012)

(Barbosa-Morais et al. 2012)

Figure 3. Transcriptional complexity of human primary cells and evolutionary conservation of cell-
type-specific genes. (A) Distribution of the relative contribution of gene expression to the variation in iso-
form abundance between major cell types (blue) and between all primary cells. Large values of the con-
tribution of gene expression indicate that changes in isoform abundance from one condition (primary
cell, cell type) to another can be simply explained by changes in gene expression. Small values, in con-
trast, indicate that changes of isoform abundance aremostly independent of changes in gene expression
and can obey changes in the relative abundance of the isoform. (B) Number of differentially expressed
genes (DE, y-axis) versus the number of genes with differentially spliced exons (DS, x-axis), between pairs
of samples of the same cell type (within, blue), or different cell types (between, red). DS genes have been
obtained using IPSA (https://github.com/pervouchine/ipsa-full). See also Supplemental Figure S19.
(C) Fraction of 1 to 1 orthologs between each species and human for major cell-type-specific genes
and for protein-coding genes overall. Species are sorted by increasing evolutionary distance fromhuman.
The black line is given as a reference, and it indicates the proportion of six-way orthologs (chimpanzee,
rhesus, mouse, opossum, platypus, and chicken) that are present in each species. The proportion is not
100% in these species because different versions of the GENCODE gene set reference were used. The
genes in this set of six-way orthologs are used for the comparison of gene expression in Supplemental
Figure S22A. See also Supplemental Figure S22C. (D) Pearson’s r between gene expression in each hu-
man organ and the corresponding one in every other species. The correlation is computed across all
the genes in each major cell type separately. See also Supplemental Figure S23.
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both in defining the major cell types as well as the individual
primary cells within the types. We estimated the fraction of
the variation in isoform abundance explained by variation in
gene expression (Gonzalez-Porta et al. 2012) to be on average
67% across transcriptional types and 55% across primary cells
(Fig. 3A). The lower proportion of variance explained across pri-
mary cells suggests that splicing plays a comparatively more im-
portant role in defining the transcriptomes of primary cells
within a given type than in setting the transcriptional programs
of the major cell types. In additional support of this conclusion,
we found that although the number of differentially expressed
genes in pairwise comparisons of primary cells is much larger be-
tween than within cell types, the number of differentially spliced
genes is similar (Fig. 3B; Supplemental Fig. S19; Supplemental
Methods 6).

Although bulk gene expression is the main contributor to
define cell-type specificity, other transcriptional events are also
cell-type specific. First, using the RNA-seq data, we identified cell-
type-specific splicing events, independent of the tissue of origin
(Supplemental Fig. S20; Supplemental Table S10; Supplemental
Methods 6). Second, using the RAMPAGE data, we identified cell-
type-specific TSSs (Supplemental Fig. S21; Supplemental Table
S11; Supplemental Methods 7).

The basic human transcriptional programs seem to have been
established early in vertebrate evolution: genes orthologous of cell-
type-specific genes are underrepresented compared to orthologs of
all genes in invertebrate genomes (Supplemental Fig. S22A,B), but
they are overrepresented in vertebrates, as early as in tetrapoda.
One exception is epithelial genes, which are overrepresented
only in mammals (Fig. 3C; Supplemental Fig. S22C). Within the
set of orthologous genes across tetrapoda (Barbosa-Morais et al.
2012), the expression of cell-type-specific genes is less conserved
than that of protein-coding genes overall, especially at larger evo-
lutionary distances (Fig. 3D; Supplemental Figs. S22D, S23;
Supplemental Methods 1). This suggests an important role in the
evolution of gene expression regulation in shaping the basic tran-
scriptional programs in the human genome. Epithelial-specific
genes also show the lowest conservation of expression levels.
The transcriptional program characteristic of the epithelium ap-
pears to be, therefore, the most dynamic evolutionarily—possibly
reflecting a greater need for adaptation of the epithelial layer in
constant interaction with the environment—and it is also consis-
tent with the greater transcriptional heterogeneity of this major
cell type.

Estimation of the cellular composition of complex organs from

the expression of cell-type-specific genes

Weused the patterns of expression of cell-type-specific genes to es-
timate the cellular composition of human tissues and organs from
GTEx bulk tissue transcriptome data (version 6, 8555 samples, 31
tissues, 544 individuals) (The GTEx Consortium 2017). We used
xCell (Aran et al. 2017), using the sets of genes specific to epithelial,
endothelial, and mesenchymal major cell types derived from EN-
CODE, and specific to brain (neural) and blood derived from
GTEx (Yang et al. 2018) as signatures, and computed the enrich-
ments of these cell types in eachGTEx tissue sample (Supplemental
Methods 8).

The xCell enrichments (Fig. 4A; Supplemental Table S12) are
largely consistent with the histology of the tissues. For example,
esophagus mucosa is enriched for epithelial cells, whereas esopha-
gus muscularis is enriched for mesenchymal cells. Skin (both ex-

posed and unexposed) is enriched in epithelial cells and
fibroblasts in mesenchymal cells. Blood and brain are only en-
riched in blood and neural cells, respectively. Most other tissues
are not enriched in these two major cell types, with the expected
exceptions of spleen enriched in blood cells and pituitary enriched
in neural cells. Testis, which has widespread transcription
(Soumillon et al. 2013), is also enriched in neural cells, a reflection
of the similarity of the expression programs of these two organs
(Guo et al. 2005). Consistent with previous observations
(Frontini et al. 2012), we found enrichment of cells of endothelial
type in adipose tissue. The analysis of the pathology reports of the
subcutaneous adipose tissue shows that it is often contaminated
with other tissues, in particular blood vessels, which would ex-
plain the enrichment in cells of the endothelial type.We have fur-
ther processed and analyzed the histopathology images available
from the GTEx adipose samples (Supplemental Methods 8) and es-
timated that, on average, ∼84% of the adipose tissue corresponds
to adipocytes (Supplemental Fig. S24), which would explain the
endothelial enrichment. In skeletal muscle, we do not observe a
particularly large enrichment in cells of the mesenchymal type,
in apparent contradiction with our initial classification (Fig. 1B,
F). The samples in GTEx, however, are all from differentiated skel-
etal muscle, whereas the ENCODE primary cells that we used to
identify the mesenchymal-specific genes are undifferentiated sat-
ellite cells (SkMC) and smooth muscle cells (Supplemental Table
S1).We analyzed single-cell RNA-seq data produced during skeletal
myoblast differentiation (Trapnell et al. 2014) and found that dif-
ferentiating skeletal muscle cells retain the mesenchymal signa-
ture through most of the differentiation pathway, acquiring only
the GTEx muscle specific signature when fully differentiated
(Supplemental Fig. S25A–C). Further supporting that muscle is in-
deed of mesenchymal type, potentially forming a well-defined
subtype, gene expression profiles cluster together myoblast differ-
entiating single cells with ENCODE mesenchymal cells, rather
thanwith epithelial or endothelial cells, or forming a separate clus-
ter (Supplemental Fig. S25D).

To independently assess the xCell enrichments, we analyzed
the histological images of the few tissues in which samples were
obtained from different subregions. These are most notable in the
case of transverse colon and stomach. The GTEx stomach sam-
ples are all from the gastric body, whose walls consist of two
broad layers: the mucosa, which is mostly epithelial, and the
muscularis, which is smooth muscle (Fig. 4B). We processed the
histological images and identified a subset of samples that pre-
sented mostly the muscularis or the mucosa layer (Supplemental
Methods 8). The enrichment of epithelial cells in the samples
from the muscularis layer is much lower than in the samples
from the mucosa layer; conversely, the enrichment of mesenchy-
mal cells is much higher in the muscularis than in the mucosa
layer. The two sets of samples are almost perfectly separated by
our cellular enrichments (Fig. 4C), explaining the bimodality in
the distribution of cell type enrichments observed specifically
in the stomach samples (Fig. 4A). Consistently, we found that
epithelial-specific genes were exclusively expressed in the mucosa
layer, and mesenchymal-specific genes were exclusively ex-
pressed in the muscularis layer (Fig. 4D). Next, we used the
classification of stomach images to train an SVM model (Supple-
mental Fig. S26A,B) and used this model to predict the presence
of the two layers in 196 transverse colon samples, with histology
similar to that of stomach (Supplemental Methods 8). The
SVM-predicted classification closely matches the differences ob-
served at the transcriptional level and confirms that the

Breschi et al.

1052 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 29, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263186.120/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


B

A

C D

Figure 4. Expression of cell-type-cluster-specific genes in GTEx organs. (A) Enrichment of eachmajor cell type in GTEx tissues, estimated from bulk tissue
RNA-seq using the xCell method. As a control, we also include, at the bottom of the plot, the enrichments of the endothelial, epithelial, and mesenchymal
primary cells monitored here (Fig. 1B). As expected, since the gene signatures have been derived from these very same cells, endothelial primary cells are
heavily enriched in the endothelial type, but not in the other types, epithelial cells in the epithelial type andmesenchymal cells in themesenchymal type. (B)
Example of stomach histological slides, which represent the twomain tissue layers and the procedure for themanual annotation of the images based on the
presence of those layers. Each GTEx histological image displays up to six tissue slices. For the stomach samples, we scored each slice for the presence (1) or
absence (0) of the muscularis and mucosa layers, summed up the values for each layer separately and divided by the number of slices. If the proportion of
slices with mucosa layer, or muscularis layer, is more than 50%we classify the entire slide as mc1, or ms1, respectively. If the proportion is lower, we classify
the slide asmc0 orms0. A combined class, for examplemc0ms1, is assigned to the slides. Thus, samples labeledmc0ms1 aremostlymuscularis, and samples
labeledmc1ms0 aremostlymucosa. (C) Enrichment of cells of epithelial andmesenchymal types in stomach samples containingmostly themucosa (green)
or mostly the muscularis (purple) layer. (D) Expression of the cell-type-specific genes that drive the separation of stomach samples in mostly muscularis or
mostly mucosa samples. Among discriminant cell-type-specific genes, mucosa-only samples express almost exclusively epithelial-specific genes, whereas
muscularis-only samples express exclusively mesenchymal-specific genes.
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bimodality of cellular composition (Fig. 4A) is again related to the
unbalanced presence of the two tissue layers across samples (Sup-
plemental Fig. S26C). Considering that stomach and colon were
not represented in our primary cell collection, this constitutes a
strong validation of our estimates of the cellular enrichments
in tissues.

Alterations of cellular composition in pathological states

We projected the solid non-neural GTEx tissue samples on a three-
dimensional space according to the enrichments of epithelial, en-
dothelial, and mesenchymal cell types in each sample (Fig. 5A;
Supplemental Fig. S27). The spatial arrangement of the samples re-
capitulates tissue type as strongly as the clustering based on gene
expression (Supplemental Fig. S28). This suggests that the basic
cell type composition is a characteristic signature of tissues and
that departures from this composition may reflect pathological
or diseased states. To assess this hypothesis, we analyzed the histo-
logical reports associated with the GTEx images (7911 reports).We
used fuzzy string search and parse trees to convert the natural lan-
guage annotations produced by the pathologists to annotations in
a controlled vocabulary that can be analyzed automatically
(Supplemental Methods 8; Supplemental Table S13). In this way,
we identified 19 histological phenotypes affecting one or more tis-
sues for which there were at least 30 affected samples. From these,
we identified six conditions with significant (FDR<0.01) altered
contributions of major cell types when comparing the composi-
tion of affected and normal tissue (Fig. 5B–E). Atherosclerosis in
the tibial artery, which is more prevalent in older donors
(Supplemental Fig. S29A), is associated with an increase in endo-
thelial cells (Fig. 5B); this might be attributed to endothelial prolif-
eration stimulated in peripheral artery occlusion (Ziegler et al.
2010). Atrophic skeletalmuscle, a phenotype that is also correlated
with age (Supplemental Fig. S29B), is associatedwith an increase in
mesenchymal cells, which is consistent with the reported increase
of connective tissue (Appell 1990) and intermuscular fat (Manini
et al. 2007; Addison et al. 2014) in atrophy (Fig. 5C). Indeed, anal-
ysis of the pathology reports of GTEx muscle histological images
reveals that the proportion of fat is almost twice as high in atrophic
than in non-atrophic muscle (24% vs. 13%) (Supplemental
Methods 8). Elevated enrichments of mesenchymal cells are also
observed in liver congestion (Supplemental Fig. S30A), a condition
that often precedes fibrosis, which is characterized by an activation
of matrix-producing cells, including fibroblasts, fibrocytes, and
myofibroblasts (Elpek 2014). Despite the low presence of cells of
the major cell types in the testis, we found a further reduction of
enrichment of endothelial cells in testis undergoing spermatogen-
esis (Supplemental Fig. S30B). In lung pneumonia, we also observe
alteration of all cell types (Supplemental Fig. S30C). The sixth con-
dition is gynecomastia, a pathology that is characterized by ductal
epithelial hyperplasia (Cuhaci et al. 2014). We investigated differ-
ences in cellular composition between males and females and
found them significant only in mammary tissue, where female
breasts show much higher enrichment in epithelial cells than
male breasts, possibly owing to the presence of epithelial ducts
and lobules (Fig. 5D). Males diagnosed with gynecomastia show
a cellular composition similar to that of females, mirroring tissue
morphology.

We also observed specific age-related changes in cellular com-
position in lung and ovarian tissues. In lung samples we observe
changes of all cell types, in particular, a significant reduction of ep-
ithelial cells in older donors (Fig. 5E), which is consistent with the

impaired recellularization of lung epithelium that has been ob-
served in decellularized lungs of aged mice (Sokocevic et al.
2013). Consistently, a similar pattern can be observed in the lungs
of the individuals that died of respiratory-related causes
(Supplemental Fig. S30D,E). In ovarian samples of women older
than 48, a lower bound for menopause occurrence, we observe a
decrease in endothelial cells (Supplemental Fig. S30F), potentially
related to an age-dependent decline in ovarian follicle vascularity
(Tatone et al. 2008).

Altered cellular composition is likely to be particularly rele-
vant in cancer. Therefore, we analyzed transcriptome data from
The Cancer Genome Atlas Pan-Cancer Analysis of Whole
Genomes Project (PCAWG) (The Cancer Genome Atlas Research
Network et al. 2013) for 19 cancers affecting tissues also profiled
in the GTEx collection and estimated the cellular enrichments of
the major cell types (Supplemental Fig. S31; Supplemental
Methods 9). In some cases, there is also transcriptome data for nor-
mal samples from the same cancer project, which serves as a con-
trol for the highly different methodologies used in GTEx and the
cancer projects. Thus, in lung cancer, there is an increase in epithe-
lial cells (Fig. 6A,B), likely reflecting the epithelial origin of most
lung cancers. In kidney primary tumors, in contrast, there is an
overall increase of endothelial cells across most cancer subtypes,
consistent with the increased vascularity associated with the can-
cer (Fig. 6C,D). The exceptions are renal papillary cell carcinomas,
which instead present reduced vascularity (Aziz et al. 2013). In
both cases, the cellular composition of GTEx samples and normal
samples from the cancer projects are similar, supporting the ro-
bustness of our cellular characterization. Alterations in cellular
composition can also reflect cancer progression. For ovary, even
though we lack a comparable set of normal samples from the can-
cer projects, there are data on different stages of the disease, which
serve as an internal control (Fig. 6E,F). Compared to GTEx normal
data, there is an increase in epithelial cells in cancer, which ismore
evident as the severity of the cancer progresses, from primary to
recurrent.

Discussion

The ultimate aim of human genetics is to understand how varia-
tions in the sequence of DNA impact organismal traits. However,
the path connecting the DNA sequence of the genome to the phe-
notypic traits of the organism remains mostly unknown, involv-
ing a hierarchy of levels of increasing organizational complexity.
This path, which unfolds during development, initiates with the
transcription of DNA into RNA and its subsequent processing to
functionalmature RNAs. These,mostly through translation to pro-
teins, determine cell morphology and function. Cells with similar
functions aggregate to form tissues, and tissues organize into or-
gans. Systems aremade of different types of organs thatwork coop-
eratively to perform a particular function. Owing mostly to
genome-wide association studies (GWASs), thousands of genetic
variants have been connected to human traits and diseases.
GWASs, however, uncover only statistical association. Fully under-
standing the causes and themechanisms throughwhich DNA var-
iation impacts organismal phenotypes requires understanding
how this variation impacts through each of the intermediate levels
of organizational complexity. The advent of high throughput
technologies to monitor transcription—microarrays first, then
RNA sequencing—made possible the identification of genetic var-
iants affecting gene expression. However, how DNA variants and
the resulting molecular phenotypes propagate through
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Figure 5. Alterations of the contributions of the major cell types to tissues in histological phenotypes. (A) GTEx samples represented in a 3D space in
which the axes are the enrichments of endothelial, epithelial, and mesenchymal cells. (B,C) Differences in xCell enrichments of major cell types (Mann–
Whitney U test, adjusted P-values as FDR) between affected and normal states. Histological images of affected and normal tissues are displayed (see
text for details): (Athr) atherosclerosis (n=31); (Atrp) atrophy (n=34); (Nrml) normal (n=285 and n=388, respectively). (D) Major cell type xCell enrich-
ments in female breast samples (Feml, n=85), and male breast samples with (MlGy, n =36) or without gynecomastia (Male, n=85). Only significant FDR
(≤0.05) are shown, all of them being between female and male without gynecomastia (left, FDR) and between male without gynecomastia and male with
gynecomastia (right, FDR). (E) Changes inmajor cell type xCell enrichments in lung samples with age. Pearson’s r and adjusted P-values as FDR: endothelial r
=0.17 and FDR=3.2 × 10−3; epithelial r=−0.23 and FDR=6×10−5; mesenchymal r=0.25 and FDR=2.4 × 10−5.

Transcriptional programs define major cell types
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intermediate levels of biological organization, namely, cells and
tissues (or organs), is largely unknown. The reason has been the
lack of phenotypic data on cells and tissues with associated geno-
mic, epigenomic, and transcriptomic data.

Very recently, however,mostly through advances both in sin-
gle-cell sequencing and in digital imaging technologies, data have
started to become available, which can be used to connect themo-
lecular to the cellular level, and this, in turn, to the tissue level. In

E F

BA

C D

Figure 6. Alterations of the contributions of the major cell types to tissues in cancer. (A) xCell enrichments in epithelial cells in lung cancers andmatched
normal controls from the PCAWG project separated by cancer project: (LUAD-US) lung adenocarcinoma, TCGA, USA; (LUSC-US) lung squamous cell car-
cinoma, TCGA, USA. (B) Enrichment in matched normal and cancer lung samples by donor, pooled across the cancer projects. The P-value for the Mann–
WhitneyU test for the differences in epithelial contribution between normal and cancer samples in the LUAD-US project is: 8.1 × 10−6. (C) xCell enrichment
in endothelial cells in kidney cancers and matched normal controls from the PCAWG project separated by cancer project. (RECA-EU) renal cell cancer,
France, EU; (KIRP-US) kidney renal papillary cell carcinoma, TCGA, USA; (KIRC-US) kidney renal clear cell carcinoma, TCGA, USA; (KICH-US) kidney chro-
mophobe, TCGA, USA. (D) xCell enrichments in matched normal and cancer kidney samples by donor. The adjusted P-values for theMann–WhitneyU test
for the differences in endothelial contribution between normal and cancer samples in the RECA-EU, KIRC-US, KICH-US projects are respectively 3.8 × 10−12,
0.0024, and 0.65. (E,F) xCell enrichments in epithelial cells in ovarian cancers from the PCAWG project separated by cancer project (E) or by donor for
matched primary and recurrent samples (F): (OV-AU) ovarian cancer, Austria; (OV-US) ovarian serous cystadenocarcinoma, TCGA, USA. The P-value for
the Mann–Whitney U test for the differences in endothelial contribution between primary and recurrent samples in the OV-AU project is 3.6 × 10−27.
The donors in B, D, and F are sorted based on the difference between the enrichments. The dashed lines in D and F separate the matched samples in which
the enrichment of endothelial (epithelial) cells is larger in the cancer sample from those in which it is larger in the normal sample.
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this regard, the data collected here on the transcriptomics of hu-
man primary cells, and the links that we have established between
these data and the phenotypic traits of organs constitute a unique
resource, serving as an intermediate resolution of complexity be-
tween single-cell and whole-organ transcriptomics. This resource
will contribute to the understanding of how the interplay between
transcription and cellular composition shapes tissue histology and
ultimately impacts human phenotypes. Our analyses suggest that
a large fraction of human cells and cell types in tissues belong to a
fewmajor cell types, providing a high-level transcriptionally based
hierarchical classification of human cells. Extending the variety of
profiled cell types, achieving single-cell resolution, and integrating
expression datawith epigenetics data, as proposed in the HCA pro-
ject (Regev et al. 2017), will enrich our understanding of the con-
stitutive cell types in the human body and their functional
relationship.

Methods

RNA isolation, library construction, and sequencing

For each cell type to bemade into a library, we obtained cell pellets
that were stored in RNAlater (Thermo Fisher Scientific) as catalog
items from PromoCell (https://www.promocell.com) and Scien-
Cell (https://www.sciencellonline.com/) (for a list of primary cells,
see Supplemental Table S1). In short, the RNA was isolated from
sorted cells based on cell morphology and cell surface markers.
Each cell type was passaged to expand the cell numbers for 24–
48 h (1-2 doublings) before total RNA extraction and shipping.
Thus, this protocol represents a minimum of exposure to non-na-
tive conditions. The cell morphologies are checked at this time. Al-
though it is clear that the molecular context (influence of external
cytokins and neighboring cells) of these cells has changed, they
cluster in a very similar fashion to profiles shown by single-cell
isolates of the corresponding types. Thus, the limited passage
has an unlikely effect on the gene expression program. We rely
on the providers’ standards for quality assurance. Quality sheets
are available through the ENCODE portal (https://www.encode
project.org/search/?type=Biosample&organism.scientific_name=
Homo+sapiens&biosample_ontology.classification=primary+cell&
lab.title=Thomas+Gingeras%2C+CSHL&source.title=PromoCell&
award.rfa=ENCODE3). We ordered three vials per cell type per
donor for a total of 3 million cells. The three vials were combined,
and we isolated total RNA from them using the Ambion mirVana
miRNA Isolation kit (AM1561). The rRNA was removed using the
RiboZero Gold Protocol (RZG1224). The libraries are made using
a homebrew “dUTP” protocol (Parkhomchuk et al. 2009), which
generates stranded libraries. They were sequenced on the Illumina
platform inmate-pair fashion and processed through the data pro-
cessing pipeline at the ENCODE DCC. Additional information
about each of these steps, metadata, and files can be found at
https://www.encodeproject.org/.

RAMPAGE sample preparation

Isolation of RNA is described in the preceding section. The RAM-
PAGE protocol (Batut and Gingeras 2013) was used to make librar-
ies. Each library was sequenced in mate-pair fashion on the
Illumina platform. Detailed protocol and quality-control images
and metrics on a per library basis can be found in the “Production
Documents” appended to each RAMPAGE assay at the ENCODE
Data Coordination Center (https://www.encodeproject.org/).

Small RNA isolation, library construction, and sequencing

Isolation of RNA is described in the preceding section. The
Illumina TruSeq protocol was used to make libraries. Each library
was sequenced in single end fashion on the Illumina platform.
Detailed protocol and quality-control images and metrics on a
per library basis can be found in the “Production Documents”
appended to each Small RNA assay at the ENCODE Data
Coordination Center (https://www.encodeproject.org/).

RNA-seq processing pipeline

Raw reads from the 106 RNA-seq libraries (for a list of ENCODE li-
brary IDs, see Supplemental Table S1; for submitted FASTQ files,
see https://www.encodeproject.org/) were aligned with STAR
v2.3.1z (Dobin et al. 2013) to the human genome assembly
hg19. Readsmapping tomore than 20multiple positions were dis-
carded. Read counts for all long genes annotated inGENCODEv19
(Harrow et al. 2012) were computed with RSEM 1.2.19 (expected
read counts) (Li andDewey 2011). Statistics on the number of reads
and mapping are available on Supplemental Table S14.
Furthermore, we verified using liftOver that the cell-type-specific
genes are consistent between GRCh37/hg19 and GRCh38/hg38,
with a successful conversion of 2855 of the 2871 genes.

For most of the analyses, we average expression values for a
given pair of replicates and sometimes the two biological replicates
are fromdonors of the opposite sex; therefore, we remove genes on
Chromosome Y. The lack of an enrichment step for polyadeny-
lated transcripts preserves the presence of some short biotype
genes, which are still longer than 200 bp. Thus, we remove genes
with at least one transcript annotated as short RNA in
GENCODE. These genes are often of repetitive nature, which
makes the quantification of their expression problematic; this is
why we decided to remove them.

Read counts which are not reproducible between two repli-
cates (npIDR>0.1) (Djebali et al. 2012) are set to 0. The matrix of
read counts after npIDR is provided as Supplemental Table S2. Af-
ter filtering for reproducibility, read counts are normalized to a
slightly modified version of RPKM (reads per kilobase of exon
model per million mapped reads) (Mortazavi et al. 2008). Specifi-
cally, read counts were first normalized to counts per million
(cpm), in which the library sizes are the trimmedmean ofM values
(TMM) (Robinson and Oshlack 2010) scaled sums of exonic reads,
and then normalized by gene length. Finally, RPKM values from
the two replicates were averaged, and genes with RPKM<1 in all
samples were discarded, resulting in 16,265 genes, including
13,990 protein coding, 1380 long noncoding RNAs, and 895 pseu-
dogenes. Statistical analyses were performed with R version 3.6.1
(R Core Team 2019).

As the samples were prepared and sequenced in three known
distinct batches (Supplemental Table S1), we used the
removeBatchEffect() function from R limma package (Ritchie et al.
2015) to build a linear model with the batch information and
the cell types on log10-transformed RPKM (with a pseudocount
of 0.01), and we regressed out the batch variable.

Data access

All experimental protocols for the samples described here, and all
data generated for this study, are publicly available on the
ENCODE portal (https://www.encodeproject.org/). GTEx gene ex-
pression is available in the GTEx portal (https://www.gtexportal
.org).
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