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1. Introduction. We are concerned with the Riemann problem for

ut + (u2)x = 0
vt + (uv)x = 0

(x, t) 6 R x R+, (1.1)

with initial values
f (u+, u+), x > 0,

M(z,0)= (1.2)
I (u ,v ), x < 0.

System (1.1) has the two eigenvalues Ai = u and A2 = 2u with corresponding right
eigenvectors r\ = (0,1),r2 = (1 ,v/u)T, and VAi • r 1 =0, VA2 • r2 = 2. Thus (1.1) is
nonstrictly hyperbolic and Ai is linearly degenerate; A2 is genuinely nonlinear.

We recall that the classical Riemann solution is composed of a shock (contact dis-
continuity) or rarefaction of the slower family followed by a wave of the second. But in
the present situation, one finds that no classical weak solutions exist for certain states
(u±,v±), and distributions of the form of Dirac delta shock waves supported on discon-
tinuity lines are found necessary, even though for systems of conservation laws satisfying
the classical assumptions (strict hyperbolicity and genuine nonlinearity), the Riemann
problem breaks down for some large data [5]. For the two-dimensional system of conser-
vation laws we refer the reader to [10].

System (1.1) with trivial difference (t —> 21) was studied by Korchinski [6] in his Ph.D.
Thesis in 1977. Generalized delta-functions were used in his numerical study and in the
construction of his unique solution to the Riemann problem. Afterwards, Tan, Zhang,
and Zheng [11] introduced a viscosity term in the first equation of (1.1),

Ut ~f~ (^ )x = ^tuxx 1 . .

ut + (uv)x = 0

and proved that the self-similar solutions (u£,v£) to (1.3), (1.2) converge weakly star
to delta-shock waves for some states (u±,v±). In this paper, we employ the limiting
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viscosity approach, first introduced by Tupciev [9] and by Dafermos [1], to solve the
Riemann problem (1.1), (1.2). As to the applications of this approach, we refer the
reader to [2], [7], [8], and [3], etc.

The program in this paper is as follows: in Sec. 2 we show that the viscosity regularized
problem

ut + (u2)x = etuxx , . _ _; , (x,t GRxR+ (1.4
V{ ~t~ (v>v)x —

with initial data (1.2) has a smooth self-similar solution of the form (u(x/t),v(x/t)),
functions of the single variable £ = x/t. Equivalently, we consider the boundary-value
problem

eu=-£u + 2uu R
£V — —fu + (uv + uv)

with boundary conditions

(u(-oo),v(-oo)) = (u~,v~), (u(+oo),v(+oo)) = (u+,v+). (1.6)

It is shown that (1.5), (1.6) has a smooth solution (ue(£),w£(£)) on (-00,00) by applying
the Leray-Schauder fixed point theorem (see [4, pp. 280-281]). In Sections 3 and 4
we prove that limit solutions of (1.5), (1.6) generate solutions of the Riemann problem
(1.1), (1.2). In the resulting solution, u(x,t) is always a bounded monotone function of
£ = x/t while v(x, t) may be unbounded along a single ray x/t = To- In particular, when
u+ < 0 < u~, v(x, t) consists of a discontinuity line x/t — u+ +u~ plus a distributional
weighted Dirac delta function with x/t — u+ + u~ as its support. At the same time,
u(x,t) is required to take certain values on x/t = u+ + u~~, so that (1.1) holds in the
sense of distributions.

One can verify that (u(x/t~),v(x/t)) — (w(£),v(£)) is a solution to (1.1), (1-2) if and
only if

—fit + 2uu = 0,
c-^c a. ^ n—£v + (uv + uv) = 0

holds in the sense of distributions and (u(£),v(£)) satisfies (1.6). Thus, if £0 € (—00,00)
is a discontinuity point of (u(£), «(£)), the Rankine-Hugoniot conditions become

£0 = "(£o + 0) + u(£o - 0),

£o(v(£o + 0) - i;(£0 - 0)) = {uv)(£0 + 0) - {uv)(£a - 0).

2. Existence of solutions of (1-5), (1.6). To obtain the existence of smooth
solutions of (1.5), (1.6), we start with the following altered system:

eu = —+ 2/i.uit,
ev = —£i> + fj,(uv + uv), (2.1)

(u(-L),v(-L)) = (ixu ,fj,v ), (u(L),v(L)) = (hu+,/j,v+), (2.2)

with n € [0,1] and L > 1. The following theorem is a special case of Theorem 3.1 in [1],
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Theorem 2.1. Assume that there is a constant M depending only on u+ ,u~,v+ ,v~,e
(and thus independent of /x and L) such that any solution of (2.1), (2.2) satisfies

max (|u(OI + KOI) < M- (2-3)
«e[-L,L]

Then a solution of (1.5), (1.6) exists.
We remark in passing here that (2.1), (2.2) always has a solution for some n € (0,1]

since the mapping T (see the definition in [1]) is compact. Moreover, if the estimate (2.3)
holds then (2.1), (2.2) has a solution for all /j, E [0,1].

Our next goal is to establish the estimate (2.3). To do this we have

Lemma 2.2. Let («(£)> v(£)) be a solution of (2.1), (2.2) on [—L, L] for some /j, > 0. If
u+ >u~, then one of the following holds.

(i) No critical points: w(£),i>(£) have no local maxima or minima on [—L,L\. u(£) is
constant or strictly increasing while t>(£) is constant or strictly monotone.

(ii) One critical point: u(£) is strictly increasing, and
(a) v(£) has a minimum at some t with v(r) > 0, or
(b) u(£) has a maximum at some a with v(a) < 0.

Proof. Let us assume that (it(£),v(£)) is a nonconstant solution of (2.1) on [—L, L\.
We first note that «(£) has no critical points in [—L, L\. Indeed, suppose £o is a critical
point of u(Z). Then u(£o) = 0 and by (2.1)! we have that vSn\(,o) = 0, n > 2 which
means u(£) is constant in [—L,L\. This is a contradiction since u(£) is nonconstant.

Now assume that v(£) has a minimum at r. By (2.1)2 we get u(t)v(t) > 0 and so
v(t) > 0 since u(£) > 0 in (—L,L). We note here that v(r) ^ 0; otherwise, v(t) = 0.
But this is not feasible by uniqueness of solutions of the initial-value problem for (2.1)
(see Lemma 4.1 in [1]). Similarly, v(cr) < 0 for a maximum point a of f(£)- Finally,
it is easily seen that v(£) has at most one critical point in [—L,L\ since v(£) > 0 at a
minimum point and u(£) < 0 at a maximum point. The proof is complete.

Lemma 2.3. Let («(£), w(£)) be a solution of (2.1), (2.2) on [—L,L] for some fi > 0. If
u+ < il~ , then ii(£) is strictly decreasing in [—L, L] and v(£) satisfies one of the following.

(i) No critical points: v(£) is a monotone function on [—L,L];
(ii) One critical point: (a) v(£) has a minimum at some r with v(t) < 0; (b) v(£) has

a maximum at some a with v (er) > 0;
(iii) Two critical points: (a) v(£) has a minimum at r and a maximum at a with

t < ct, and v(t) < 0, v(cr) > 0; (b) v(£) has a maximum at a and a minimum at r with
a < t, and v(a) > 0, v(t) < 0.

Proof. We only show that v(£) has at most two critical points in [—L,L\. Indeed,
suppose that v(£) has three critical points o"i,r,a2 with a\ < t < a2, where cri,cr2 are
the maximum points and r is the minimum point of v(£) in [—L,L\. Then v(ai) > 0,
v(t) < 0, and ^(02) > 0. Thus, there exist two points £0 G (cti,t) and G (r, <j2) such
that v(£o) = v(Ci) = 0. Observing that v(^) > 0, w(£o) < 0 and v(£) < 0 for ^ e (^o,Ci)>
integrating (2.1)2 over (^0,^1) we obtain

0 < ev(£i) -ev(£o) = ~ f £v(£)d£ = [ v(£)d£ < 0,
^£0 *^^0
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which is a contradiction. The proof is complete.
Now we are in a position to derive the a priori estimate (2.3) required to apply Theorem

2.1. If u+ > u~, (2.3) is trivial by Lemma 2.2. In the following context we assume that
u+ < u~. In this case we know from Lemma 2.3 that m(£) is strictly decreasing in [—L, L\
and so it(£) is uniformly bounded with respect to /i G [0,1], L > 1 and s > 0. It remains
to estimate v(^) for Cases (ii) and (iii) in Lemma 2.3. (Obviously, v(£) is uniformly
bounded on [—L, L] with respect to n, L for Case (i) in Lemma 2.3.)

Lemma 2.4. For Cases (ii) and (iii) in Lemma 2.3, v(£) is uniformly bounded on [—L,L\
with respect to n G [0,1] and L > 1.

Proof. Motivated by [2], we first prove the following:

Lpv(£)d£ > —((3 — a)v — N (2.4)

for every interval (a,/?) C (-L, L), where v = max{|v+|, |f~|} and N — v(u~ — u+).
Indeed, we set 0\ — sup{£ G [—L,a) \ v(£) > —v} if v(a) < —v; on the other hand,

we set = inf{£ G (a,/?) | v(£) < —?;} if v(a) < —v (if this set is empty, (2.4) is
automatically satisfied). Similarly, we set 9o = inf{£ G (/3,L\ \ v(t;) > —v} if v(/3) < —v
while we set 02 = sup{^ G (a,/3) | f(C) < —^} if v{(3) > —v. Since v{9\) = f(#2) = —v,
we have p e e

[ {v(t) + v)d£> [ (v(£) + v)d£ = - f
J a J 0\ J 6\

Noting that v{61) < 0, v(02) < 0, we integrate (2.1)2 over (0i,d2) to obtain

I■<3
(u(0 + v)di > ev(62) - ev{0\) + nv(u(02) - u{61))

> v{u — u ) = —N,

which implies (2.4).
Similarly, we have

L0
v(0dt.<{f3-a)v + N. (2.5)

We observe that v(£) changes its signs at most one time on any interval (a,/3). In
other words, there is no subinterval I C (a,/3) such that v(£) is positive (or negative)
immediately to the left and right of I while v(£) is negative (or positive) in /. Thus,
(2.4), (2.5) yield

r0
\v{£)\d£<(J3-a)v + 2N (2.6)

/J a

for every interval (a, (3) C (—L, L).
We now apply (2.4) to estimating v{£) from below for Case (ii)(a) in Lemma 2.3.

Cases (ii) (b) and (iii) can be treated similarly.
By (2.4) it follows that

N < v{Q < v, ee[-L,L]/r. (2.7)■-^1
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Without loss of generality we assume that v(t) < —v. We fix £0 < t such that i>(£o) < —v.
For any £ € [£o!T) we let £' denote the point in (t,L) with the property u(£') = u(£)
(such a point exists since v(£) < — v). Integrating (2.1) over (£,£') we obtain

ri'
£v(£') — £v(0 = — J sv(s)ds

(2.8)
+ /i(u(£') = u(f)M£)-

We note that i>(£') > 0, i>(£) < 0 and — sv(s)ds = (v(s) — v(£))ds < 0. Therefore,
(2.8) gives

ev(Z) > /*("(£) ~ w(£')Mf) > (u~ - u+)v(£).
Integrating the above inequality over (£0 ,t) we deduce that

v(t)>v({ 0)eA(T-(o), (2.9)

where A = (u~ — u+)/e.
Let £ < r such that i>(£) = —v. Then £o lies in the interval [£,r). If r — £ < 1, we

choose £o = £ and by (2.9), v(t) > —veA. On the other hand, if t — £ > 1, we choose
£o = t ~ 1. Prom (2.9), (2.7), it follows that

)(t) > eA<"T ^ v — j —^ = eA(—v — N).

The proof is complete.

3. Existence of solutions of the Riemann problem: the case when (v£(£)}
is uniformly bounded. In Sec. 2 we have obtained the existence of a smooth solution
(ue(£)t ve(0) °f (1-5), (1-6) for every £ > 0. Moreover, we have the following

Lemma 3.1. The same results in Lemmas 2.2 and 2.3 are valid for the solution (ue(£);
MO) of (!-5), (1.6).

If {«e(£), we(0) I 0 < £ < 1} is uniformly bounded in e, we borrow the following result
of Dafermos (see Theorem 3.2, [1]) to obtain the existence of a solution to the Riemann
problem (1.1), (1-2).

Proposition 3.2. For every fixed e > 0, let (ue(£),ue(0) be a solution of (1.5), (1.6).
Suppose the set {(ue(£), ve(£)) | 0 < e < 1} is of uniformly bounded variation. Then
{(M<=(£)> possesses a subsequence that converges a.e. on (—00,00) to a function
(u(£),u(£)) of bounded variation. The pair u(x/t),v(x/t) provides a weak solution to

(1.1), (1.2).
By Lemma 3.1, m£(£) is always a monotone function on (—00,00) with the property

min(u~,u+) < m£(£) < max(?z_,u+) for every e > 0, while {we(0 | 0 < er < 1} is
uniformly bounded when u+ > u~ or when ve(0 has no critical points on (—00,00)
for u+ < u~. So it remains to determine the condition under which fe(£) is uniformly
bounded in e. In the present situation, ue(£) is strictly decreasing on (—00,00) and vs(£)
has one or two critical points on (—00,00). For definiteness we consider the representative
case where ve(£) is strictly decreasing on (—00,r£), attains its minimum at re, and is
strictly increasing on (r£, 00). All other cases can be treated similarly.

Let Te —> tq, |to| < 00, as e —> 0 (pass to a further subsequence if necessary).
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Theorem 3.3. If |ro| = oo, then {v£(^) | 0 < e < 1} is uniformly bounded.
Proof. We first assume that To = oo. By (2.7) we get that

—v — N<vE(£t)<v, (3.1)

for £ £ (—oo, a] and e small, where a is any fixed real number. We take a = 2 and e
to be so small that te — ue(te) > 1, (te — 1 )/(rE — ue(t£)) < 2 (this can be done since
u+ < u£(t£) < u~ and te —» oo as e —> 0). Integrating (1.5)2 over (l,rE) and observing
v£ (1) < 0, one finds that

(r£ - u£(te))v£{t£) = (1 - ue{l))vE(l) + J v£(Qd£ - eve(l)

> —(1 + u)(v + N) — (t£ — l)t> — N

by virtue of (3.1), (2.4), where u = max(|u+|, |u~|). Hence, ve(te) > —(l + u)(v + N) -
N — 2v for e small. Thus, the theorem is proved for t0 = oo.

Next we suppose that t0 = —oo. At this time, (3.1) is also valid for £ € [a, oo), a
being any number. Thus there exists a point £o G [1, 2] such that

0<v£{Zo) = v£{2)-v£(l)<2v + N. (3-2)

Let e be so small that

—re + u£(te) > 1, (f0 - te)/(ue(te) - te) < 2. (3.3)

We integrate (1.5)2 over (te,£o) to obtain that v£(t£) is uniformly bounded in e from
below on account of (3.1)-(3.3), (2.4). So the theorem is also true for To = —oo. The
proof is complete.

Now we turn to consider the case |r0| < oo. Let £„,£§ be the singularity points of
(1.5), that is, = u£(^) and = 2uE(f|). We set £a = limE^0 £„ and = hm£^0 £g.
The points £a,£/3 play an important role in the following discussion.

Lemma 3.4. ^ is defined as above. Then we have ^ = u+ + u~ and for any 8 > 0,

f u+ uniformly for £ > + 6,
limMjf = (3.4)
£->0 \ u uniformly for £ < ^ — 8.

Proof. We take £o = + 8/2. Let £ be so small that £§ < £o — ̂ /4. Prom (1.5)i we
have

Ue(C) = uE{to)exp (/ . (3.5)

Integrating (3.5) over (£o,£o + 1); one finds that

rio+i f ft 2n (?) — ? \
ue(£o + 1) - Mfo) = MZo) J exp I J —~(3.6)
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We note that

r«0+1 / 2us(s) -s /-«0+1 / [i2u+-s;\;ci \ i  i i  ^
/Jo V^£° fc ) \J£o e )

> e

Thus, (3.6) gives

r / 2-("»-^U> [ <*» f
J£n \Jtio ^ J Jtio \JZa

jf exp ^^-(£-£o) - i-(£2 d£

rl ^

/ exp (2it+s — £0S — f s2) ds = A- e.
Jo

. . vr — u
0 > ue($0) >

which combines with (3.5) to yield

u — u+ ( 2ue(s) — s
—  asu — u+ If|u*(4)l - —3—exp\l

Now,

2u£(s) - s = 2(ue(s) - ue(£p)) +£p-s

= (5-^)(2tte(0e)-l)<~.

Therefore,

MOI < U A£U exP ~ &>) ) for £ > £o- (3.7)

Let £i > £p + 6. We deduce from

fOO
u' - ue(£i) — / iis(s)ds

Jii
that lim£_»o we(^i) = u+ uniformly by virtue of (3.7). Similarly, one can obtain that
lim^o ue(£) = u~ uniformly for £ < £/? — S.

Finally, we take V € Co°(£i,£2), where £i < £/; < £2- By (1.5)i one knows that

ef ue(Z)ii>(€)d£ = f MO WO + 0/K0)- ̂ (OVKO^O
Jii Jti

Letting e —> 0, we see that

[ [u~+ ^(0) ~ {u~)2i>(t)\d£ + [ [u+(ip{0 + &{&) - {u+)2ip{£,)]d£, = 0
->t;g

by virtue of (3.4). Therefore,

(u~ - u+)(£p - (u+ + u~))ip{^0) = 0,

which yields that = u+ + u~~ since u+ < u~~ and ip is arbitrary. The proof of the
lemma is complete.
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Lemma 3.5. £a is defined as above. Then we have
(i) if u~ > u+ > 0, then = u~ ,£a <

(ii) if u+ <u~ < 0, then £Q = u+,£a >
(iii) if u~ > 0 > u+(u~ > m+), then £,a = = u+ + u~.

Proof. We first show (i) holds. Indeed, £a < u~ since uE((t) < u~ on (—00,00).
Suppose that < u~. Then £a < u+ +u~ = £g. By (3.4) we have that lime^o ue(£a) =
u~, which is a contradiction. Case (ii) can be treated similarly.

Finally, suppose that u+ < 0 < u~. If < u+ +u~ = then £a = lime^0 ue(^a) =
u~ by (3.4), which contradicts u+ <0. In a similar way £Q cannot be greater than
u+ + u~~. So = u+ + u~. The case u+ = 0 < u~ or u+ < 0 = u~ is treated similarly
and leads to the same result. The proof is complete.

We remark in passing here that some of the results in Lemmas 3.4 and 3.5 were also
obtained in [11]. Now we state

Theorem 3.6. is given in Lemma 3.5. If tq £a, then {i>e(£) | 0 < e < 1} is
uniformly bounded.

Proof. We only consider Case (i) in Lemma 3.5. Cases (ii) and (iii) are treated simi-
larly. At this time = u~. We distinguish the following cases.

1°- ro > £« = u~. We integrate (1-5)2 over (t£,to + 1) to get that
/•To + 1

eve(r0 + 1) = (te - u£(t£))v£(t£) - (r0 + 1 - u£{t0 + 1))u£(t0 + 1) + / v£(£)d£.
J Te

Observe that w£(ro + l) > 0 and t£—u£(t£) > re—u~ > tq — u~) for e small. Therefore,

v£{t£) >
Te - U£(T£)

ri~o+l
(t0 + 1 - ue(t0 + l))ue(r0 + 1) - V£(£)d£

J Tf

>  —— [(r0 + 1 + u)(v + 21V) + 2v + N]
T0 - U

since \v£{tq + 1)| < v + 2N by (2.7) and f^"+1 v£(£)dt; < (to + 1 — r£)v + N < 2v + N
by (2.5) for e small, where u = max{|u+|, |u~|}- Thus v£(t£) is uniformly bounded in e
from below.

2°. To < £q = uT. We integrate (1-5)2 over (—To — 1,t£) to have

- sv£(—to - 1) = ( t£ + u£(t£))v£(t£)

(t0 + 1 + U£(—To - l))ue(-T0 - 1) + f ve(t)d£.
J —TQ —l

We note that v£(-tq - 1) < 0 and —ts + u£{t£) — —t£ + ^ - (w<r(£«) _ ue{t£)) =
(££ — t£)( 1 — u£(0e)) > — To) for £ small. We do as above to have that v£(t£) is also
bounded uniformly in e. The proof of the theorem is complete.

4. Existence of solutions to the Riemann problem: the case when {«(?(£)}
may tend to infinity as To = £Q. In this section we discuss the case when {fe(0} may
tend to infinity as t£ —> £Q. We prove that the family {(ue(£), ue(£)) | 0 < £ < 1} of
(1.5), (1.6) can also generate solutions of the Riemann problem (1.1), (1.2). In particular,
when u~ > 0 > u+ (u~ > u+), Riemann solutions of (1.1), (1.2) contain delta-shock
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Lemma 4.1. Let (ue(£),ue(£)) be a solution of (1.5), (1.6) andletu£(£) have its minimum
at rs,Te * 7~o = as £ * 0. Then the sequence {(u£(£),ve(£)) | 0 < e < 1} possesses a
subsequence that converges a.e. on (—00,00) to functions (u(£),v(£)) satisfying

u+ < u(£) < u~, £ e (-00,00), (4.1a)
N

<v(£)<v, £ e (-oo,oo)/t0, (4.1b)IC-to
where v — max{|w+|, |u_|} and N = v(u~ — u+).

Proof. Since ue(£) is strictly decreasing on (-00,00), (4.1a) is trivial. By (2.7), ve(£)
is uniformly bounded in e on the finite domain I2 = [-2,r0 - \] U [r0 + |,2] (without
loss of generality we assume that |t0| < 1). Applying Helly's theorem there exists a
convergent subsequence of {v£(0} (still denoted by the original one). Similarly we can
extract a convergent subsequence of {v£(£)} on /3 = [-3, r0 - |] U [t0 + 5,3]. Continue
this process on each In = [—n, r0 - U [r0 + ^,n], n = 4, 5,  Finally, extract the
diagonal element at each enumerated sequence. The sequence of diagonal elements is
convergent at each { / r0 to a function v(£) defined on (—00, r0) U (to, 00). Also, (4.1b)
holds on account of (2.7). Moreover, v(£) is locally integrable on (—00,00) by (2.6) and
Fatou's lemma. The proof of the lemma is complete.

The following lemma describes the behavior of v(£) at the boundary.

Lemma 4.2. v(£) satisfies the following boundary conditions:

v(—oo) = v~, v(+oc)=v+. (4.2)

Proof. By (2.7),

-v-2N < ve{£) <v for £ G (-00,-£0) U [Co, 00), (4.3)

where Co = ro + 1 and e is small.
Let

mo = (:;<«). fM-(JZo)-
Motivated by [1], we have from (1.5) that

(exp (fc) = ■exp (|;) • (4-4)

We integrate (4.4) over (£o,£), £ > £o> to obtain that

6XP (fe) _6Xp (fe) = s ft: Vf(ys(s))Ms)exp ds.

Using Gronwall's inequality, it follows that

|ife(OI < Iye (Co) | exp ̂ 02 + M^- &)-g2^ ; (45)
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where a — sup^e^o OC) |Vf{ye{0)l> which is independent of e on account of (4.3).
We note that

•L€o + l /^_?2

€o v
Ve(€o) / exp (

rt o+ii /*«; o-M

= Veito + 1) " Veito) + - / f{ys{0)dt
£ Jt n

7/(%(&)) [£ J£i

£o
£° + l / f 2 _ £-2 \

+ ^f(ye{Zo)) J' exp  
1 /-4o + l / „2 _ c2\

+ ^J J sf(ye{s))exp( ) dsdg*2./€o 4> 'vwew/ 2e

which reduces to
|ye(£o)| < const •£ 3,

where the constant is independent of e. Thus, (4.5) gives

\Ve{0\ < const -£'3exp + 2Q^2£ ^^ . £>£o- (4.6)

Therefore, for £ > max(£o,a + \a — £0|) (4.6) shows that |ve(£)| —> 0 as £ —> 0. We
recall that v£(£) converges pointwise to v(£) for £ > £0. Thus u(£) must be a constant
for £ > max(£0, a+ |a — £o|)- Since, for any £ > 0, lim^oo ue(£) = f+, the constant must
be v+. A similar argument holds for £ = —oo. The proof is complete.

By Lemma 3.4 we know that only = a — u+ + u~ is a discontinuity point of u(£)
on (—00,00), i.e., u(£) = u(x,t) has a shock wave with speed a — u+ + u~~ (u~ > u+)
in the (x,£)-plane. In the following we address that the discontinuity points of v(£)
on (—00,00) are just the points £Q,£/3, the limits of singularity points of the ordinary
differential equations (1.5).

Theorem 4.3. Assume that r0 = £a (u~ > u+). Then for each S > 0,

, £ < u~ - <5,
Vi, u~+6<£<cr — 6 for u~ > u+ > 0, (i)

+ , ct + <5<£,

v , £ < a — 6,
V2, a + 8<£<u+ — 6 for u+ < u~ < 0, (ii)

v+, u++6<£,

where v2 = u+v~/u~.

v(£) = - a) + s • 6(£ - a) for u+ < 0 < u~, (iii)
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where
( v~, x < 0

H(x) = \ '{ v+, x > 0

S(x) is the Dirac function supported at x = 0, and s is the strength of 6(x) with s =
u~v+ —u+v~.

Proof. We first prove Case (i). At this time = u~ < = a. We take £1,^2 with
the property —00 < £1 < £2 < u~ — 6. For each ip G Cd(£i, £2), we have from (1.5)2 that

[ (0(^(0 +^(0 - (4-7)Jti J(i
£

By (2.7)
2 N

-v -e-<ve(£)<v for £ G (£i>£2), £ small. (4.8)

Letting e —> 0 in (4.7), using (2.6), (4.8), (3.4), and the Lebesgue dominated convergence
theorem, one obtains that

/

(2

+ Ip{£)-u-ip(£))d£ = 0 for each tj) G Cft(£ 1, ̂ 2),

/Je,

which gives
r£ 2

v(0H0dt, = 0 for each c/>(£) G Cd(£i,£2),

by setting </>(£) = V>(£)/(£ ~~ «~) since £ - u~ ^ 0 for £ G (£i,£2)- Therefore, u(£) is a
constant on (—00,u~ — 5) and thus u(£) = i>~ since v(—00) = by (4.2). Similarly,
we have w(£) — u+ for £ > a 4- 6. By the same procedure as above we claim that t;(£)
is also a constant, denoted by v\, on (u~ + <5, a - <5). In view of the Rankine-Hugoniot
condition (1.8): (u+ 4- u~)(v+ — V\) = u+v+ - u~v 1, vi = u~v+/u+. Case (ii) can be
treated similarly. We now turn to prove Case (iii).

Just as we did above, we have that

w(0 = v~ for £ < a — <5, v(£) = v+ for £ > a + 6, (4.9)

and (w(£),f(£)) share the same discontinuity point £ = a — u+ + u~. But the Rankine-
Hugoniot condition is not satisfied for v(£), that is, («+ + u~)(i>+ — v~) ^ u+v+ —u~v~
if v+u~ ^ u+v~. Thus we require ?;(£), u(£) to take "certain values" at £ = a. To
accomplish this, we take (f> G Co°(£i,£2), £1 < cr < £2 and <?!>(£) = c/)(a) for £ in a small
neighborhood of the point a. By (4.7) we get that

lim f u£(£)(£<^(£) + </>(£) ~ Ue{£)4>(Z))d4 = 0. (4.10)
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For ai,Q2 near a, ai < a < a?, (4.9), (3.4) reduce to

£lim / ve(0(£-u£(0)<A(£H' •'Si

= lim
e—>0 fVfi

"e(0(f - ue(0)H0dt

+ / «e(£)(£ - ue{£))<p(£)d£
J OC2

= [ v~(Z - u-)<j>({)d£ + f v+{(,-u+)4>(Z)d$,
JJ (*2

= (v+u+ — v~u~ — (v+a-2 — v~ a\))4>(cr)

~ [ v~(t>(£)d£- f v+4>{C)d^.
J £ i J OC2

Letting c*i —+ cr—, c*2 —> <r+, we have that

lim/" ue(£)(f -We (0)0(0^ = (u+u -M f+)<^(a-)

^2

£

+ /""#(£- cr)^(C)de,•/€i

(4.11)

where
, v , a; < 0,

#(*) = < +
v+, x > 0.

Therefore, (4.10), (4.11) yield that

K 2 /"?2
lima [ ve(£)(/)(t)d£ = 4>(a)(u v+-u+v )+ [ £T(£ - <r)0(f)df. (4.12)

By the approximation process, (4.12) holds for all 4> £ Co°(£i>£2)- Thus, we may define
z>(£) = ./?(£ — <j) + s • 6(£ — a) on (—oo, oo). We now determine the value of m(£) at £ = a.

Let £i < <7 < £2, <t> ̂ Co°(£i)£2)- By (1.7)2 we have that

"(f)(£0(f) + 0(0 - u(0<l>(Q)dZ = 0,/
that is,

Therefore,
L*\H(Z -a)+s-6(Z- 6))(tm + m - u(£)4>{£))d£ = 0.

(u v+—u+v )(a — u{o))<j>{o) — 0,

which reduces to u(a) = a = u+ + u~ since u~v+ — u+v~ ^ 0 and <j> is arbitrary. The
proof of the theorem is complete.

We remark here that some of the results in Theorem 4.3 were obtained by Tan, Zhang,
and Zheng [11] by considering the limiting behavior of solutions to (1.3), (1.6).
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