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ABSTRACT

The electromagnetic observations of GW170817 were able to dramatically increase our
understanding of neutron star mergers beyond what we learned from gravitational waves
alone. These observations provided insight on all aspects of the merger from the nature of the
gamma-ray burst to the characteristics of the ejected material. The ejecta of neutron star mergers
are expected to produce such electromagnetic transients, called kilonovae or macronovae.
Characteristics of the ejecta include large velocity gradients, relative to supernovae, and
the presence of heavy r-process elements, which pose significant challenges to the accurate
calculation of radiative opacities and radiation transport. For example, these opacities include
a dense forest of bound–bound features arising from near-neutral lanthanide and actinide
elements. Here we investigate the use of fine-structure, line-binned opacities that preserve the
integral of the opacity over frequency. Advantages of this area-preserving approach over the
traditional expansion–opacity formalism include the ability to pre-calculate opacity tables that
are independent of the type of hydrodynamic expansion and thus eliminate the computational
expense of calculating opacities within radiation-transport simulations. Tabular opacities are
generated for all 14 lanthanides as well as a representative actinide element, uranium. We
demonstrate that spectral simulations produced with the line-binned opacities agree well
with results produced with the more accurate continuous Monte Carlo Sobolev approach, as
well as with the commonly used expansion–opacity formalism. The agreement between the
line-binned and expansion–opacity results is explained as arising from the similarity in their
opacities in the limit of low optical depth, where radiation transport is important in the ejecta.
Additional investigations illustrate the convergence of opacity with respect to the number of
included lines, and elucidate sensitivities to different atomic physics approximations, such as
fully and semirelativistic approaches.

Key words: gravitational waves – opacity – radiative transfer – stars: neutron.

1 IN T RO D U C T I O N

The merger of two neutron stars has been proposed both as the
source of short-duration gamma-ray bursts (Narayan, Paczynski &
Piran 1992) and the site of r-process production (Lattimer &
Schramm 1974; Symbalisty & Schramm 1982). Simulations con-
firmed that the neutron-rich, dynamical ejecta from neutron star
mergers (NSMs) robustly produced r-process elements from the
second through third r-process peaks (Rosswog et al. 1999, 2014;
Just et al. 2015). With the gravitational wave (Abbott et al. 2017a)

⋆ E-mail: cjf@lanl.gov

and subsequent follow-up observations in the electromagnetic spec-
trum (Abbott et al. 2017b) of a nearby merger event, astronomers
were able, for the first time, to validate these theories and, to some
extent, determine the yields from these NSMs.

On the surface, the light curves and spectra seem to be a vali-
dation of the ejecta predicted by the merger simulations. Theorists
had proposed a two-component model for the ejecta consisting
of a neutron-rich dynamical ejecta (producing heavy r-process
elements) and a higher electron fraction wind ejecta (light r-process
and iron peak elements) (Metzger & Berger 2012; Metzger 2017). A
significant number of lanthanide and actinide elements are predicted
to be present in the ejecta (see e.g. Fig. 1). The high opacities
associated with these elements produced in the heavy r-process
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4144 C. J. Fontes et al.

Figure 1. Predicted elemental abundances for the ejecta produced in a 1.4 +
1.4 M⊙ neutron star merger (Grossman et al. 2014; Rosswog et al. 2014),
approximately 1 d after merger. A few labels are provided for easy identifi-
cation of various lanthanide and actinide elements considered in this work.

support an argument for late-time, infra-red emission, whereas
the wind ejecta would produce early-time UV/optical emission.
With observations of both an early UV/optical and later infra-red
emission, astronomers could place constraints on the amount of
ejecta in each component. Many groups attempted such studies,
producing a wide range of results (for a review, see Côté et al.
2017; Ji, Drout & Hansen 2019) and, although all agree that
roughly 0.01 M⊙ was ejected in the merger, the exact amount,
and the exact composition of the ejecta still remains a subject of
debate.

The differences in the yield predictions arise from different
assumptions in the structure of the ejecta, the composition of
the ejecta and the opacities. In many simulations, the ejecta was
modelled in spherical symmetry. By varying the velocity, mass, and
composition of the ejecta, these models produce a range of emission
spectra that can be combined to form multicomponent models
(Cowperthwaite et al. 2017; Pian et al. 2017). Multidimensional
models can include more detailed ejecta profiles. For example, a
set of models included two-component ejecta properties with the
dynamical, heavy r-process rich ejecta driven along the orbital plane
and a more spherical wind ejecta (Kasen et al. 2017; Tanvir et al.
2017; Troja et al. 2017; Tanaka et al. 2018; Wollaeger et al. 2018).
These structures can produce different emission properties for the
same production rate of heavy r-process elements. Additionally,
even for the same model morphology, there remain differences in
the light-curve predictions from the various modelling groups. For
example, a major difference is a redward shift in the peak emission
produced by different groups. We discuss this shift in Section 4.2
and show that this behaviour is not due to the different ways in which
the opacities are implemented in the radiation-transport simulations,
which has been previously suggested, for example, in Kasen et al.
2017.

The range of opacities used also varies dramatically. Many mod-
els rely on constant opacity values, varying from 0.2 to 30 cm2 g−1.
Only a few models used detailed, frequency-dependent opacities
based on atomic physics calculations and these calculations are
still limited to a few lanthanide elements used as surrogates for the
heavy r-process elements (Barnes et al. 2016; Kasen et al. 2017;
Tanaka et al. 2018; Wollaeger et al. 2018). Calculating accurate
opacities for lanthanides and actinides pushes the frontier in atomic
physics research due to the complexity in modelling the interaction
of many bound electrons, some of which occupy a partially filled
f shell. Generating a complete set of opacities requires making

approximations in the atomic physics calculations that can signifi-
cantly alter NSM spectral simulations.

In addition, the implementation of these opacities in NSM
modelling also varies from group to group. Due to the existence
of a strong velocity gradient in the ejecta, Doppler effects must be
included in the opacities. This requirement typically includes both
a correction to the optical depth of each line (Sobolev 1960) and
effects on line broadening, leading to a variety of expansion-opacity
approaches (Castor 2004). These methods require line lists that can
be difficult to include in their entirety in light-curve calculations
due to the large number of lines associated with lanthanide and
actinide elements. In this work, we propose using pre-computed,
binned line contributions, which allows opacities to be generated in
a compact tabular form for convenient use in transport calculations.
This line-binned approach is guaranteed to preserve the integral of
the opacity over frequency and supersedes our earlier, preliminary
attempt to achieve this goal using line-smeared opacities.

This paper presents a first set of lanthanide opacities, as well
as a representative actinide (uranium) opacity, to be used in light-
curve calculations for NSMs. In Section 2 we review the methods
and some of the uncertainties in the atomic physics calculations for
these heavy opacities, discussing relevant approximations, such as
semi- versus fully relativistic models and configuration interaction.
In Section 3 we present a range of line-binned opacities for
NSM calculations, illustrating similarities and differences in the
lanthanide and uranium opacities. Motivation and justification for
our line-binned opacity approach is presented in Section 4. We
summarize with a brief discussion of the implications of our results
for observations.

2 ATO M I C PH Y S I C S C O N S I D E R AT I O N S

2.1 Computational framework

In this work we use the Los Alamos suite of atomic physics and
plasma modelling codes (see Fontes et al. 2015b and references
therein) to generate the fundamental data and opacities needed to
simulate the characteristics (time to peak, spectra, luminosities,
decay times, etc.) associated with neutron star mergers. For a given
element, a model is composed of the atomic structure (energies,
wavefunctions, and oscillator strengths) and photoionization cross-
sections. Both the fully and semirelativistic (SR) capabilities of the
suite are used in this work.

The fully relativistic (FR) approach is based on bound– and
continuum–electron wavefunctions that are solutions of the Dirac
equation, while the SR approach uses solutions of the Schrödinger
equation with relativistic corrections. A FR calculation begins with
the RATS atomic structure code (Fontes et al. 2015b) using the
Dirac–Fock–Slater method of Sampson and co-workers (Sampson,
Zhang & Fontes 2009). An SR calculation begins with the CATS
atomic structure code (Abdallah, Clark & Cowan 1988) using the
Hartree–Fock method of Cowan (Cowan 1981). These calculations
produce detailed, fine-structure data that include a complete de-
scription of configuration interaction for the specified list of config-
urations. Two variant, relativistic calculations are also considered
that include incomplete amounts of configuration interaction (see
Section 2.2). After the atomic structure calculations are complete,
both the FR and SR methods use the GIPPER ionization code to
obtain the relevant photoionization cross-sections in the distorted-
wave approximation. The photoionization data are used to generate
the bound-free contribution to the opacity and are not expected to be
too important for the present application, due to the range of relevant
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A line-binned treatment of opacities 4145

photon energies, but are included for completeness. Therefore, they
are calculated in the configuration-average approximation, rather
than fine-structure detail, in order to minimize the computational
time.

The atomic level populations are calculated with the ATOMIC
code from the fundamental atomic data. The code can be used in
either local thermodynamic equilibrium (LTE) or non-LTE mode
(Hakel & Kilcrease 2004; Magee et al. 2004; Hakel et al. 2006;
Colgan et al. 2016; Fontes, Colgan & Abdallah 2016). The LTE
approach was chosen for the present application, which requires
only the atomic structure data in calculating the populations. At the
relevant times, the ejecta densities are low enough that collective,
or plasma, effects are not important and simple Saha–Boltzmann
statistics is sufficient to produce accurate level populations. The
populations are then combined with the oscillator strengths and
photoionization cross-sections in ATOMIC to obtain the monochro-
matic opacities, which are constructed from the standard four
contributions: bound–bound (b–b), bound–free (b–f), free–free (f–f)
and scattering. Specific formulae for these contributions are readily
available in various textbooks, such as Huebner & Barfield (2014).

Here, we reproduce only the expression for the bound–bound
contribution, as it is useful in understanding the subsequent expres-
sion for line-binned opacities, as well as the discussion of such
quantities in Section 3:

κb−b
ν =

πe2

ρmec

∑

i

Ni |fi | Li,ν , (1)

where ν is the photon energy, ρ is the mass density, Ni is the
number density of the initial level in transition i, fi is the oscillator
strength describing the photoexcitation of transition i, and Li, ν is
the corresponding line profile function. The line-binned opacities
proposed in this work are comprised of discrete frequency (or
wavelength) bins that contain a sum over all of the lines centred
within a bin. An expression for this discrete opacity is obtained
from the continuous opacity displayed in equation (1) by replacing
the line profile with 1/�ν j, i.e.

κbin
ν,j =

1

�νj

πe2

ρmec

∑

i∈�νj

Ni |fi | , (2)

where �ν j represents the frequency width of a bin denoted by inte-
ger index j. So, the summation encompasses all lines i with centres
that reside in bin j. It is straightforward to show that numerical
integration of equation (2) over all bins produces the same value as
that obtained by analytically integrating equation (1) because the
line profile function is normalized to one when integrating over all
frequencies. The form of equation (1) is clearly independent of the
type of expansion, which is a distinct advantage over methods that
assume a homologous flow, such as the expansion-opacity approach.
However, the line-binned opacities are expected to be significantly
different than those produced with more traditional approaches.
Physical arguments and numerical examples in support of using
these line-binned, area-preserving opacities to model kilonovae is
provided in Section 4.

The line-binned opacities in equation (2) can be readily cast in
a tabular form, using a discrete temperature/mass-density grid, that
is commonly employed in radiation-hydrodynamics simulations. In
the latter approach, discrete photon frequency groups are chosen to
model the flow of radiation, and the groups are typically much less
resolved compared to the frequency bins. If a particular group is
denoted by integer index g, and the group boundaries exactly align
with specific bin boundaries, then (unweighted) group opacities can

Table 1. Ionization energies for the first three ion stages of four represen-
tative elements considered in this work. Values are presented for the fully
relativistic (FR) and semirelativistic (SR) methods described in the text, as
well as from the NIST ASD (Kramida et al. 2018).

Ion stage Ionization energy (eV)

FR SR NIST

Ce I 4.91 5.24 5.54
Ce II 10.5 11.2 10.9
Ce III 18.0 19.6 20.2
Nd I 4.58 4.97 5.53
Nd II 10.9 11.1 10.7
Nd III 19.2 20.5 22.1
Sm I 4.83 5.33 5.64
Sm II 10.6 10.7 11.1
Sm III 20.3 21.6 23.4
U I 4.00 5.48 6.19
U II 12.1 11.7 11.6
U III 17.4 19.2 19.8

be computed in a straightforward manner from equation (2) via the
formula

κgroup
ν,g =

1

�νg

∑

j∈�νg

�νj κbin
ν,j , (3)

where �νg is the frequency width of group g. If a bin overlaps
with more than one group, its opacity contribution is distributed
across those groups in proportion to the area in each group. Thus,
by combining equations (2) and (3), �ν j vanishes and one obtains
new ‘binned’ opacities, where the new ‘bins’, called ‘groups’, are
now defined by the multigroup structure, �νg. These multigroup
opacity data are used in the SUPERNU radiation-transport code for
our light-curve and spectral simulations (see Section 4.2).

When constructing opacity tables, a practical consideration in-
volves the choice of an oscillator strength cut-off value, which we
denote by fc. Rather than evaluating the summation in equation (2)
over all available lines, we consider only lines with an oscillator
strength above some prescribed value. For the conditions of interest
for modelling kilonovae, we found that a value of fc = 10−6 is
typically sufficient to produce converged results. Unless otherwise
noted, this cut-off value was used when constructing all of the
opacity data discussed in this work.

2.2 Baseline atomic models

As mentioned in Section 1, atomic models were created for all
14 lanthanides and one representative actinide (uranium). In order
to obtain converged opacities for the range of temperatures and
densities in our simulations, only the first four ion stages of each
element were considered, similar to the choice made by Kasen,
Badnell & Barnes (2013). A list of configurations chosen for each
element is provided in Table A1 of Appendix A. Since Nd was
used as a representative element in the recent study by Kasen et al.
(2013), we chose an identical list of configurations for that element
in order to make meaningful comparisons. As expected, the number
of Nd levels is identical to those appearing in Table 1 of that earlier
work.1 The number of lines is slightly higher in the present listing,
possibly due to the retention of small oscillator strengths that do

1Based on this analysis, the 4f46s16p1 configuration appears to have been
left out of Table 1 of Kasen et al. ( 2013).
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4146 C. J. Fontes et al.

not affect the modelling in a significant way. We did some tests to
include higher lying configurations, but found that the displayed list
is sufficient to produce converged opacities due to the relatively low
temperature and densities of the ejecta. Therefore, the configuration
lists for the other elements were chosen in a similar fashion. The
configurations for Ce II and Ce III are also identical to those chosen
by Kasen et al. (2013). The number of levels and lines differ strongly
in this case. We cross-checked the values between our FR and SR
calculations, which agree well, so those earlier values appear to be
in error.

As an indication of the quality of our atomic structure calcu-
lations, the ionization energies for the FR and SR models are
presented in Table 1, along with the values from the NIST Atomic
Spectra Database (ASD) (Kramida et al. 2018), for the following
four representative elements: Ce (Z = 58), Nd (Z = 60), Sm (Z =
62), and U (Z = 92). The overall agreement is good, with the
worst comparisons occurring for the neutral ion stage (particularly
for uranium), which is typically the most difficult to calculate
due to the presence of more bound electrons and the need to
accurately describe the correlation between them. As expected, the
SR values are more accurate than the FR values for these near-
neutral ions for two reasons. First, the Hartree–Fock approach
uses a better (non-local) description of the exchange interaction
between the bound electrons than the Dirac–Fock–Slater method,
which uses the Kohn-Sham local-exchange approximation (Kohn &
Sham 1965; Sampson et al. 2009). Secondly, the SR approach
uses semi-empirical scale factors to modify the radial integrals that
appear in the configuration-interaction calculation (Cowan 1981).
In any event, the inaccuracies in the ionization energies have been
removed in both the FR and SR models of this study by replacing
the calculated values with those appearing in the NIST data base.
All level energies within an ion stage were shifted by the same
amount when implementing this procedure. Of course, inaccuracies
in the calculated ionization energies are reflected in the individual
level energies as well, but the line positions are determined by
taking the difference of energies within the same ion stage. So some
beneficial cancellation is expected in this regard when systematic
shifts are present within a given ion stage. The NIST ionization-
energy correction was applied to all of the models considered in
this work. An illustration of the ionization balance that is obtained
with these improved energies is provided in Fig. 2 for Nd at a mass
density of ρ = 10−13 g cm−3, corresponding to the ejecta density
at ∼1 d after the merger (see fig. 3 in Rosswog et al. 2014). Due
to the relatively low densities associated with the dynamical ejecta,
a single ion stage is dominant over a broad range of temperatures.
This behaviour is typical for all of the elements considered in this
work because the ionization energy of each of their first three ion
stages is similar (see e.g. Table 1).

2.3 Variant models

In addition to calculating FR and SR models, two less-accurate (but
faster to compute) FR models were generated in order to test the
sensitivity of the kilonova emission to the quality of the atomic
data. Configuration interaction (CI) is a method to better describe
the correlation between the bound electrons of an atom or ion, and
typically results in improved level energies and oscillator strengths
(for a more detailed explanation, see, for example, Cowan 1981;
Fontes et al. 2015b). The use of CI is crucial for obtaining reasonably
accurate atomic structure data for the near-neutral heavy elements
considered here. However, due to the smearing of lines caused by
the large velocity gradients in the ejecta, it is possible that differing

Figure 2. Ionization-stage fraction versus temperature for Nd at a typical
mass density of ρ = 10−13 g cm−3, calculated with the fully relativistic (FR)
approach. The black curves and circles refer to Nd I, the red ones to Nd II,
the green ones to Nd III, and the blue ones to Nd IV. The solid curves use
NIST-corrected ionization energies (Kramida et al. 2018), while the dashed
curves use uncorrected values. The circles indicate explicit temperatures at
which (NIST-corrected) opacities were calculated for use in the simulation
of spectra and light curves.

Table 2. Number of lines per ion stage of neodymium for the FR, FR-
SCNR and FR-SCR models (see the text).

Ion stage # of lines

FR FR-SCNR FR-SCR

Nd I 25224 451 14330 369 2804 438
Nd II 3958 977 3222 445 783 275
Nd III 233 822 137 192 51 036
Nd IV 5784 5393 2051

amounts of CI could produce similar spectra, which, if true, would
provide more confidence in the fidelity of the simulated spectra, at
least from an atomic physics perspective.

In order to test this concept, we generated two additional FR
models for Nd: one that includes CI between only those basis
states that arise from the same relativistic configuration and one
that includes CI between only those basis states that arise from the
same non-relativistic configuration. These models are referred to
here as ‘FR-SCR’ and ‘FR-SCNR’, respectively (see Fontes et al.
2015b; Fontes et al. 2016 for additional details). The FR-SCR model
is less accurate than the FR-SCNR model, which is less accurate
than the FR model described above. All three FR models contain the
same number of fine-structure levels, but their energies differ due
to the different CI treatments. Additionally, each model contains
a different number of lines, as displayed in Table 2. The variant
models have fewer lines than the baseline FR model, and those
transitions that are common to the three models will typically be
described by different oscillator strengths.

3 SAMPLE O PACI TI ES AND TABLES

In order to illustrate the basic characteristics of the opacities used
in this study, the LTE monochromatic opacity for Nd is displayed
in Fig. 3 for typical ejecta conditions of T = 0.5 eV and ρ =
10−13 g cm−3. The left-hand panel displays the complete opacity,
with all four contributions (b–b, b–f, f–f, and scattering), while
the right-hand panel shows the contributions that arise only from
free electrons (f–f and scattering) in order to give some indication

MNRAS 493, 4143–4171 (2020)
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A line-binned treatment of opacities 4147

Figure 3. The LTE line-binned opacity for neodymium at T = 0.5 eV and ρ = 10−13 g cm−3. The left-hand panel displays the complete opacity, which
includes the bound–bound, bound–free, free–free, and scattering contributions. The right-hand panel displays only the contributions due to free electrons, i.e.
the free–free and scattering contributions. The average charge state, Z, for these conditions is listed in the legend of the left-hand panel.

of the massive differences that occur when the bound electrons
are taken into account. The b–b contribution was calculated via
the line-binned expression in equation (2). The f–f and scattering
contributions were obtained from the simple, analytic formulas
(Huebner & Barfield 2014) associated with Thomson and Kramers,
respectively. The gap between the b–b features and the onset of the
b–f edge occurring at ∼20 eV is due to missing lines that would
be present if more excited configurations had been included in the
model. Our transport calculations have minimal intensity at these
energies. We note that a mean charge state of Z = 1.998 is obtained
for these conditions, indicating that the opacity is dominated by
Nd III.

In this example, the inclusion of the line features dramatically
increases the opacity in the optical range (1.65–3.26 eV or 0.751–
0.380µm) by up to eight orders of magnitude. The absorption
in the near-infrared range below 1.65 eV (0.496–1.65 eV or 10.0–
0.751µm) is also greatly increased, by a few orders of magnitude
in this case, indicating that spectra would more likely be observed
in the mid-infrared range, at least for these specific conditions.

3.1 Examples of line-binned opacities

A more detailed Nd opacity example is provided in Fig. 4, with
the conditions (T = 0.5 eV, ρ = 10−13 g cm−3) being the same
as those given in Fig. 3. Line-binned opacities are presented for
the four models described in Section 2: FR, FR-SCNR, FR-SCR,
SR. The models produce qualitatively similar results, but there
are visible quantitative differences, as exemplified by the Planck
mean opacities displayed in each panel. The Planck mean opacity
is defined in the standard way, i.e.

κP ≡

∫ ∞

0
Bν(T )κ ′

ν dν
/

∫ ∞

0
Bν(T ) dν , (4)

where Bν(T) is the Planck function and κ ′
ν indicates that the

scattering contribution is omitted from the monochromatic opacity.
This mean value of the frequency-dependent opacity permits rough
quantitative comparisons between models. The SR model produces
the smallest mean value, given by 3727 cm2 g−1, while the least
accurate FR-SCR model has a value of 5299 cm2 g−1, resulting in a
variation of 42 per cent. The most accurate FR model produces an
intermediate value of 4497 cm2 g−1, with the FR-SCNR yielding a
similar result. These differences allow us to test the sensitivity of

the kilonova light curves and spectra (see Section 4) to changes in
the underlying atomic physics models that are used to construct the
opacity.

Next, we consider a broader range of elements at a cooler tem-
perature, presenting line-binned opacities for the four representative
elements (Ce, Nd, Sm, and U) at T = 0.3 eV, ρ = 10−13 g cm−3 in
Fig. 5. Results are displayed for both FR and SR results in order to
compare these two different atomic physics models for a range of
elements. The opacities for all of these elements display similar
qualitative behaviours: line-dominated absorption that increases
with photon energy, with a peak at ∼3 eV, and a bound-free edge at
an energy of ∼10 eV. These similarities are not surprising because
the charge state distribution for each element is dominated by the
second ion stage, i.e. Z ≈ 1, at these conditions. Therefore, the
bound–bound contribution to the opacity is dominated by lines
associated with the singly ionized stage for each element in this
example. As explained in Section 2.2, and demonstrated in Fig. 2
and Table 1, a single ion stage is dominant over a broad range of
temperature at such low densities for a given element. Furthermore,
the dominant stage is typically the same for all lanthanide (and
actinide) elements due to the similarity in the ionization potentials
of their ion stages.

Despite these comparable trends, an inspection of the frequency-
dependent opacities also reveals the differences inherent in the
underlying atomic energy-level structure for each element. The
detailed line structure is visibly different in each panel of Fig. 5
due to fundamental atomic physics theory concepts such as the
angular momentum coupling between the various bound electrons,
quantum selection rules for the absorption of photons between
different energy levels, etc. There are also notable differences when
comparing the FR and SR values for a given element. The Planck
mean opacity is, once again, presented in each panel of Fig. 5
for comparison purposes. The ratio of the FR to SR value of the
Planck mean is 2.43, 2.47, 1.74, and 0.889 for Ce, Nd, Sm, and
U, respectively. The variation in this set of ratios gives a basic
indication of the uncertainty in the opacities due to the choice of
physics models for this group of four elements. Within the FR or SR
model, the maximum ratio occurs between Ce and U, with a value of
7.80 or 2.85, respectively. These two values provide a rough estimate
of how the opacity can vary between different elements calculated
within the same physical framework. Of course, representing such
complex, frequency-dependent absorption features by a single mean
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4148 C. J. Fontes et al.

Figure 4. The LTE line-binned opacity for neodymium at T = 0.5 eV and ρ = 10−13 g cm−3 using four different models described in the text: (a) FR, (b)
FR-SCNR, (c) FR-SCR, and (d) SR. The Planck mean opacity, obtained via integration of the line-binned opacity, is also listed in each panel.

value is a gross approximation. A more realistic comparison should
investigate the use of different opacity models in the simulation of
kilonova emission, which we consider in Section 4.

As a final illustration, we present in Figs 6 and 7 the line-binned
opacity for all 14 lanthanide elements, as well as uranium, at two
sets of characteristic conditions. These results were calculated with
the SR model. Once again, a characteristic ejecta density of ρ =
10−13 g cm−3 was chosen for both figures. A temperature of T =
0.1 eV was chosen in Fig. 6 to highlight opacities with a b–b
contribution that is dominated by the first, i.e. neutral, ion stage for
all 15 elements. A higher temperature of T = 0.3 eV was chosen in
Fig. 7 to compare opacities with a b–b contribution that is dominated
by the second, i.e. singly ionized, ion stage of each element.

The qualitative trends in these two figures resemble those dis-
cussed above for Figs 4 and 5. For example, the opacity for all
15 elements in Figs 6 and 7 displays line-dominated absorption
that increases with photon energy, peaking at an energy of about
2–3 eV. In Fig. 6, the signature f–f and scattering contributions
(see Fig. 3) are absent because the underlying atomic processes of
inverse bremsstrahlung and electron scattering, respectively, require
the presence of free electrons. Since the charge state distribution is
dominated by the neutral ion stage in this case, Z ≈ 0 and the free
electron density is relatively small. On the other hand, the f–f and
scattering contributions are clearly present in Fig. 7 for which the
temperature, and free electron density, is higher.

In order to provide some qualitative analysis of the line-binned
opacities for the 14 lanthanide elements displayed in Figs 6 and 7,
we present Figs 8 and 9, respectively. In each of the two panels in

Fig. 8, the solid black curve (with circles) represents the number
of lines in the first ion stage, which is the dominant stage for these
conditions, for each element. The number of lines for the various ion
stages can also be found in Table A1. Superimposed on this black
curve is a red dashed curve (with squares) that represents the mean
opacity obtained from the frequency-dependent opacities in Fig. 6.
The red dashed curve in the left-hand panel represents the Planck
mean opacity displayed in equation (4). The red dashed curve in the
right-hand panel represents the Rosseland mean opacity defined by
the standard harmonically averaged expression

[κR]−1 ≡

∫ ∞

0
B ′

ν(T )[κν]−1 dν
/

∫ ∞

0
B ′

ν(T ) dν , (5)

where B ′
ν(T ) is the partial derivative of the Planck function with

respect to temperature.
As expected from basic atomic physics considerations, the

number of lines in the first ion stage of the 14 lanthanide elements
peaks at Gd (Z = 64), near the centre of the range. The energy
level structure of Gd is the most complicated due to the presence
of the half-filled 4f7 subshell, as well as a 5d1 subshell, in the
ground-state configuration. This combination of open subshells
results in a maximum in the number of fine-structure levels that
are allowed by quantum physics, i.e. according to the rules of
angular momentum coupling of the bound electrons and the Pauli
exclusion principle. This large number of levels corresponds to a
maximum in the number of lines (or transitions) displayed in Fig. 8.
However, this peak in the number of lines corresponds to relatively
low values in the Planck and Rosseland mean opacities. This is a
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A line-binned treatment of opacities 4149

Figure 5. The LTE line-binned opacities for four representative elements (Ce, Nd, Sm, and U) at T = 0.3 eV and ρ = 10−13 g cm−3. Panels (a) and (b) represent
Ce, panels (c) and (d) represent Nd, panels (e) and (f) represent Sm, and panels (g) and (h) represent U. The panels in the left-hand column were calculated
with the FR approach, while panels in the right-hand column were calculated with the SR approach. The Planck mean opacity, obtained via integration of the
line-binned opacity, is also listed in each panel.
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4150 C. J. Fontes et al.

Figure 6. The LTE line-binned opacity for all 14 lanthanide elements, as well as uranium, at T = 0.1 eV and ρ = 10−13 g cm−3. For these conditions, the
bound–bound contribution to the opacity is dominated by the first, i.e. neutral, ion stage of each element. Panels (a)–(n) display results for Z = 57–70, while
panel o displays the uranium (Z = 92) result.

counterintuitive result since the existence of more lines is expected
to increase the chances of photon absorption, which corresponds
to higher opacities. In addition, note that the adjacent element
Eu (Z = 63), which also contains the 4f7 subshell in its ground

configuration, similarly corresponds to relatively low values of the
two mean opacities. This behaviour can be understood from the fact
that the half-filled 4f7 subshell is semistable with respect to energy,
i.e. it takes more energy to excite an electron from this type of
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A line-binned treatment of opacities 4151

Figure 7. The LTE line-binned opacity for all 14 lanthanide elements, as well as uranium, at T = 0.3 eV and ρ = 10−13 g cm−3. For these conditions, the
bound–bound contribution to the opacity is dominated by the second, i.e. singly ionized, ion stage of each element. Panels (a)–(n) display results for Z =
57–70, while panel (o) displays the uranium (Z = 92) result.

configuration than it does from the adjacent ground configurations
that contain the 4f6 or 4f8 subshell. Thus, the energy-level structure
associated with an element possessing a 4f7 subshell in its ground
state can be somewhat different than the other lanthanides, and a

significant fraction of the allowed radiative transitions can occur
at higher energies than for the other lanthandides. For example,
according to the NIST data base (Kramida et al. 2018), the first
excited state of Eu I occurs at an energy of ∼1.6 eV. This value
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4152 C. J. Fontes et al.

Figure 8. The number of lines in the first ion stage versus atomic number, Z (see Table A1). The mean opacity associated with the line-binned opacities
presented in Fig. 6 is also plotted versus Z. Results are presented for all 14 lanthanide elements (Z = 57–70). In both panels, the number of lines for the first
ion stage is represented by the black solid curve (with circles). This curve is associated with the left-hand y axis in each panel. The red dashed curves (with
squares) are associated with the right-hand y axis in each panel, and represent the Planck mean opacity in the left-hand panel and the Rosseland mean opacity
in the right-hand panel. The mean opacities were calculated at T = 0.1 eV and ρ = 10−13 g cm−3, corresponding to the conditions used in Fig. 6.

Figure 9. The number of lines in the second ion stage versus atomic number, Z (see Table A1). The mean opacity associated with the line-binned opacities
presented in Fig. 7 is also plotted versus Z. Results are presented for all 14 lanthanide elements (Z = 57–70). In both panels, the number of lines for the second
ion stage is represented by the black solid curve (with circles). This curve is associated with the left-hand y axis in each panel. The red dashed curves (with
squares), associated with the right-hand y axis in each panel, represent the Planck mean opacity in the left-hand panel and the Rosseland mean opacity in the
right-hand panel. The mean opacities were calculated at T = 0.3 eV and ρ = 10−13 g cm−3, corresponding to the conditions used in Fig. 7.

is a factor 2–60 higher than the first excited state in the neutral
stage of most of the other lanthanides, indicating that the energy-
level structure of Eu I is different. Consequently, the number of lines
appearing in the Eu (panel g) and Gd (panel h) opacities displayed in
Fig. 6 is indeed higher than the number for the other elements, but a
significant fraction of those lines occurs at relatively higher energies,
above ∼1 eV in this case. Since the Planck and Rosseland weighting
functions peak at photon energies of ∼2.8 × T and ∼3.8 × T,
respectively, those higher energy lines do not contribute as much
to the mean opacities. Similar trends are observed in Fig. 7 for
which the second ion stage is dominant. The maximum number of
lines occurs for Gd, but the Rosseland mean value, represented by
the red dashed curve in the right-hand panel, is at a minimum.
The Planck mean does not display such a definitive minimum
value, but there is a significant drop at Gd when traversing the red
dashed curve displayed in the left-hand panel from lower to higher
values of Z.

The above trends suggest that, counter to conventional wisdom,
the elements in the middle of the lanthanide range might not
produce the strongest contributions to the opacity of dynamical

ejecta in kilonovae. We emphasize that the use of Planck and
Rosseland mean values in the above analysis is for illustrative
purposes and should be interpreted with a measure of caution.
A study of the relative importance of the various lanthanide
elements to the ejecta opacity could be investigated with kilonova
simulations that employ the frequency-dependent opacities, which
is beyond the scope of this work.

3.2 Line-smeared opacities

In previous work (Fontes et al. 2015a, 2017), we presented a
preliminary attempt to generate tabular opacities that also preserved
the integral of the monochromatic opacities over frequency. This
effort employed a line-smeared approach to artificially broaden
the lines in such a manner that they could be sufficiently resolved
with a typical photon energy grid (see Section 3.4) employed in a
tabular framework. These line-smeared opacities were also used in
a detailed study of NSM light curves and spectra (Wollaeger et al.
2018). Thus, some commentary about how the line-smeared and
line-binned opacities compare is provided here.
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A line-binned treatment of opacities 4153

The present line-binned approach accomplishes the desired goal
of preserving the area under the opacity curve without the concern
of losing b–b opacity due to a lack of photon energy resolution. The
use of a discrete sum in the line-binned approach, see equation (2),
ensures that the area will be conserved and, furthermore, allows fine-
structure detail to be more easily captured in a tabular representation
of the opacities. That sum includes the exact contribution of each
line to the integral of the opacity, independent of any thermal (or
other) broadening that might exist, which eliminates any chance
of losing bound–bound opacity that could occur if the photon
energy grid is insufficient to resolve narrowly broadened lines. On
the other hand, the line-smeared approach employs a sum of the
type displayed in equation (1), which evaluates the monochromatic

(not binned) opacity, i.e. the opacity is evaluated at each point

on a prescribed photon energy grid, which can exclude lines with
profiles, Li, ν , that are narrower than the spacing of the prescribed
energy grid.

In order to highlight the differences between the line-binned and
line-smeared approaches, as well as to demonstrate some practical
issues associated with generating multigroup opacities, we consider
some typical numerical values. For a typical ejecta temperature
of T = 1 eV, the energy-grid spacing below photon energies of
∼10 eV, which encompasses both the optical and IR bands, is �ν j =
1.25 × 10−3 eV. The logarithmically spaced multigroup grid that is
used in the SUPERNU radiation-transport code for the present work
is prescribed as �λg/λg = �νg/νg = 0.0047 (see Section 4.2).
Consequently, the group width is �νg = 4.7 × 10−4 eV at a photon
energy of 0.1 eV, �νg = 4.7 × 10−3 at a photon energy of 1 eV,
and �νg = 4.7 × 10−2 eV at a photon energy of 10 eV. So, for
this example, the value of �νg is more than an order-of-magnitude
greater than �ν j at higher photon energies, but is about an order-
of-magnitude smaller than �ν j at lower photon energies. Thus, the
group structure is sometimes more resolved and sometimes less
resolved compared to the bin structure. The prescription for obtain-
ing multigroup opacity data, which are used in the SUPERNU code,
from line-binned or line-smeared tabular data is straightforward, as
previously described in the text surrounding equation (3).

Next, we consider an emission line that is centred at an energy
of 1 eV, which has a thermal (Doppler) width of approximately
7 × 10−6 eV for a typical lanthanide at this characteristic tempera-
ture of 1 eV. In this example, we see that thermally broadened line
profiles of interest are woefully under-resolved by our standard
photon energy grid. It would take several orders of magnitude
more energy points to adequately resolve such profiles, which
would render the corresponding monochromatic opacity calculation
intractable due to the amount of computational time required to
evaluate the line profiles of so many narrow lines at so many energy
points. Thus, the line-smeared approach is not guaranteed to resolve
all of the lines with the prescribed photon-energy grid. The artificial
broadening that is applied in the line-smeared approach may still
not be sufficiently wide to be resolved by the energy grid that we
employ when evaluating equation (1), which, as we have previously
stated, is a monochromatic formula, rather than a discrete, binned
formula, such as equation (2).

As an integrated example, we present a comparison of the LTE
Nd multigroup opacity, κ

group
λ,g , generated with the line-binned and

line-smeared methods in Fig. 10 for the characteristic conditions
of T = 0.3 eV and ρ = 10−13 g cm−3. The multigroup opacities
were generated using the wavelength version of the frequency-
group opacity displayed in equation (3), with a group structure of
1024 logarithmically spaced wavelength points (see Section 4.2 for
details). As expected, the overall agreement between the two curves

Figure 10. The LTE multigroup opacity of Nd at T = 0.3 eV and ρ =
10−13 g cm−3. Results are presented for the line-binned (dashed black curve)
and line-smeared (solid red curve) methods using 1024 wavelength groups
(see the text for details).

is good, but, as expected, the line-binned curve clearly displays more
fine-structure detail at higher wavelengths. This additional detail in
the line-binned curve is a result of summing the unbroadened lines
within a wavelength bin, rather than smearing the lines across a
number of bins, in conjunction with the fact that the resolution
of the groups are on par with or smaller than the resolution of
the bins at higher wavelengths. Despite these differences, the line-
binned and line-smeared opacities yield similar kilonova spectra
(see Section 4.2.2 and, specifically, Fig. 14).

3.3 Expansion opacities

In order to provide meaningful comparisons with other works, we
also consider the more traditional approach of expansion opacities
when modelling light curves and spectra in Section 4. Therefore,
a brief overview of this approach is provided here. As mentioned
previously, the expansion-opacity method (Sobolev 1960; Castor
1974; Karp et al. 1977) employed by Kasen et al. (2013), Barnes &
Kasen (2013) to simulate kilonovae light curves applies to the
bound–bound contribution to the opacity and involves a discrete
sum over all lines. The approach relies on the assumption of a
homologous expansion and is characterized by an expansion time,
texp. The relevant wavelength range is divided into bins denoted by
index j, �λj, and all lines within a bin are summed to obtain the
opacity for that range. The expression for the opacity associated
with bin (or group) j is given by

κb−b
exp (�λj ) =

1

ρctexp

∑

i∈�λj

λi

�λj

(1 − e−τi ) , (6)

where texp is the time since mass ejection, the summation index
i extends over all bound–bound transitions that reside in bin j, λi

is the rest wavelength associated with transition i, and τ i is the
corresponding Sobolev optical depth, i.e.

τi =
πe2

mec
Ni |fi | texp λi , (7)

which is the Doppler-corrected line optical depth. Due to the pres-
ence of texp in the exponential of equation (6), it is not convenient to
construct tables of the expansion opacities for kilonova modelling.

As a specific example, we present in Fig. 11 the expansion opacity
of Nd at T = 4000 K (0.345 eV) and ρ = 10−13 g cm−3, generated
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4154 C. J. Fontes et al.

Figure 11. The LTE opacity of Nd at T = 4000 K (0.345 eV) and ρ =
10−13 g cm−3 using the expansion-opacity method. The time since ejection
was chosen to be texp = 1 d, along with a wavelength group structure of
�λ = 0.01λ. These specifications are the same as those considered in fig. 8
of Kasen et al. (2013). The various curves correspond to different values of
the oscillator strength cut-off parameter, fc, as follows: solid (black) curve
represents 10−1, long-dashed (red) curve represents 10−2, short-dashed
(green) curve represents 10−3, dotted (blue) curve represents 10−4, dash-
dotted (orange) curve represents 10−5, and dash-double-dotted (magenta)
curve represents 10−6. Convergence is obtained for a value of fc = 10−6.

with the FR model. In this example, the opacity is plotted versus
wavelength instead of energy, and the particular conditions were
chosen in order to facilitate a direct comparison with fig. 8 of Kasen
et al. (2013).

There are six curves displayed in Fig. 11, corresponding to differ-
ent values of the oscillator strength cut-off, fc = 10−x, with x = 1–6.
Convergence is demonstrated for fc = 10−6, which is the same value
that we chose when constructing our tabular, line-binned opacities.
(See Section 2.1.) The use of such tabular opacities is particularly
convenient when exploring opacity models constructed with differ-
ent line strength cut-off values. A sensitivity study of light-curve
and spectral modelling to the value of fc is presented in Section 4.

A comparison of Fig. 11 with fig. 8 of Kasen et al. (2013)
allows a relatively direct comparison of the underlying opacity
data employed in each investigation, in contrast to comparisons
of spectral quantities resulting from radiation transport simulations
that sample the opacity over a range of physical conditions. We note
that the upper four curves in Fig. 11 are qualitatively similar to the
curves displayed in fig. 8 of Kasen et al. (2013), with the peak value
of the b–b contribution occurring at ∼5000 Å and monotonically
decreasing at higher wavelengths. However, the peak value is about
three times larger in the present case, providing a rough measure
of the uncertainty in current opacity calculations as they pertain to
kilonova conditions.

This discrepancy is somewhat surprising due to the fact that the
same list of configurations, resulting in the same number of lines
(see the Nd data listed in Table A1), was used in both cases. The
differences are perhaps an indication of how difficult it is to perform
accurate atomic structure calculations for such complicated atoms
and ions. An alternative explanation is that the curves displayed in
fig. 8 of Kasen et al. (2013) were generated with a less complete set
of lines. This potential explanation is supported by the observation
that the short-dashed (green) curve in Fig. 11, which was generated
with a value of fc = 10−3, is in better agreement with Kasen et al.
(2013) over the entire wavelength range. This improved agreement
includes the large oscillatory behaviour at high wavelengths, al-

Figure 12. The LTE opacity of Nd at T = 4000 K (0.345 eV) and ρ =
10−13 g cm−3 using the line-binned (solid, black curve) and expansion-
opacity (dashed, red curve) methods to obtain the b–b contribution. For
the expansion-opacity calculation, the time since ejection was chosen to be
texp = 1 d. In both cases, a wavelength group structure of �λ = 0.01λ was
chosen. These specifications are the same as those considered in fig. 8 of
Kasen et al. (2013) and fig. 7 of Fontes et al. (2017).

though our green curve is still a factor of two higher at the peak
value occurring at ∼5000 Å. Another qualitative difference occurs
at higher wavelengths, where there appear to be more points in
the curves of Kasen et al. (2013). We were able to obtain similar
behaviour (not shown) in the high-wavelength region by employing
a linearly spaced wavelength grid, rather than the logarithmically
spaced grid obtained from the prescription �λ = 0.01λ.

As a final opacity comparison, we present in Fig. 12 the line-
binned and expansion opacities of Nd at the same conditions used
for Fig. 11. There are two curves in the figure, one representing the
bound–bound contribution obtained from the current line-binned
approach, equation (2), and the other from the expansion-opacity
method, equation (6). Both curves were generated with the FR
model. (For completeness, we mention that the two corresponding
curves generated with the SR model (not shown) are quantitatively
similar to the two FR curves displayed in this figure.) We note that,
for these conditions, the line-binned approach produces an opacity
that is one or more orders of magnitude greater than the expansion
method over much of the wavelength range. As expected, these
trends are very similar to the behaviour exhibited in the correspond-
ing comparison of line-smeared versus expansion opacities in fig. 7
of Fontes et al. (2017). In general, the area-preserving opacities
are expected to be equal to or greater than the expansion opacities
based on a simple examination of the mathematical behaviour of
equations (6) and (7) versus equation (2). (Compare, also, equation 8
to equation 9 in the upcoming Section 4.1.) As a consequence, the
luminosity is expected to be diminished when line-binned opacities,
rather than expansion values, are used when simulating light curves.
However, the deviation in the resulting light curves depends on a
broad range of conditions that are relevant for a complete simulation,
and cannot be determined from a simple opacity comparison carried
out at a specific set of conditions.

3.4 Opacity tables

In order to perform radiation-transport calculations in an efficient
manner, opacity tables were generated for the 15 elements discussed
above using prescribed temperature and density grids that span the
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A line-binned treatment of opacities 4155

range of conditions of interest. The temperature grid consists of 27
values (in eV): 0.01, 0.07, 0.1, 0.14, 0.17, 0.2, 0.22, 0.24, 0.27, 0.3,
0.34, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, and 5.0. Specific temperature values are also indicated by circles
in the ionization balance plot of Fig. 2. The density grid contains
17 values ranging from 10−20 to 10−4 g cm−3, with one value per
decade. Our photon energy grid is the same 14 900-point grid that
is used in standard Los Alamos tabular opacity efforts, e.g. Colgan
et al. (2016). The grid is actually a temperature-scaled u = hν/kT

grid with a non-uniform spacing that is designed to provide accurate
Rosseland and Planck mean opacities. A description of this grid is
available in table 1 of Frey et al. (2013).

4 M OT I VAT I O N A N D J U S T I F I C AT I O N FO R

LINE- BIN N ED O PACITIES

In this section, we provide motivation for a straightforward approach
to numerical solutions of the thermal radiation transport equations
in kilonovae. Specifically, we discuss how an approach involving
straight discretization of opacity in the relevant phase space (i.e.
space, time, angle and frequency) may be applicable to the kilo-
nova scenario. Straight discretization is a traditional numerical
approach that makes good sense when properties of the phase
space are smooth on scales of an affordable discrete resolution.
That said, bound–bound transitions dominate the opacity in Type Ia
supernovae (SNe) and kilonovae, and their frequency distribution is
generally not smooth for affordable energy resolutions. As a result,
a different type of radiation transport scheme, taken from the Ia
SNe literature, i.e. the expansion-opacity formalism, has provided
the primary path, to date, for simulating emerging light curves and
spectra from kilonova models (Barnes & Kasen 2013; Kasen et al.
2013, 2017; Tanaka et al. 2018). While both Ia SNe and kilonovae do
have line-dominated opacities, as well as homologously expanding
ejecta, we argue that there are key differences between their physical
conditions that permit this alternative, straight-discretization numer-
ical approach, i.e. equation (2), to be considered in calculating the
kilonova emergent light.

The expansion-opacity approach tracks the flow of energy
through the iron- and lanthanide-rich expanding ejecta of the
kilonova. This approach is aimed at capturing the spatial diffusion
of radiation when the opacity is dominated by a thick forest of
lines (bound–bound interactions). At deep optical depths within
the kilonova ejecta, a thick forest of lines exists, but it is not
obvious that the energy flow in this region is dominated by the
diffusion of radiation. In particular, the expected magnitude of the
net outward radiative flux should be diminished as a result of the
uniform spatial heating in the kilonova ejecta, as compared to the
centrally condensed heating source in a Ia SN.

Furthermore, the time-scales for energy flow associated with
the expansion motion of the ejecta (which is much higher in a
kilonova) can be compared and is found to dominate over the time-
scale for radiation diffusion. The typical expansion velocity in a
kilonova is vexp/c ≈ 0.1–0.2, which translates to a relatively shallow
radiative zone with optical depth τ < 10–20. As such, details of
radiative transport at higher optical depths are not as crucial for
computing observables. Indeed, the pre-existing radiation energy,
which scales like ∼T4 ∼ t−4 (where t represents the time since
merger), is quickly decimated by the expansion and superseded by
instantaneous nuclear heating, which behaves like ∼t−1.3 (Korobkin
et al. 2012; Grossman et al. 2014).

Given these qualitative arguments, as well as the more quantita-
tive analysis that follows in Section 4.2.3, capturing the accurate

diffusion of radiation in the high optical depth regions may not be
of paramount importance to accurately model kilonova emission.
As alluded to above, this is an important point since relaxing this
requirement would allow alternative transport methodologies to be
valid. In the remainder of this section, we present a comparison of
two approaches for determining the average opacity used in multi-
group transport calculations: (1) the expansion-opacity formalism
and (2) a straight discretization, or line-binned-opacity, formalism.
In the limit of small optical depths, where radiation is expected
to carry the flow of energy, both approaches reduce to the same
result (see the discussion following equation 9). In intermediate
optical depth regimes, it is not obvious which approach is more
physically valid, and the line-binned-opacity approach offers a
reasonable, alternate bound on kilonovae opacity. This alternative
approach brings with it some advantageous numerical properties
that we enumerate, following a brief recap of each approach. This
brief synopsis serves to cast these approaches from an optical
depth perspective, which is often more intuitive than the opacity
perspective presented in Section 2.

4.1 Review of optical depth formulae

Two different expressions for the optical depth are employed in
the radiation transport simulations considered below. Each of the
optical depths presented here involves a sum over lines (denoted
by summation index i) within a wavelength bin, �λj, which can be
related to a spatial zone for a homologous flow. The optical depth
that corresponds to the expansion opacity in equation (6) is given
by (Pinto & Eastman 2000)

τ b−b
exp (�λj ) =

∑

i∈�λj

(1 − e−τi ) , (8)

where, again, τ i is the Sobolev optical depth of line i given by
equation (7). This formulation has the property that it limits the
total contribution to the optical depth from a single line to 1, but
uses the full opacity for low optical depths per line.

The optical depth that corresponds to the line-binned opacity in
equation (2) is obtained by requiring the optical depth due to lines
in a wavelength bin to be equal to the sum of the Sobolev optical
depths of all the lines that fall within the wavelength bin. The result
is

τ bin
λ,j =

∑

i∈�λj

τi . (9)

For small values of τ i, it is straightforward to use a Taylor series
expansion to show that equation (8) reduces to equation (9). For
large values of τ i ≫ 1, it is easy to see that equation (9) is always
greater than equation (8).

An advantage of this line-binned approach is that the opacities can
be pre-tabulated for any explosion scenario, as it does not include
details of the expansion properties in its definition. There are also
advantages in computational efficiency that come with the ability to
pre-tabulate. The large line lists necessary for a converged opacity
are taken into account only once during the creation of the table,
and then all subsequent simulations amortize that cost. In addition,
tabulated opacities are commonly used by radiation-hydrodynamic
codes from fields outside of astrophysical light-curve applications
(e.g. high-energy density experimental physics at facilities like the
Omega Laser at Laboratory for Laser Energetics, the Z-Machine
at Sandia National Laboratory and the National Ignition Facility at
LLNL). Thus, if a tabulated opacity approach can be shown to be
valid for the modelling of kilonova light curves, then other mature
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4156 C. J. Fontes et al.

Table 3. Legend symbols for various opacity implementations considered in this section, along with the figures in which they appear. The Smeared-Tab and
Binned-Tab calculations employ pre-tabulated opacity data generated on the temperature and density grids described in Section 3.4. The Binned-Inl, Expansion-
Inl, and Sobolev calculations use explicitly generated line contributions to the opacity within the SUPERNU code, without interpolation on temperature and
density. SR stands for semirelativistic atomic models and FR stands for fully relativistic atomic models. fc is the oscillator strength cut-off value used in the
atomic models.

Symbols Method Variations Figures

Sobolev SUPERNU-internal (inline) opacities using direct treatment of
lines with the Sobolev approximation; see Section 4.2.1

(SR, fc = 10−3) 13

Smeared-Tab Tabulated opacities with smeared lines; see Section 3.2 (SR, fc = 10−6) 14

Binned-Tab Tabulated opacities with binned lines; see equations (6),
(3) and (9)

(SR, fc = 10−6) 14,16

Binned-Inl SUPERNU-internal (inline) opacities with binned lines; see
equations (6) and (9)

(SR, fc ∈ {10−1, 10−3, 10−4, 10−6}); (FR, SR,
fc = 10−6); (FR-SCR, FR-SCNR, fc = 10−6)

13,17,18; 19; 20

Expansion-Inl SUPERNU-internal (inline) opacities with expansion line
treatment; see equation (8)

(SR, fc ∈{10−1, 10−3, 10−4, 10−6}); (FR, SR,
fc = 10−6); (FR-SCR, FR-SCNR, fc = 10−6)

13, 17,18; 19; 20

Nd, Ce, Sm, U Element symbols for tabulated, line-binned opacities SR,FR 21

code bases could be more easily brought to bear on kilonova light-
curve challenges.

4.2 Tests of line-binned opacities for kilonovae

In this section, we present light curves and spectra from simulations
using line-binned or expansion opacities for a 1D model with semi-
analytic ejecta and pure Nd, Ce, Sm, or U. These elements are meant
to represent the composition of dynamical ejecta from the NSM.
The problems have an ejecta mass of 1.4 × 10−2 M⊙ and mean
ejecta speed of 0.125c (maximum speed of 0.25c). We simulate
two forms of the problem: (1) a ‘simplified’ version, which is
more efficient to simulate with a direct Sobolev line treatment,
is presented in Section 4.2.1 to motivate the utility of the line-
binned opacity treatment and (2) a ‘full’ version is presented in
Section 4.2.2 to explore sensitivities to variations in the opacity data
and photon energy grouping. All problems simulated here assume
LTE, where opacities are calculated using a gas temperature and
photon interaction with a line is purely absorbing and thermally re-
distributive. These approximations are the same ones that are made
in traditional expansion-opacity kilonova simulations performed
by other authors, e.g. Kasen et al. 2017; Tanaka et al. 2018. This
option corresponds to the choice of ǫ = 1 in equations (7) and (8),
in conjunction with equation (11), of Kasen, Thomas & Nugent
(2006).

To model the radiative transfer, we employ the Monte Carlo
code SUPERNU (Wollaeger & van Rossum 2014), with some
improvements to the accuracy of the discrete diffusion optimization
(Wollaeger et al., in preparation). The span of wavelength simulated
is 1000 to 128 000 Å with 1024 logarithmically spaced groups,
unless otherwise noted. Consequently, the corresponding group
spacings of �λg/λg = 0.0047 permit particles emitted anywhere to
traverse multiple groups via redshift before escaping the ejecta. For
the purpose of this study, the expansion-opacity formalism was also
implemented in SUPERNU. This capability allows for self-consistent
comparisons to be performed between line-binned and expansion-
opacity simulations, i.e. the same fundamental atomic physics data
are used in both cases, thereby eliminating any uncertainty that
might occur when comparing with works from other groups. The
radiation-transport approximations associated with the expansion-
opacity implementation are the same as those described at the
end of the previous paragraph, i.e. we make the assumption of
complete thermal redistribution (ǫ = 1) after a photon is absorbed
in a line. Thus, the only difference between expansion-opacity and

line-binned simulations is whether one uses 1 − exp (− τ i) or τ i in
equation (8) of Kasen et al. (2006).

All of the opacity implementations examined here are summa-
rized in Table 3, which includes definitions of the symbols that
appear in the subsequent figure legends. Unless otherwise noted
in those legends, the chosen element is Nd, the atomic data are
taken from the SR model, and the oscillator strength cut-off value
is fc = 10−6, i.e. only oscillator strengths that satisfy fi > fc are
included in the model. Variations on these default choices are
explained in the table. Note that we use the term ‘line-binned’
to refer to bound–bound opacities that are generated using both the
fully tabulated approach described in Section 3.4, and an inline
approach, internal to the SUPERNU code, that explicitly solves
the Saha–Boltzmann equation to obtain atomic level populations
and construct the line opacities. In the tabular case, SUPERNU

interpolates on temperature and density to obtain the opacity
at required conditions, while no such interpolation is required
for the inline approach. We differentiate between these two ap-
proaches with distinct legend labels: ‘Binned-Tab’ for tabulated and
‘Binned-Inl’ for inline. The expansion opacity calculations, labeled
‘Expansion-Inl’, are always performed internally to SUPERNU, since
the expansion time must be used to perform the calculation. For the
simulations with element labels, all opacities are fully tabulated and
line-binned. The remaining bound-free, free–free, and scattering
contributions to the opacity are always calculated from the tables.
As explained in Section 3.4, the opacity tables employ a grid
with 27 temperature points and 17 density points, ranging from
0.01 to 5 eV and logarithmically spaced from 10−20 to 104 g cm−3,
respectively.

4.2.1 Simplified problem: a comparison of approximate methods

with the fully resolved solution

In order to provide numerical justification for our line-binned
opacities, we consider a simplified version of the test problem
described above, and employ the direct Sobolev treatment of lines,
following Kasen et al. (2006). In implementing this more precise
line treatment, equations (13) and (15) of Kasen et al. (2006)
are used to determine when a photon comes into resonance with
a line and, if so, whether an absorption occurs, respectively. In
addition, we continue to make the assumption of complete thermal
redistribution (ǫ = 1) after a photon is absorbed. No attempt is
made to take into account fluorescence or to use branching ratios to
determine the fate of a photon after absorption occurs. A description
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A line-binned treatment of opacities 4157

Figure 13. Bolometric luminosity (top panel) and radiative flux at 6.3 d (bottom left-hand panel) and 15.88 d (bottom right-hand panel) for the simplified test
problem described in the text. Results are shown for the continuous Monte Carlo Sobolev (solid blue), line-binned (dashed orange), and expansion-opacity
(dotted green) methods. For consistency, these methods all employ line contributions to the opacity that were generated within the SUPERNU code, rather than
via the pre-tabulated approach. Also, an oscillator strength cut-off value of fc = 10−3 was used in all cases.

of the implementation of this direct Sobolev method in the SUPERNU

code is provided in Appendix B.
This particular usage of the direct Sobolev treatment is different

from its application in Kasen et al. (2006), in which it was employed
to test the validity of the thermal redistribution approximation. Here,
we assume that complete thermal redistribution is already valid,
because that is a primary assumption of nearly everyone who does
detailed-opacity kilonova simulations, and use the direct Sobolev
line treatment to provide an exact solution to that approximate (ǫ =
1) problem. This unconventional usage of the direct line treatment
allows us to consider a test case that isolates the particular opacity
method of interest, while all other physics choices remain the same.
This characteristic is useful to investigate how the two approximate
opacity methods perform, compared to the exact line treatment,
for the complex range of conditions that are relevant for kilonova
light-curve and spectral modelling.

This simplified version of the problem starts at 4 d post-merger,
uses SR oscillator strength data for Nd with a cut-off value of fc =
10−3, and includes only bound-bound opacity. These features make
the problem faster to solve on a moderate number of CPUs (∼30),
without discrete diffusion acceleration. Moreover, solving radiative
transfer with only bound-bound contributions further isolates the
potential source of discrepancy that can arise from the different
opacity methods. We have provided a description of this simplified
problem in Appendix C so that other groups can use it as a test
case to produce meaningful comparisons between their work and

the present effort. While no test problem is perfect, we reiterate
that the simplified one being proposed here has the advantage of
exercising the different opacity implementations over a large range
of conditions that occur in an actual kilonova simulation.

In Fig. 13, we compare results obtained with the direct Sobolev
treatment to line-binned and expansion-opacity simulations. In
order to avoid confusion, we note that the Sobolev treatment is
not the same as the expansion-opacity approach and, furthermore,
is more accurate than the expansion-opacity approach. Light curves
are displayed in the top panel and spectra in the Bottom left-hand
and right-hand panels of the figure. In the top panel, we see very
good agreement between all three light curves, with the maximum
differences occurring at the peak. The direct Sobolev (‘Sobolev’)
light-curve displays the greatest peak value, which occurs at 6.3 d.
The expansion-opacity (‘Expansion-Inl’) simulation displays the
next highest peak, and the line-binned (‘Binned-Inl’) curve displays
the lowest peak value. The three peak values are within 8 per cent of
each other. As expected, the expansion-opacity result is brighter than
the line-binned result (see discussion in Section 4.1), but they differ
by a maximum of only 5 per cent, which occurs at the peak. While
the direct Sobolev treatment is the most accurate of these three
methods, it is computationally intractable for more realistic simula-
tions. The expansion and line-binned approaches provide a measure
of the uncertainty arising from different opacity implementations.

As far as the spectral examples are concerned, there are differ-
ences in the heights of several features. The spectra at the peak
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4158 C. J. Fontes et al.

Figure 14. For the Nd ejecta test problem, a comparison of bolometric luminosities (left-hand panel) and spectra (right-hand panel), at 5.45 d post-merger,
computed with line-smeared (solid blue curve) and line-binned (dashed orange curve) opacities. These results were computed with 100 groups, consistent with
the simulations of Wollaeger et al. (2018).

of the light curve (bottom left-hand panel), occurring at 6.3 d,
display an interesting trend: the Sobolev result is the highest curve
above 0.3 Å, and the lowest curve below that wavelength. The
two more approximate curves agree reasonably well across the
entire wavelength range. On the other hand, at the later time of
15.88 d (bottom right-hand panel), our line-binned approach agrees
better than the expansion-opacity approach with the more accurate
Sobolev spectrum across much of the wavelength range. From a
theoretical perspective, the lack of a clear trend of agreement when
comparing the two approximate results to the direct Sobolev spectra
suggests that neither one of the approximate methods provides an
obviously better prediction of kilonova spectra, at least in the context
of this simplified problem. The relatively good agreement between
the three calculations provides additional support for our line-
binned approach. From a practical perspective, these differences in
feature heights are relatively small and are not sufficient to explain
discrepancies between theory and observation. We also note that
there is no redward shift in the peak emission of the line-binned
curve when comparing the three methods. (see the next section
for a detailed discussion about redwards shifts.) However, the
simplified problem analysed here offers only a partial investigation
of the relevant parameter space and so we consider more physically
complete models in the next section.

4.2.2 Full problem: sensitivity studies

For the full problem, the time-span is extended, ranging from 104 s
to 20 d in the comoving frame (∼14 observer days), with 400
logarithmically spaced time-steps. All opacity contributions are
included as well. We vary the parameters of this problem to examine
how light curves and spectra are affected by changes to the opacity
data and opacity discretization method. The variations include:
group averaging methods (line-smeared versus line-binned versus
expansion-opacity), number of photon energy groups, tabulated
versus inline-generated opacities, oscillator strength cut-off value,
atomic physics model (SR versus FR variants), and choice of
element. As mentioned in the previous section, use of the direct
Sobolev treatment is impractical in simulations of the full problem
and therefore is not considered in the present analysis.

Fig. 14 displays a comparison of the bolometric luminosity and
spectra, at 5.45 d post-merger, calculated with line-binned and line-
smeared opacities, both computed with the tabular approach. These

results were calculated with 100 energy groups, which is the same
resolution used in our detailed study of kilonovae light curves and
spectra (Wollaeger et al. 2018). The good agreement between the
two calculations indicates that the line-smeared approach used in
that detailed study produces similar results to the currently proposed
line-binned approach at this group resolution.

In Fig. 15, we next present a group resolution study by displaying
line-binned results computed with 100 and 1024 groups. Once
again, bolometric luminosities are presented in the left-hand panel
and spectra, at 5.45 d post-merger, are presented in the right-hand
panel. In this case, we see a difference of about 25 per cent in
the peak luminosity indicating that the higher number of groups
is required to obtain better convergence. Significant differences are
also observed in the spectra displayed in the right-hand panel of this
figure, providing further evidence that 100 groups is not generally
sufficient to produce converged spectra. This lower group resolution
is a deficiency of Wollaeger et al. 2018, but does not significantly
impact the conclusions of that work. First, the primary goal of that
effort was to establish variations in the kilonova signal with respect
to changes in morphology, composition, and r-process heating.
The group resolution does not affect those trends. Additionally,
the authors showed that 100 groups is virtually converged for
the model with mixed dynamical ejecta composition (see fig. 7
in Wollaeger et al. 2018). That particular model was used in
their section on detection prospects, and all dependent works.
The 1024 groups represent the standard resolution chosen for the
test-problem simulations considered in this work and have been
found to produce converged results. For completeness, we note
that additional calculations with 4096 groups were carried out (not
shown) and the resulting light curves and spectra agreed well with
those produced with 1024 groups. For completeness, we note that
the behaviour of a smaller number of groups yielding a lower
luminosity has been encountered and discussed in previous work.
The increase in luminosity with group resolution arises from the
increase in ‘porosity’ of the opacity, i.e. from an increase in the
spacing between the line features. In Wollaeger et al. (2018), we
added a group resolution study that showed convergence at O(100–
1000) groups. For this work, we tested up to an even higher 4096
groups (not shown), observing no significant change at 1024-group
resolution and above. On the other hand, 100 groups is somewhat
under-resolved, resulting in a lower luminosity, as demonstrated in
Fig. 15.
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A line-binned treatment of opacities 4159

Figure 15. For the Nd ejecta test problem, a comparison of bolometric luminosities (left-hand panel) and spectra (right-hand panel), at 5.45 d post-merger,
computed with line-binned opacities. Results are presented for 100 (solid blue curve) and 1024 (dashed orange curve) groups.

Figure 16. Comparison of tabulated (solid blue curve) and inline (dashed orange curve), line-binned opacity implementations. Luminosities are displayed in
the left-hand panel and spectra are displayed in the right-hand panel. The good agreement between these two implementations indicates that our method for
processing the tabular opacity data does not introduce any significant error in the simulations.

We have also compared the fully tabulated, line-binned ap-
proach to the corresponding inline multigroup implementation,
which solves the Saha–Boltzmann equations using the actual
ejecta temperatures and densities. As mentioned previously, in
the fully tabulated approaches (both smeared and binned), the
opacity is instead obtained within SUPERNU by interpolation on
a pre-computed density–temperature table, which can introduce
some inaccuracy. Fig. 16 displays the bolometric luminosity and
spectra for tabulated versus inline, line-binned calculations. The
good agreement between these two sets of calculations indicates
that potential errors arising from interpolation of the tabular bound–
bound opacities are insignificant, and, furthermore, that the method
for distributing the tabular, line–binned opacities across group
boundaries (see Section 2.1) is adequate.

We next investigated the sensitivity of the emission to the
oscillator strength cut-off value, fc. Figs 17 and 18 display plots of
light curves and spectra, respectively, for different oscillator strength
cut-offs. Each panel contains two curves that were generated with
the inline, line-binned, and expansion-opacity methods. Results are
shown for cut-off values of fc ∈ {10−1, 10−3, 10−4, 10−6}. These
four cut-offs correspond to including a total of 2814, 1225 925,
6447 337, and 22710 094 lines, respectively. These results indicate
that the opacity changes significantly when lowering fc from 10−1

to 10−3, but the effect of including additional lines appears to level
off at 10−4, which is consistent with the behaviour exhibited by the
opacity curves in the earlier Fig. 11. We also note that the same
convergence behaviour is exhibited for both the line-binned and
expansion-opacity methods, although the light curves and spectra
display some quantitative differences, even for the most inclusive
atomic model generated with fc = 10−6. For example, there is about
a 30 per cent difference in the peak luminosity when comparing
expansion-opacity and line-binned light curves for this full problem,
versus only 5 per cent mentioned in the previous section for the
simplified problem. However, we again note that these disparities
are not sufficient to explain discrepancies between theory and
observation.

In Fig. 19, we compare light curves using either SR or FR atomic
data, and either the line-binned or expansion-opacity method. The
bolometric luminosities (left-hand panel) agree reasonably well
between opacity discretization methods, but the spectra agree better
between the two types of atomic data. Fig. 20 displays light curves
and spectra for the FR-SCR and FR-SCNR variants of the FR
model, which have less fidelity, i.e. less configuration interaction,
than the default FR model. Unlike the SR versus FR comparison in
Fig. 19, the bolometric luminosities do not group together according
to the opacity discretization method, near peak luminosity. This
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4160 C. J. Fontes et al.

Figure 17. Bolometric luminosity for oscillator strength cut-off values of fc = 10−1, 10−3, 10−4, and 10−6. Results are presented for line-binned (solid blue
curve) and expansion (dashed orange curve) inline opacities. There is a relatively strong dependence on fc down to a value of 10−4, below which the light
curves do not change too much.

behaviour indicates a stronger sensitivity to the amount of fine-
structure detail that is included in the atomic physics models, relative
to a sensitivity to the discretization method. Additionally, the FR-
SCNR light curves and spectra are more closely in agreement with
those of the FR and SR models, which is consistent with theoretical
expectations (see Section 2.3 and Table 2).

It is interesting to note that the spectral responses to the
above suite of parameter variations do not show significant shifts
in the wavelength band at which peak emission occurs. This
suggests that the area-preserving opacity technique, and these
other numerical resolution choices employed in our earlier work
(Wollaeger et al. 2018), do not appear to explain why the spectra
presented therein is shifted toward red wavelengths, as compared
to results produced by other authors who use the expansion-
opacity treatment (e.g. Kasen et al. 2017; Tanaka et al. 2018).
Clearly, the parameter study presented here is not exhaustive and
further methodical, sensitivity studies of other key properties will
be needed (e.g. ejecta characteristics such as density, elemental
composition and velocity distributions, as well as details in the
atomic data employed by each group). As discussed in Section 4.2.1,
simplified test problems provide a valuable path to isolating the
impact of various assumptions employed by the full kilonova
modelling codes, and future work should attempt to define such
tests.

It is also worth noting that there is a common assumption among
all groups that the opacity contribution from the mixing of heavy
elements present in the ejecta can be reasonably represented by a
surrogate, single-element lanthanide (Nd is commonly assumed).
By considering different elements here, we demonstrate that the
choice of element can have a significant impact on the light curves
and spectra as well. Fig. 21 displays bolometric luminosity for line-
binned opacity tables of Nd along with Sm, Ce, and U. Sm and Ce
differ from Nd in atomic number by only +2 and −2, respectively,
but produce significantly brighter light curves, by about a factor of
two at 5.45 d post-merger. Moreover, Ce has a bright early transient
for both SR and FR opacity, presumably due to its relatively low
opacity that results from a smaller number of 4f electrons. Nd and
U are homologues, i.e. they appear in the same column of the
periodic table due to the similar electron structure (with the principal
quantum number of their valence shells differing by one), but U
displays a peak luminosity that is about five times brighter and
appears earlier by about 3 d. The corresponding spectra for these
four elements are presented in Fig. 22. The peak emission varies in
value by about a factor of 2.5 for the SR calculations and a factor of
4.3 for the FR calculations, and its wavelength location ranges from
∼10 000–30 000 Å. This type of sensitivity indicates that using a
more complete set of lanthanide elements to simulate kilonovae,
rather than a single representative element, may be appropriate.
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A line-binned treatment of opacities 4161

Figure 18. Spectra at day 5.45 for oscillator strength cut-off values of fc = 10−1, 10−3, 10−4, and 10−6. Results are presented for line-binned (solid blue
curve) and expansion (dashed orange curve) inline opacities. There is a strong dependence on fc down to a value of 10−4, with significant differences still
occurring in certain line features for the most complete model with fc = 10−6.

Figure 19. Comparison of line-binned and expansion-opacity results using semirelativistic (SR) and fully relativistic (FR) atomic data to calculate opacities.
Luminosities are displayed in the left-hand panel and spectra are displayed in the right-hand panel.

Finally, we provide some basic timing information to demonstrate
the efficiency of the tabular, line-binned opacity method compared
to the corresponding inline approach, when simulating kilonovae
emission. For the case of fc = 10−6, SR atomic data and pure

Nd, the total time, in seconds, spent in the opacity calculations per
MPI rank is: 0.1162 for tabular line-binned (‘Binned-Tab’), 167.001
for inline line-binned (‘Binned-Inl’) and 284.538 for expansion-
opacity (‘Expansion-Inl’). (For reference, in our simulations the
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4162 C. J. Fontes et al.

Figure 20. Comparison of line-binned and expansion opacity results using the different configuration-interaction variations of FR atomic data (SCR and
SCNR) to calculate opacities. Luminosities are displayed in the left-hand panel and spectra are displayed in the right-hand panel.

Figure 21. Bolometric luminosity for different elements: Nd (blue solid), Ce (orange dashed), Sm (green dotted), and U (red dot-dashed) using tabulated
semirelativistic (left-hand panel) or fully relativistic (right-hand panel) binned opacities.

Figure 22. Spectra at 5.45 d for different elements: Nd (blue solid), Ce (orange dashed), Sm (green dotted), and U (red dot-dashed) using tabulated
semirelativistic (left-hand panel) or fully relativistic (right-hand panel) binned opacities.

total mean time spent in the radiation transport logic, for ∼106

particles per MPI rank, is 1060.51 s.) Thus, the tabular approach
is approximately three orders of magnitude faster than the inline
approach due to the amount of time required to obtain the atomic
level populations and to construct the line-binned opacities for every

required temperature density. Also of note is the fact that the inline
expansion-opacity calculation requires a factor of 1.7 more time
than the corresponding line-binned calculation. The additional cost
in the expansion-opacity method is due to the evaluation of the
exponentials for each line.
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A line-binned treatment of opacities 4163

Figure 23. The time rate of energy change per gram associated with
different mechanisms: PdV work is represented by red curves, nuclear decay
by blue curves, and radiation flow by black curves. The solid curves indicate
results obtained from the expansion-opacity method and dashed curves from
the line-binned opacities. Results are presented at 2 d post-merger for the
full problem considered in this work.

4.2.3 Full problem: theoretical analysis

In order to understand why the line-binned and expansion-opacity
results are fairly similar, despite the fact that their opacities can
differ by more than three orders of magnitude at high optical depths,
we first review the basic physics of light curves. Based on the
conventional wisdom associated with Arnett’s rule (Arnett 1979,
1982), a light curve depends sensitively on the optical depth into
the interior of the star. However, that study focused on light curves
of thermonuclear supernovae where the radioactive isotope is in
the interior of the ejecta and the energy released in the decay must
diffuse outward in order to power the light curve. In a more recent
work (Arnett, Fryer & Matheson 2017), Arnett and co-workers
argued that if the power source is more distributed, then the Arnett
rule does not apply. This situation is exactly the case for kilonovae,
where radioactive isotopes are evenly distributed in the ejecta.

With the Arnett-rule intuition being inappropriate for kilonovae,
we must develop a kilonova physics model. First, we consider the

energy sources and sinks in the outward moving ejecta. Fig. 23
displays the rate of energy change per unit mass of the expanding
ejecta at 2 d from three different effects: PdV work (expansion)
which cools the systems, nuclear decay energy from the decay
of radioactive isotopes and radiative transport. Note that, in the
inner ejecta, the radiative transport has a minor effect (less than a
few per cent) on the energetics, even with the higher rate resulting
from expansion opacities.

Next, we consider the flow of radiation energy through the
kilonova by first plotting the optical depth, taking into account
redshift through the comoving frame. This quantity is displayed as
a contour plot in the left-hand panel of Fig. 24 for the full problem
at 2 d using line-binned opacities. This type of contour plot provides
some insight into where photons of a certain wavelength are able to
escape the ejecta. Specifically, the black region in this plot indicates
were the optical depth to the surface is approximately one. In the
right-hand panel of Fig. 24, we also provide the corresponding
contour plot of the Planck function as a function of wavelength and
radial velocity, which indicates where the thermal photons are being
created.

By combining these two contour plots, we can gain an under-
standing of where photons are both being created and escaping the
ejecta. The combination is performed by using the Planck function
as a transparency overlay on to the optical depth. The results are
presented in Fig. 25, in which the left-hand panel represents the
expansion-opacity results and the right-hand panel represents the
line-binned-opacity results. These optical depth contours display
significant similarities, despite large differences that can occur
in the opacities generated with the two different methods. As a
consequence, the explosion evolution and the temperature in this
inner region (see Fig. 26) is very similar in both opacity models.

On the other hand, the temperature evolution in the outer region,
as well as the emission, is affected by the opacity at the photosphere.
There, the differences in line-binned and expansion opacities are
smaller, and, not surprisingly, our simulated light curves and spectra
are not so different. As an illustration of this concept, we present
in Fig. 27 a plot of optical depth versus radial velocity for a
representative wavelength, 2.01 × 104 Å, in the K band. As a guide
to the eye, a horizontal line has been plotted at τ = 10. We note that
above τ = 10 the line-binned and expansion-opacity curves diverge
significantly, but below τ = 10, where the photosphere occurs, the
curves are quite similar. While this example focuses on the K band,

Figure 24. Left-hand panel: A contour plot of the optical depth, taking into account redshift through the comoving frame, as a function of wavelength and
radial velocity using line-binned opacities. Right-hand panel: A contour plot of the corresponding Planck function as a function of wavelength and radial
velocity. Results in both panels are presented for the full problem considered in this work at 2 d post-merger.

MNRAS 493, 4143–4171 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
3
/3

/4
1
4
3
/5

7
5
8
3
1
0
 b

y
 g

u
e
s
t o

n
 0

3
 A

u
g
u
s
t 2

0
2
0



4164 C. J. Fontes et al.

Figure 25. Contour plots of the optical depth as a function of wavelength and radial velocity using expansion opacities (left-hand panel) and line-binned
opacities (right-hand panel). These optical depths were obtained by overlaying the Planck function and optical-depth contours in Fig. 24, generated with the
appropriate opacity models. Again, these results are presented for the full problem considered in this work at 2 d post-merger.

Figure 26. Temperature difference (expressed as a relative percentage)
versus radial velocity at 2 d for the full problem. The relative difference
is calculated according to the formula (Texp − Tbin)/Texp, where Texp is
the temperature obtained from the expansion-opacity model and Tbin is
the temperature from the line-binned model. Each curve represents the
temperature difference at a different number of days, as displayed in the
legend, ranging from 1–7 d.

the same trends were found to exist for the H and J bands, all of
which are of potential interest for kilonova modelling.

In an attempt to better understand the similarities and differences
in emission from a frequency-dependent perspective, we investi-
gated the behaviour of multigroup opacities at different optical
depths. For example, in Fig. 28, we provide a comparison of
multigroup Nd opacities, calculated with the expansion and line-
binned methods, at low and high optical depths. Since optical depth
varies as a function of wavelength, it is not possible to choose a
single optical depth that is valid for a particular temperature and
density. Instead, for the low optical-depth comparison in Fig. 27
we chose the conditions that correspond to an optical depth of one
for the 5-d curve displayed in Fig. 27. Similarly, the conditions
used in the right-hand panel correspond to those occurring at
an optical depth of ten associated with the same 5-d curve in
Fig. 27. The agreement between the two methods is slightly better
at low optical depth, which supports our detailed analysis, but the
improved agreement is not dramatic. This behaviour is consistent
with our investigations and understanding of this problem, i.e. it

Figure 27. Optical depth versus radial velocity for a representative wave-
length, 2.01 × 104 Å, in the K band for the full problem. Each curve
represents the optical depth at a different number of days, as displayed
in the legend, ranging from 1–7 d. The solid curves indicate results obtained
from the line-binned opacities and dashed curves from the expansion-opacity
method. A horizontal line is plotted at τ = 10 in order to guide the eye.
Results are presented for the full problem considered in this work.

is difficult to reduce the relevant physics to single temperature-
density comparisons that clearly show patterns of the desired nature.
Instead, the kilonova emission simulations appear to indicate the
importance and interplay of opacities over a range of wavelengths,
temperatures and densities.

5 SU M M A RY

We have proposed an area-preserving (line-binned), tabular ap-
proach for calculating opacities relevant to the modelling of kilo-
nova light curves and spectra. The line-binned approach is superior
to the previous line-smeared approach because the former is guar-
anteed to preserve the integral of the opacity. The area-preserving
approach differs from the more widely employed expansion-opacity
method in how the line contribution to the opacity is calculated.
However, our alternative approach was demonstrated to produce
similar emission results compared to both the expansion-opacity
method and to the more accurate, direct implementation of Sobolev
line transfer for a simplified problem (see Fig. 13). In fact, light
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A line-binned treatment of opacities 4165

Figure 28. Comparison of multigroup Nd opacities calculated with the line-binned and expansion methods at low (left-hand panel) and high (right-hand panel)
optical depths (see the text for details). The multigroup opacities were calculated with the standard 1024 wavelength groups described in the text.

curves produced by the approximate line-binned and expansion-
opacity methods were found to be lower than the direct Sobolev
treatment by a maximum of 8 per cent and 3 per cent, respectively.
As expected, our line-binned light curve is less than or equal to
the expansion-opacity light curve, with a maximum difference of
5 per cent occurring at peak for the simplified test case. The spectral
features show greater variability in the level of agreement between
the three opacity implementations, with our line-binned approach
agreeing well with the direct line treatment at late times. Additional
theoretical analysis was provided to explain the good agreement
between the emission produced with the line-binned and expansion-
opacity methods. It was found that, while the two methods produce
significantly different opacities at high optical depth, the time rate of
energy change in those regions of the dynamical ejecta is dominated
by PdV work (expansion) and nuclear decay, not radiation transport.
On the other hand, at low optical depth, where radiation transport
becomes important, the two methods generate similar opacities (see
Figs 23–28).

We considered a more complete (‘full’) problem to study the
errors associated with choices for the oscillator strength cut-off
value, fc, which determines the number of lines that are used in a
particular simulation (see Figs 17 and 18), as well as sensitivities to
the use of variant FR and SR atomic models (see Figs 19 and 20).
We found that light curves are typically converged at a value of
fc = 10−4. Increasing the cut-off value by one order of magnitude,
fc = 10−3, results in a 50 per cent error in the peak of the curve
and a factor of three or so in the early-time behaviour. For the
converged light curves produced with this full problem, a larger
difference of about 30 per cent was obtained in the peak luminosity
when comparing expansion-opacity and line-binned simulations.
Obtaining convergence for all major spectral features typically
required a lower tolerance of fc = 10−6. As for SR versus FR models,
the light curves were found to be relatively insensitive to this option,
but certain spectral features displayed visible differences, and the
FR calculation produced emission that is shifted toward slightly
higher (redder) wavelengths.

The choice of element comprising the ejecta was also investigated
and found to be a significant factor in predictions of the brightness
and shape of the bolometric luminosity light curve, as well as
the corresponding spectra, for single-element simulations. (see
Figs 21 and 22). The peak luminosity varied by factors of 2–
5 when considering lanthanides and an actinide with several f-
shell valence electrons in the ground state of their neutral ion

stages. The magnitude of the peak spectral emission differed by
similar amounts, i.e. factors of 2.5–4.3. A study of the relative
importance of various elements in multi-element light-curve and
spectral simulations is reserved for future work.

From a practical, computational perspective, the tabular line-
binned approach presented here is more efficient than the traditional
expansion-opacity method because the opacities are independent of
the particular type of expansion and can therefore be precomputed
on a grid of temperatures and densities. It was found that the tabular
approach requires three orders of magnitude less time than the
expansion-opacity method to generate the relevant opacities for
typical kilonova simulations. Tabular opacities for all 14 lanthanide
elements, as well as for a representative actinide element, uranium,
have been generated using the line-binned approach, and we plan
to make these data publicly available via a new data base developed
in collaboration with NIST.
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Côté B. et al., 2018, ApJ, 855, 99

MNRAS 493, 4143–4171 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
3
/3

/4
1
4
3
/5

7
5
8
3
1
0
 b

y
 g

u
e
s
t o

n
 0

3
 A

u
g
u
s
t 2

0
2
0

http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://dx.doi.org/10.1086/182957
http://dx.doi.org/10.1086/159681
http://dx.doi.org/10.3847/1538-4357/aa8173
http://dx.doi.org/10.1088/0004-637X/775/1/18
http://dx.doi.org/10.3847/0004-637X/829/2/110
http://dx.doi.org/10.1093/mnras/169.2.279
http://dx.doi.org/10.3847/0004-637X/817/2/116
http://dx.doi.org/10.3847/1538-4357/aaad67


4166 C. J. Fontes et al.

Cowan R. D., 1981, The Theory of Atomic Structure and Spectra. Univ.
California Press, Berkeley

Cowperthwaite P. S. et al., 2017, ApJ, 848, L17
Fleck J. A., Cummings J. D., 1971, J. Comput. Phys., 8, 313
Fontes C. J., Fryer C. L., Hungerford A. L., Hakel P., Colgan J., Kilcrease

D. P., Sherrill M. E., 2015a, High Energy Density Phys., 16, 53
Fontes C. J. et al., 2015b, J. Phys. B: At. Mol. Phys., 48, 144014
Fontes C. J., Colgan J., Abdallah J., Jr, 2016, in Ralchenko Y., ed., Modern

Methods in Collisional-Radiative Modeling of Plasmas. Springer, New
York, p. 17

Fontes C. J., Fryer C. L., Hungerford A. L., Wollaeger R. T., Rosswog S.,
Berger E., 2017, preprint (arXiv:1702.02990)

Frey L. H., Even W., Whalen D. J., Fryer C. L., Hungerford A. L., Fontes
C. J., Colgan J., 2013, ApJS, 204, 16

Grossman D., Korobkin O., Rosswog S., Piran T., 2014, MNRAS, 439,
757

Hakel P., Kilcrease D. P., 2004, in Cohen J. S., Kilcrease D. P., Mazevet S.,
eds, AIP Conf. Proc. Vol. 730, Atomic Processes in Plasmas. AIP, New
York, p. 190

Hakel P. et al., 2006, J. Quant. Spectrosc. Radiat. Transfer, 99, 265
Huebner W. F., Barfield W. D., 2014, Opacity. Astrophysics and Space

Science Library Vol. 402. Springer, New York
Ji A. P., Drout M. R., Hansen T. T., 2019, ApJ, 882, 40
Just O., Bauswein A., Pulpillo R. A., Goriely S., Janka H.-T., 2015, MNRAS,

448, 541
Karp A. H., Lasher G., Chan K. L., Salpeter E. E., 1977, ApJ, 214, 161
Kasen D., Thomas R. C., Nugent P., 2006, ApJ, 651, 366
Kasen D., Badnell N. R., Barnes J., 2013, ApJ, 774, 25
Kasen D., Metzger B., Barnes J., Quataert E., Ramirez-Ruiz E., 2017,

Nature, 551, 80
Kohn W., Sham L. J., 1965, Phys. Rev., 140, 1133
Korobkin O., Rosswog S., Arcones A., Winteler C., 2012, MNRAS, 426,

1940
Kramida A., Ralchenko Yu., Reader J., NIST ASD Team, 2018, NIST

Atomic Spectra Database (ver. 5.6.1). National Institute of Standards
and Technology, Gaithersburg, MD [Online]. Available: https://physics.
nist.gov/asd [2019, January 29]

Lattimer J. M., Schramm D. N., 1974, ApJ, 192, L145
Lucy L. B., 2005, A&A, 429, 19

Magee N. H. et al., 2004, in Cohen J. S., Kilcrease D. P., Mazevet S., eds,
AIP Conf. Proc. Vol. 730, Atomic Processes in Plasmas. AIP, New York,
p. 168

Metzger B. D., 2017, Living Rev. Relat., 20, 3
Metzger B. D., Berger E., 2012, ApJ, 746, 48
Narayan R., Paczynski B., Piran T., 1992, ApJ, 395, L83
Pian E. et al., 2017, Nature, 551, 67
Pinto P. A., Eastman R. G., 2000, ApJ, 530, 757
Rosswog S., Liebendörfer M., Thielemann F.-K., Davies M. B., Benz W.,

Piran T., 1999, A&A, 341, 499
Rosswog S., Korobkin O., Arcones A., Thielemann F.-K., Piran T., 2014,

MNRAS, 439, 744
Sampson D. H., Zhang H. L., Fontes C. J., 2009, Phys. Rep., 477, 111
Sobolev V. V., 1960, Moving Envelopes of Stars. Harvard Univ. Press,

Cambridge
Symbalisty E., Schramm D. N., 1982, Astrophys. Lett., 22, 143
Tanaka M. et al., 2018, ApJ, 852, 109
Tanvir N. R. et al., 2017, ApJ, 848, L27
Troja E. et al., 2017, Nature, 551, 71
Wollaeger R. T., van Rossum D. R., 2014, ApJS, 214, 28
Wollaeger R. T. et al., 2018, MNRAS, 478, 3298

APPENDI X A : LI ST O F C ONFI GURATI ONS

USED I N THI S WO RK

Table A1 in this appendix contains a list of configurations that
were used in calculating the energy levels and oscillator strengths
for the 14 lanthanide elements and sole actinide (uranium) element
considered in this work. Based on the relevant conditions of kilonova
ejecta, only the first four ion stages were calculated for each element.
The list of configurations was chosen to obtain a good representation
of the lowest lying energy levels that are necessary to: (i) obtain
converged atomic level populations via Saha–Boltzmann statistics
and (ii) calculate converged opacities with respect to the number
of bound–bound transitions in the photon energy range of interest.
The choice of configurations was based on the energy-level entries
in the NIST data base (Kramida et al. 2018) as well as ab initio
atomic structure calculations.

Table A1. A list of configurations, number of fine-structure levels, and number of (electric dipole) absorption lines for the various
ion stages considered in this work. A completely filled Xe core is assumed for the 14 lanthanide elements, while a filled Rn core is
assumed for uranium. For the first two ion stages of ytterbium, Yb I and II, the orbital angular momentum symbol ℓ represents the
range of values ℓ = s, p, d, f , and g.

Ion stage Configurations # of levels # of lines

La I 5d16s2, 5d26s1, 5d3, 5d16s16p1, 4f16s2, 6s26p1, 366 16 163
5d26p1, 4f15d16s1, 4f16s16p1, 4f15d2, 4f15d16p1 – –

La II 5d2, 5d16s1, 4f16s1, 6s2, 4f15d1, 79 768
5d16p1, 6s16p1, 4f16p1, 4f2 – –

La III 5d1, 4f1, 6s1, 6p1 7 8
La IV 5p6, 5p54f1, 5p56s1, 5p55d1, 5p56p1 39 211

Ce I 4f26s2, 4f15d16s2, 4f15d26s1, 4f15d16s16p1, 4f25d16s1, 2546 626 112
4f26s16p1, 4f15d3, 4f16s26p1, 4f15d26p1, 4f25d2, 4f25d16p1 – –

Ce II 4f26s1, 4f25d1, 4f26p1, 4f15d2, 4f16s2, 519 28 887
4f15d16s1, 4f15d16p1, 4f16s16p1, 5d3, 4f3 – –

Ce III 4f2, 4f16s1, 4f15d1, 4f16p1, 5d2, 5d16s1 62 452
Ce IV 4f1, 6s1, 5d1, 6p1 7 8

Pr I 4f36s2, 4f25d16s2, 4f25d26s1, 4f35d16s1, 7362 4750 354
4f35d2, 4f25d16s16p1, 4f35d16p1, 4f36s16p1 – –

Pr II 4f36s1, 4f35d1, 4f36p1, 4f25d2, 2145 412 027
4f25d16s1, 4f25d16p1, 4f26s16p1 – –

Pr III 4f3, 4f26s1, 4f25d1, 361 12 394
4f26p1, 4f15d2, 4f15d16s1 – –

Pr IV 4f2, 4f16s1, 4f15d1, 4f16p1 49 296

MNRAS 493, 4143–4171 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
3
/3

/4
1
4
3
/5

7
5
8
3
1
0
 b

y
 g

u
e
s
t o

n
 0

3
 A

u
g
u
s
t 2

0
2
0

http://dx.doi.org/10.3847/2041-8213/aa8fc7
http://dx.doi.org/10.1016/0021-9991(71)90015-5
http://dx.doi.org/10.1016/j.hedp.2015.06.002
http://dx.doi.org/10.1088/0953-4075/48/14/144014
http://arxiv.org/abs/1702.02990
http://dx.doi.org/10.1088/0067-0049/204/2/16
http://dx.doi.org/10.1093/mnras/stt2503
http://dx.doi.org/10.3847/1538-4357/ab3291
http://dx.doi.org/10.1093/mnras/stv009
http://dx.doi.org/10.1086/155241
http://dx.doi.org/10.1086/506190
http://dx.doi.org/10.1088/0004-637X/774/1/25
http://dx.doi.org/10.1038/nature24453
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1111/j.1365-2966.2012.21859.x
https://physics.nist.gov/asd
http://dx.doi.org/10.1086/181612
http://dx.doi.org/10.1051/0004-6361:20041656
http://dx.doi.org/10.1007/s41114-017-0006-z
http://dx.doi.org/10.1088/0004-637X/746/1/48
http://dx.doi.org/10.1086/186493
http://dx.doi.org/10.1038/nature24298
http://dx.doi.org/10.1086/308380
http://dx.doi.org/10.1093/mnras/stt2502
http://dx.doi.org/10.1016/j.physrep.2009.04.002
http://dx.doi.org/10.3847/1538-4357/aaa0cb
http://dx.doi.org/10.3847/2041-8213/aa90b6
http://dx.doi.org/10.1038/nature24290
http://dx.doi.org/10.1088/0067-0049/214/2/28
http://dx.doi.org/10.1093/mnras/sty1018


A line-binned treatment of opacities 4167

Table A1 – continued

Ion stage Configurations # of levels # of lines

Nd I 4f46s2, 4f35d16s2, 4f45d16s1, 4f45d2, 18 104 25224 451
4f35d16s16p1, 4f45d16p1, 4f46s16p1 – –

Nd II 4f46s1, 4f45d1, 4f46p1, 4f35d2, 6888 3958 977
4f35d16s1, 4f35d16p1, 4f36s16p1 – –

Nd III 4f4, 4f36s1, 4f35d1, 4f36p1, 1650 233 822
4f25d2, 4f25d16s1, 4f15d26s1 – –

Nd IV 4f3, 4f26s1, 4f25d1, 4f26p1 241 5784

Pm I 4f56s2, 4f45d16s2, 4f55d16s1, 4f55d2, 37 504 102137 397
4f45d16s16p1, 4f55d16p1, 4f56s16p1 – –

Pm II 4f56s1, 4f55d1, 4f56p1, 4f45d2, 16 595 21306 571
4f45d16s1, 4f45d16p1, 4f46s16p1 – –

Pm III 4f5, 4f46s1, 4f45d1, 4f46p1, 5274 2262 145
4f35d2, 4f35d16s1, 4f25d26s1 – –

Pm IV 4f4, 4f36s1, 4f35d1, 4f36p1 817 57 765

Sm I 4f66s2, 4f55d16s2, 4f65d16s1, 4f65d2, 60 806 249301 825
4f55d16s16p1, 4f65d16p1, 4f66s16p1 – –

Sm II 4f66s1, 4f65d1, 4f66p1, 4f55d2, 29 970 67743 385
4f55d16s1, 4f55d16p1, 4f56s16p1 – –

Sm III 4f6, 4f56s1, 4f55d1, 4f56p1, 13 170 13318 114
4f45d2, 4f45d16s1, 4f35d26s1 – –

Sm IV 4f5, 4f46s1, 4f45d1, 4f46p1 1994 320 633

Eu I 4f76s2, 4f65d16s2, 4f75d16s1, 4f75d2, 4f65d26s1, 4f65d16s16p1, 110 887 902515 995
4f75d16p1, 4f76s16p1, 4f76s16d1, 4f76s17s1, 4f76s17p1 – –

Eu II 4f76s1, 4f75d1, 4f76p1, 4f65d2, 4f65d16s1, 46 213 152795 763
4f65d16p1, 4f66s16p1, 4f76d1, 4f77s1 – –

Eu III 4f7, 4f66s1, 4f65d1, 17 058 13844 004
4f66p1, 4f55d2, 4f55d16s1 – –

Eu IV 4f6, 4f56s1, 4f55d1, 4f56p1 3737 1045 697

Gd I 4f86s2, 4f75d16s2, 4f75d26s1, 4f75d26p1, 4f76s26p1, 4f76s16p2, 228 048 3583 266 975
4f75d3, 4f85d16s1, 4f85d2, 4f75d16s16p1, 4f85d16p1, 4f86s16p1 – –

Gd II 4f86s1, 4f85d1, 4f86p1, 4f75d2, 4f76s2, 46 733 160595 610
4f75d16s1, 4f75d16p1, 4f76s16p1 – –

Gd III 4f8, 4f76s1, 4f75d1, 4f76p1, 39 324 113346 746
4f65d2, 4f65d16s1, 4f55d26s1 – –

Gd IV 4f7, 4f66s1, 4f65d1, 4f66p1 5323 2073 701

Tb I 4f96s2, 4f85d16s2, 4f85d26s1, 4f86s26p1, 4f95d16s1, 84 779 530258 427
4f95d2, 4f85d16s16p1, 4f95d16p1, 4f96s16p1 – –

Tb II 4f96s1, 4f95d1, 4f96p1, 4f86s2, 4f85d2, 40 502 120186 078
4f85d16s1, 4f85d16p1, 4f86s16p1 – –

Tb III 4f9, 4f86s1, 4f85d1, 4f86p1, 48 048 166697 126
4f75d2, 4f75d16s1, 4f65d26s1 – –

Tb IV 4f8, 4f76s1, 4f75d1, 4f76p1 5983 2545 968

Dy I 4f106s2, 4f95d16s2, 4f95d16s16p1, 4f105d16s1, 4f106s16p1, 4f106s16d1, 55 116 229181 735
4f106s17s1, 4f106s17p1, 4f96s26p1, 4f95d26s1, 4f106p2, 4f105d16p1 – –

Dy II 4f106s1, 4f105d1, 4f106p1, 4f95d2, 4f96s2, 26 968 55381 943
4f95d16s1, 4f95d16p1, 4f96s16p1 – –

Dy III 4f10, 4f96s1, 4f95d1, 20 834 12685 641
4f96p1, 4f85d2, 4f85d16s1 – –

Dy IV 4f9, 4f86s1, 4f85d1, 4f86p1 5194 1943 961

Ho I 4f116s2, 4f105d16s2, 4f105d16s16p1, 4f115d16s1, 4f116s16p1, 4f116s16d1, 26 759 57149 392
4f116s17s1, 4f116s17p1, 4f106s26p1, 4f105d26s1, 4f116p2, 4f115d16p1 – –

Ho II 4f116s1, 4f115d1, 4f116p1, 4f105d2, 4f106s2, 13 970 15323 035
4f105d16s1, 4f105d16p1, 4f106s16p1 – –

Ho III 4f11, 4f106s1, 4f105d1, 4f106p1 1837 259 812
Ho IV 4f10, 4f96s1, 4f95d1, 4f96p1 3549 915 339

Er I 4f126s2, 4f115d16s2, 4f115d16s16p1, 4f125d16s1, 4f126s16p1, 4f126s16d1, 9904 8223 793
4f126s17s1, 4f126s17p1, 4f116s26p1, 4f115d26s1, 4f126p2, 4f125d16p1 – –

Er II 4f126s1, 4f125d1, 4f126p1, 4f115d2, 4f116s2, 5333 2432 666
4f115d16s1, 4f115d16p1, 4f116s16p1 – –

Er III 4f12, 4f116s1, 4f115d1, 4f116p1 723 42 671
Er IV 4f11, 4f106s1, 4f105d1, 4f106p1 1837 259 812
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Table A1 – continued

Ion stage Configurations # of levels # of lines

Tm I 4f136s2, 4f125d16s2, 4f125d16s16p1, 4f135d16s1, 4f136s16p1, 1684 155 754
4f136s16d1, 4f136s17s1, 4f136s17p1, 4f126s26p1, 4f136p2, 4f135d16p1 – –

Tm II 4f136s1, 4f135d1, 4f136p1, 4f125d2, 4f126s2, 1484 205 258
4f125d16s1, 4f125d16p1, 4f126s16p1 – –

Tm III 4f13, 4f126s1, 4f125d1, 4f126p1 202 3797
Tm IV 4f12, 4f116s1, 4f115d1, 4f116p1 723 42 671

Yb I 4f146s16ℓ1, 4f146s17ℓ1, 4f146s18ℓ1, 4f146s19ℓ1, 4f146s110ℓ1, 4f146s111ℓ1, 1117 111 828
4f145d16s1, 4f145d16p1, 4f146s15f1, 4f146s15g1, 4f146p2, 4f145d2, 4f135d16s2, – –
4f135d26s1, 4f135d16s16p1, 4f136s26p1, 4f136s16p2, 4f136s26d1, 4f135d26p1 – –

Yb II 4f146ℓ1, 4f147ℓ1, 4f148ℓ1, 4f145d1, 4f145f1, 4f145g1, 292 9673
4f135d2, 4f136s2, 4f135d16s1, 4f135d16p1, 4f136s16p1 – –

Yb III 4f14, 4f136s1, 4f135d1, 4f136p1, 4f136d1, 4f136f1, 171 3192
4f135f1, 4f137s1, 4f137p1, 4f137d1, 4f137f1 – –

Yb IV 4f13, 4f126s1, 4f125d1, 4f126p1 202 3797

U I 5f47s2, 5f36d17s2, 5f46d17s1, 16 882 20948 831
5f46d2, 5f36d17s17p1, 5f46d17p1 – –

U II 5f37s2, 5f47s1, 5f46d1, 5f47p1, 6929 4016 742
5f36d2, 5f36d17s1, 5f36d17p1, 5f37s17p1 – –

U III 5f4, 5f37s1, 5f36d1, 5f37p1, 1650 233 822
5f26d2, 5f26d17s1, 5f16d27s1 – –

U IV 5f3, 5f27s1, 5f26d1, 5f27p1 241 5,784

APPEN D IX B: SOBOLEV IMPLEMENTATION

IN THE SUPE RNU C O D E

In this appendix, we discuss the implementation of a direct Sobolev
treatment in the SuperNu code. To do so, we write down the
equations and describe details of the algorithm.

The Sobolev method needs to be made compatible with Implicit
Monte Carlo (IMC; Fleck & Cummings 1971). Consequently,
it is instructive to revisit the basic equations implemented in
SUPERNU, which like the SEDONA code, assumes the homologous
approximation (Kasen et al. 2006),

�v =
�r

t
, (B1)

where �v is velocity and t is time. Incorporating equation (B1) into
the O(v/c) transport equation gives (see, for instance, Castor 2004)

1

c

Dψ

Dt
+ 
̂ · ∇ψ +

1

ct
λ

∂ψ

∂λ
+

3

ct
ψ = j − ρκψ , (B2)

where 
̂ is the direction unit vector, λ is wavelength, ψ is angular
intensity, j is emissivity, and κ is opacity. All quantities, except
the spatial coordinate and time, are evaluated in the comoving
frame. The corresponding IMC formulation requires an equation
for the internal energy (or temperature of the matter). Assuming
LTE, after performing a linear temporal expansion in T4 of the
Lagrangian internal energy equation (Fleck & Cummings 1971),
the IMC equations in SUPERNU are

1

c

Dψ

Dt
+ 
̂ · ∇ψ +

1

ctn
λ

∂ψ

∂λ
+

3

ctn
ψ

= fnρnκnBn +
bnκn

4πκP ,n

(1 − fn)

×

∫

4π

d
′

∫ ∞

0
dλ′ρnκ

′
nψ

′ − fnρnκnψ , (B3a)

ρncv,n

DT

Dt
= ρnfn

∫

4π

d


∫ ∞

0
dλ(κnψ − κnBn) , (B3b)

fn =
1

1 + c�tnκP ,n4acT 3
n /cv,n

, (B3c)

where quantities subscripted with n are evaluated at the beginning
of time-step n, fn is the Fleck factor, B is the Planck function b

is the normalized Planck function, κP is the Planck opacity, and
cv is heat capacity. For simplicity, we have neglected contributions
from r-process decay and Thomson scattering (though generally
speaking, these are included in the simulations). It is worth noting
that the Fleck factor introduces an ‘effective scattering’ term into
the transport equation (the second term on the right-hand side
of equation B3a). Monte Carlo particles undergoing an effective
scattering event are thermally redistributed in their wavelengths
(the bnκn/κP, n coefficient is the redistribution kernel).

In SUPERNU, the opacity is typically discretized into groups in
wavelength; these groups are defined in the comoving frame (local
to each fluid parcel). However, the wavelength for Monte Carlo
particles is left continuous. Consequently, the first two equations in
equation (B3) become

1

c

Dψ

Dt
+ 
̂ · ∇ψ +

1

ctn
λ

∂ψ

∂λ
+

3

ctn
ψ

= fnρnκg,nBg,n +
bg,nκg,n

4πκP ,n

(1 − fn)

×

∫

4π

d
′
∑

g′

ρnκ
′
g′,nψ

′ − fnρnκg,nψ , (B4a)

ρncv,n

DT

Dt
= ρnfn

∫

4π

d

∑

g

(
∫

g

dλκg,nψ − κg,nBg,n�λg

)

,

(B4b)

where subscript g denotes a group-averaged quantity, bg =
∫

gdλ b/�λg, and the Planck opacity is evaluated via a sum over
groups, κP =

∑

gκgbg. Since the particle wavelength is left
continuous, the particles Doppler shift continuously across groups
as they stream through space. This particle behaviour corresponds
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to having left the third term on the left-hand side of equation (B4a)
to remain continuous in wavelength.

Alternatively, we may keep some of the opacity continuous
in wavelength. To obtain the Sobolev formulation of the IMC
equations, we simply substitute

κn = κ̃g,n + κb−b
n (B5)

for κg, n in equations (B4), where κ̃g,n are all continuum contri-
butions (discretized into groups) and κb−b

n is a monochromatic
superposition of Dirac delta distributions corresponding to the line
contributions. For our Sobolev test problem, we neglect κ̃g,n.

For fully discrete opacity, we also discretize the bound-bound
contribution, κb−b

n → κb−b
g,n . Using the formulae from the paper,

κb−b
g,n =

1

ρnctn

1

�λg

∑

i∈�λg

{

λiτi, for binned,

λi(1 − e−τi ), for expansion,
(B6)

where i is a line index and τ i is the corresponding Sobolev optical
depth. It is straightforward to see that the expansion opacity
formula reduces to the binned opacity formula for τ i ≪ 1. It
is also straightforward to see that the line-binned formula is in
fact a direct integral-average of the monochromatic opacity over
wavelength under the assumption that the line profiles are Dirac
delta distributions:

κb−b
g,n =

1

ρnctn

1

�λg

∑

i∈�λg

λiτi

=
1

ρnctn

1

�λg

∑

i∈�λg

tn
πe2

mec
Ni |fi |λ

2
i

=
1

ρn

1

�λg

∑

i∈�λg

πe2

mec2
Ni |fi |λ

2
i , (B7)

where Ni is the number density of the initial level for line i and fi is
the oscillator strength.

B1 Monte Carlo algorithm with discrete opacity

The algorithm for the system of equations with fully discretized
opacity (equations B4) is as follows:

(i) Store particles from time step n − 1, sample source particles
in time step n:

(1) integrate first term on right-hand side of equation (B4a) in

, sum over groups, and integrate over the volume of a spatial
cell, then partition the energy across the prescribed number of
source particles for the cell,

(2) sample each particle’s position in the cell, in time-step n,
and direction (
̂),

(3) sample each particle’s wavelength (λ) by first sampling the
group from a cumulative distribution function (CDF) generated
by bg, nκg, n/κP, n, then uniformly within the sampled group.

(ii) Transport the updated set of particles. For each particle:

(1) Calculate the set of velocity distances (Kasen et al. 2006)
to stream to each possible next particle event:

des = −
ln(ξ )

tn(1 − fn)ρnκg,n

, (B8a)

dred = c(λg+1/2 − λ)/λ , (B8b)

db = |�rb(
̂) − �r| , (B8c)

dend = c(tn+1 − t)/tn , (B8d)

where des, dred, db, and dend are distances to effective scattering,
redshift out of the group edge, the cell boundary along 
̂, and
to the end of time-step n. The quantity ξ ∈ [0, 1] is a uniformly
sampled random number.

(2) Select the event from the minimum distance d, and update
the particle’s properties via streaming:

t ′ = t +
tnd

c
, (B9a)

�r ′ = �r + d
̂ , (B9b)

E′ = Ee−(1−fn)ρnκg,ntnd , (B9c)

λ′ = λ

(

1 +
d

c

)

, (B9d)

where, for simplicity, the update to the spatial position has been
written in Cartesian coordinates.

(3) Add E(1 − e−(1−fn)ρnκg,ntnd ) to the tally of absorbed energy
in the time-step.

(4) If the particle effectively scatters, sample 
̂ isotropically
and resample λ thermally from bg, nκg, n/κP, n.

(5) If the particle redshifts out of the group, set g to g + 1 for
the next round of distance calculations.

(6) If the particle crosses the cell boundary, use the adjacent
cell’s properties for the next round of distance calculations. If
the edge of the simulation grid is reached, tally the particle as
escaping flux for the observables (light curves and spectra).

(7) If the particle reaches the end of the time-step, stop
transporting and store it for n + 1.

(iii) Account for redshift on particle energy weights using
operator-split equation (Abdikamalov et al. 2012),

∂ψ

∂t
+

ψ

tn
= 0 , (B10)

which has solution E′′ = E′e−�tn/tn for each particle energy weight.
(iv) With the energy absorption tallied during the transport

of the particles, update the internal energy of the ejecta with
equation (B4b) (the absorbed energy tally is represented by the
term with ψ on the right-hand side).

The above algorithm applies to both expansion and line-binned
opacity treatments. The only difference between the approaches to
treating line-binned and expansion opacity is in how the bound–
bound contribution of κn, g is calculated (in equation B6). Again,
equation (B6) shows that the expansion and line-binned opacity
methods approach one another when τ i ≪ 1.

B2 Monte Carlo algorithm with Sobolev line treatment

The Sobolev algorithm is nearly the same, but with modifications
to steps 1 and 2 resulting from incorporating equation (B5) into
equations (B4). This algorithm is intended to be as close to that
of Kasen et al. (2006) as possible, within the context of IMC and
SUPERNU. The Sobolev algorithm is as follows:

(i) Store particles from time step n − 1, sample source particles
in time-step n:

(1) integrate first term on the right-hand side of equation (B4a)
in 
, sum over groups, and integrate over the volume of a spatial
cell, then partition the energy across the prescribed number of
source particles for the cell,
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4170 C. J. Fontes et al.

(2) sample each particle’s position in the cell, in time-step n,
and direction (
̂),

(3) sample each particle’s wavelength (λ) by first sampling the
group from a CDF generated by bg, nκg, n/κP, n, then

(a) uniformly within the sampled group if

ξ <
κ̃g,n

κg,n

, (B11)

where ξ ∈ [0, 1] is a uniformly sampled random number, or
(b) at a line centre λi, using a CDF constructed from 1 − e−τi

as the probability for line i.
The expansion opacity formula (see equation B6) is used for
κb−b

g,n = κg,n − κ̃g,n.

(4) For each particle,

(i) Calculate the set of velocity distances (Kasen et al. 2006)
to stream to each possible next particle event:

des = −
ln(ξ )

tn(1 − fn)ρnκ̃g,n

, (B12a)

dred = c(λg+1/2 − λ)/λ , (B12b)

db = |�rb(
̂) − �r| , (B12c)

dSob = c(λi − λ)/λ , (B12d)

dend = c(tn+1 − t)/tn , (B12e)

where des, dred, db, dSob, and dend are distances to effective
scattering due to continuum opacity, redshift out of the group
edge, the cell boundary along 
̂, to resonance with line i, and
to the end of time step n. The quantity ξ ∈ [0, 1] is a uniformly
sampled random number.

(ii) Select the event from the minimum distance d, and update
the particle’s properties via streaming:

t ′ = t +
tnd

c
, (B13a)

�r ′ = �r + d
̂ , (B13b)

E′ = Ee−(1−fn)ρn κ̃g,ntnd , (B13c)

λ′ = λ

(

1 +
d

c

)

, (B13d)

where, for simplicity, the update to the spatial position has been
written in Cartesian coordinates.

(iii) Add E(1 − e−(1−fn)ρn κ̃g,ntnd ) to the tally of absorbed en-
ergy in the time-step.

(iv) If the particle effectively scatters, sample 
̂ isotropically
and resample λ thermally from bg, nκg, n/κP, n.

(v) If the particle redshifts out of the group, set g to g + 1 for
the next round of distance calculations.

(vi) If the particle crosses the cell boundary, use the adjacent
cell’s properties for the next round of distance calculations. If
the edge of the simulation grid is reached, tally the particle as
escaping flux for the observables (light curves and spectra).

(vii) If the particle comes into resonance with line i, sample if
interaction with the line occurs,

ξ < 1 − e−(1−fn)τi , (B14)

where ξ ∈ [0, 1] is again a uniformly sampled random number.
Note that we have introduced an ‘effective line scattering’, to be
consistent with the IMC formulation.

(1) If an interaction occurs, sample 
̂ isotropically and resam-
ple λ thermally from bg, nκg, n/κP, n, where the line contribution
to the discrete opacity is calculated with the expansion-opacity
formula (following Kasen et al. 2006). Within the span of the
newly sampled group, g

′

, sample whether the emission is from
the continuum,

ξ ′ <
κ̃g′,n

κg′,n

, (B15)

where ξ
′

is another uniform random variable. If so, uniformly
sample λ in g

′

. if not, sample λ at one of the line centres in g
′

with a CDF constructed from 1 − e−τi′ as the probability for each
new line i

′

.
(2) If ξ ≥ 1 − e−(1−fn)τi , lower the particle energy,

E′ = Ee−fnτi , (B16)

and add E(1 − e−fnτi ) to the absorption tally, but keep the
particle’s direction 
̂ and wavelength λ = λi unchanged.

(viii) If the particle reaches the end of the time-step, stop
transporting and store it for n + 1.

(5) Account for redshift on particle energy weights using
operator-split equation (Abdikamalov et al. 2012),

∂ψ

∂t
+

ψ

tn
= 0 , (B17)

which has solution E′′ = E′e−�tn/tn for each particle energy
weight.

(6) With the energy absorption tallied during the transport
of the particles, update the internal energy of the ejecta with
equation (B4b) with equation (B5) substituted for κg, n in the first
term on the right-hand side (this term is solved for by the tally of
absorbed energy).

B3 Motivation for Sobolev emission method

Assuming ψ represents the intensity of photons that have streamed
to line i, the absorption rate in the Sobolev formulation is

Ai = ψ(1 − e−τi ) , (B18)

which is in units of erg s−1 cm−2 Hz−1 sr−1 (as is ψ). In a Monte
Carlo framework, equation (B18) corresponds to the sampling
procedure in equation (B14) (with equations B14 and B16, we have
employed a variance reduction technique, implicit capture, which
preserves the equation (B18) as the expectation value). To obtain
an absorption rate density, equation (B18) can be multiplied by a
spatial Dirac delta distribution over the particle path-length,

Ai = Aiδ(x − xi) = ψ(1 − e−τi )δ(x − xi) , (B19)

where x is the photon path-length and xi is the path-length at
which the photon may interact with line i. Equation (B19) is in
units of erg s−1 cm−3 Hz−1 sr−1, consistent with the emissivity, j, in
equation (B2). Using the identity,

δ(x − xi)dx = δ(λ − λi)dλ , (B20)

where dx and dλ are infinitesimal path-length and wavelength, and
using

dλ

dx
=

λ

ct
, (B21)
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implied from equation (B2), the wavelength can be substituted for
path-length in the absorption rate density for line i,

Ai = ψ(1 − e−τi )δ(λ − λi)
λ

ct
. (B22)

In full equilibrium,

ψ = B . (B23)

Requiring detailed balance, the emission rate density (or emissivity)
for line i is

ji = Ai = B(1 − e−τi )δ(λ − λi)
λ

ct
. (B24)

In the implementation, we have discretized the Planck function
over group, but this is a sub-dominant error with our 1024 group
structure. The total emissivity is

j =
∑

i

ji =
∑

i

B(1 − e−τi )δ(λ − λi)
λ

ct
, (B25)

which, with the discretization of the Planck function over groups,
can be refactored as

j =
∑

g

Bg

∑

i∈�λg

(1 − e−τi )δ(λ − λi)
λ

ct
. (B26)

Equation (B26) can be sampled exactly/analytically in two steps:

(i) sample group wavelength interval λg with a CDF generated
by integrating j over each group,
∫

g

dλ j = Bg

∑

i∈�λg

(1 − e−τi )
λi

ct
, (B27)

which, when divided by
∫

dλ j =
∑

g′

∫

g′ dλ j , is the probability
of being emitted in group g,

(ii) sample line i ∈ �λg with a CDF generated by integrating j

over intervals about each of the lines,
∫

i

dλ j = Bg(1 − e−τi )
λi

ct
, (B28)

which, when divided by the right-hand side of equation (B27), gives
the probability of getting emitted at line i of group g.

APPENDIX C : D ESCRIPTION O F SIMPLIFIED

TEST CASE

In this appendix, we describe the ejecta and initial conditions of the
simplified test problem that is employed in Section 4.2.1 to compare
the line-binned and expansion-opacity discretizations to our direct
Sobolev implementation. The equations for the state of the ejecta
are (Wollaeger et al. 2018)

v(r, t) =
r

t
, (C1a)

ρ(r, t) = ρ0

(

t

t0

)−3 (

1 −
r2

(vmaxt)2

)3

, (C1b)

T (r, t) = T0

(

t

t0

)−1 (

1 −
r2

(vmaxt)2

)

, (C1c)

where r is the radius, v is velocity, ρ is density, T is radiation
temperature, ρ0 is the initial maximum density, t0 is the initial time,
vmax is maximum ejecta velocity, and T0 is the initial maximum
temperature. We set vmax = 0.25c and t0 = 4 d. For an ejecta mass
of 1.4 × 10−2 M⊙, this gives ρ0 = 2.51 × 10−15 g cm−3.

The initial innermost temperature is T0 = 5.70 × 103 K. The
initial matter temperature is set to the initial radiation temperature.

For the source, we use (Korobkin et al. 2012)

ε̇ = ε̇0

(

t

t0

)−1.3

, (C2)

where ε̇ and ε̇0 are the specific heating rate and initial specific
heating rate. For t0 = 4 d, ε̇0 = 8.2 × 108 erg s−1 g−1.

The composition of the ejecta is assumed to be 100 per cent
Nd. We neglect bound–free, free–free, and Thomson scattering
contributions to the opacity. We also neglect lines with fc < 10−3.

The numerical resolutions are as follows:

(i) 64 uniform spatial cells from 0 to 0.25c,
(ii) 180 logarithmic time-steps from day 4 to day 16,
(iii) 1024 logarithmic wavelength groups from 103 to

1.28 × 105 Å,
(iv) 218 = 262 144 source particles generated per time-step.

The mass per spatial cell is obtained by analytically integrating
the density profile over volume and the temperature per cell
is obtained by evaluating the temperature profile at radial cell
centres.

We do not apply the observer-time correction to the simplified
problem, which is (Lucy 2005)

tobs = t
(

1 −
μvmax

c

)

, (C3)

where μ is the dot product of the particle direction with the radial
unit vector. Consequently, the time t for each particle is not adjusted
to tobs when it is tallied as escaping flux. This choice permits the
SUPERNU code to print out flux for more time-steps, and should not
affect the comparison between methods.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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