
 Open access Journal Article DOI:10.1007/S10107-010-0408-0

A line search exact penalty method using steering rules — Source link

Richard H. Byrd, Gabriel Lopez-Calva, Jorge Nocedal

Institutions: University of Colorado Boulder, Northwestern University

Published on: 01 Jun 2012 - Mathematical Programming (Springer-Verlag)

Topics: Penalty method, Trust region, Sequential quadratic programming, Nonlinear programming and Line search

Related papers:

 Steering exact penalty methods for nonlinear programming

 Exact penalty functions in nonlinear programming

 An exact penalization viewpoint of constrained optimization

 Benchmarking optimization software with performance profiles

 A fast algorithm for nonlinearly constrained optimization calculations

Share this paper:

View more about this paper here: https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-
3mt1y8pc56

https://typeset.io/
https://www.doi.org/10.1007/S10107-010-0408-0
https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56
https://typeset.io/authors/richard-h-byrd-28ftjlz6kb
https://typeset.io/authors/gabriel-lopez-calva-49vk8f3n74
https://typeset.io/authors/jorge-nocedal-4hc3ogixhx
https://typeset.io/institutions/university-of-colorado-boulder-23y9hx76
https://typeset.io/institutions/northwestern-university-7jein5u2
https://typeset.io/journals/mathematical-programming-27iihk2z
https://typeset.io/topics/penalty-method-196ubz23
https://typeset.io/topics/trust-region-3pnyytv3
https://typeset.io/topics/sequential-quadratic-programming-16htyuh8
https://typeset.io/topics/nonlinear-programming-3ckkp9wl
https://typeset.io/topics/line-search-13ucxuyb
https://typeset.io/papers/steering-exact-penalty-methods-for-nonlinear-programming-1tyvme5ao0
https://typeset.io/papers/exact-penalty-functions-in-nonlinear-programming-2qn0d3yw31
https://typeset.io/papers/an-exact-penalization-viewpoint-of-constrained-optimization-4m5544kfxn
https://typeset.io/papers/benchmarking-optimization-software-with-performance-profiles-3mg0scyjfe
https://typeset.io/papers/a-fast-algorithm-for-nonlinearly-constrained-optimization-21n4svtye6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56
https://twitter.com/intent/tweet?text=A%20line%20search%20exact%20penalty%20method%20using%20steering%20rules&url=https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56
https://typeset.io/papers/a-line-search-exact-penalty-method-using-steering-rules-3mt1y8pc56

A Line Search Exact Penalty Method Using Steering Rules

Richard H. Byrd† Gabriel Lopez-Calva‡ Jorge Nocedal§

January 11, 2009

Abstract

Line search algorithms for nonlinear programming must include safeguards to enjoy
global convergence properties. This paper describes an exact penalization approach
that extends the class of problems that can be solved with line search SQP methods.
In the new algorithm, the penalty parameter is adjusted at every iteration to ensure
sufficient progress in linear feasibility and to promote acceptance of the step. A trust
region is used to assist in the determination of the penalty parameter (but not in the
step computation). It is shown that the algorithm enjoys favorable global convergence
properties. Numerical experiments illustrate the behavior of the algorithm on various
difficult situations.

1 Introduction

Exact penalty methods have proved to be effective techniques for solving difficult nonlinear
programs. They overcome the difficulties posed by inconsistent constraint linearizations
[13] and are successful in solving certain classes of problems in which standard constraint
qualifications are not satisfied [2, 3, 22, 20, 10, 18]. Despite their appeal, it has proved
difficult to design penalty methods that perform well over a wide range of problems; the
main difficulty lies in choosing appropriate values of the penalty parameter. Various ap-
proaches proposed in the literature update the penalty parameter only if convergence to an
undesirable point appears to be taking place; see e.g. [28, 19] and the references therein.
This can result in inefficient behavior and requires heuristics to determine when to change
the penalty parameter.

Recently, a new strategy for updating the penalty parameter has been proposed in the
context of trust region methods [6, 8]. In that approach, the penalty parameter is selected

†Department of Computer Science, University of Colorado, Boulder, CO, 80309. This author was sup-
ported by National Science Foundation grant CMMI 0728190.

‡Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston,
IL, 60208. This author was supported by Department of Energy grant DE-FG02-87ER25047-A004.

§Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,
60208. This author was supported by National National Science Foundation grants CCR-0219438 and CCF-
0514772.

1

at every iteration so that sufficient progress toward feasibility and optimality is guaranteed,
to first order. This requires that an auxiliary subproblem (a linear program) be solved in
certain cases. A particular implementation of this approach has been incorporated into the
active-set method of the knitro [9, 30] package and has proved to be effective in practice.
The technique just mentioned relies on the fact that the optimization algorithm is of the
trust region kind.

In this paper we describe line search penalty methods for nonlinear programming. Unlike
trust region methods, which control the quality and length of the steps, line search methods
can produce very large and unproductive search directions in the neighborhood of points
where standard regularity conditions are not satisfied, and this situation can lead to failures
that would not occur with a trust region method. By relaxing the constraints and ensuring
that steady progress toward the solution is made, the proposed method enjoys the same
type of global convergence properties as trust region methods. The global analysis thus
shows that use of exact penalty methods can have a regularizing effect without a trust
region or an explicit regularization term.

To achieve these goals, the algorithm solves a linear program with an auxiliary trust
region that helps determine the adequacy of the penalty parameter. The algorithm is
nevertheless a pure line search method because the step computation does not depend on
the auxiliary trust region—only the choice of the penalty parameter depends on it. In fact
the the auxiliary trust region radius may be fixed at an arbitrary value without affecting
convergence properties.

The new algorithm incurs an additional cost compared with classical line search meth-
ods. At those iterations in which the penalty parameter must be adjusted, an auxiliary
linear program must be solved and the SQP step must be recomputed one or more times
using larger values of the penalty parameter. This extra cost may, however, not be signif-
icant because warms starts can be employed in the solution of these additional quadratic
programs. Furthermore, the hope is that the new strategy yields savings in iterations and
improves the robustness of the method. An attractive feature of the new algorithm is that
it treats all problems (regular or deficient) equally and does not need to resort to special
iterations when progress is not achieved.

In the next section, we present the new line search SQP algorithm, giving particular
attention to the dynamic strategy for updating the penalty parameter. The convergence
properties of the algorithm are analyzed in Section 3, and numerical experiments are re-
ported in Section 4.

2 A Line Search Penalty Method

Penalty methods attack the general nonlinear programming problem

minimize f(x) (2.1a)

subject to gi(x) ≥ 0, i ∈ I, (2.1b)

hi(x) = 0, i ∈ E (2.1c)

2

by performing an unconstrained minimization of the exact penalty function

φπ(x) = f(x) + π v(x), (2.2)

where v(x) is a measure of constraint violation and π is the penalty parameter. The penalty
approach proposed in this paper is applicable to a variety of line search methods; for con-
creteness we focus our discussion on sequential quadratic programming.

We use the 1-norm of the constraint violation as the measure of infeasibility for the
nonlinear program (2.1). Thus the penalty function is defined by (2.2) with

v(x) =
∑

i∈I

[gi(x)]− +
∑

i∈E

|hi(x)|, (2.3)

where [gi(x)]− = max{−gi(x), 0} is the negative part of gi(x).
It is well known (see for example [21]) that when multipliers exist, stationary points of

the nonlinear problem (2.1) are also stationary points of the exact penalty function (2.2)
for all sufficiently large values of π. Conversely, and more important from the standpoint
of practical penalty methods, any stationary point of the exact penalty function (2.2) that
is feasible for problem (2.1) is a stationary point of (2.1).

Exact penalty methods attempt to find stationary points of the nonlinear program (2.1)
by minimizing the penalty function (2.2), and use the exogenous penalty parameter π as
a control to promote feasibility. Two key questions arise: a) How can we find stationary
points of the nonsmooth exact penalty function φπ, for a fixed value of π? b) How should
we update the penalty parameter π?

The first of these issues is well understood [13]. We can search for stationary points
of the penalty function by taking steps based on a quadratic model of φπ. To define this
model we first construct the following piecewise linear model of the measure of constraint
violation v at an iterate xk:

mk(d) =
∑

i∈I

[∇gi(xk)
T d + gi(xk)]

− +
∑

i∈E

|∇hi(xk)
T d + hi(xk)|. (2.4)

Next, we define a piecewise quadratic model of φπ at xk as

qπ
k (d) = f(xk) + ∇f(xk)

T d + 1
2dT Wkd + π mk(d), (2.5)

where Wk is a symmetric positive definite matrix that approximates the Hessian of the
Lagrangian of the nonlinear program (2.1). We compute the search direction dk by solving
the problem

minimize
d

qπ
k (d). (2.6)

In practice, we recast (2.6) as the smooth quadratic optimization program

minimize
d,r,s,t

f(xk) + ∇f(xk)
T d + 1

2dT Wkd + π
∑

i∈E(ri + si) + π
∑

i∈I ti (2.7a)

subject to ∇hi(xk)
T d + hi(xk) = ri − si, i ∈ E , (2.7b)

∇gi(xk)
T d + gi(xk) ≥ −ti, i ∈ I, (2.7c)

r, s, t ≥ 0. (2.7d)

3

Once the solution dk of problem (2.6) is found, a line search is performed in the direction
dk to ensure that sufficient decrease in the exact penalty function (2.2) is achieved at the
new iterate.

The positive definiteness assumption on Wk is common in line search methods, where
Wk is obtained through a quasi-Newton update or by adding (if necessary) a multiple of
the identity to the Hessian of the Lagrangian of problem (2.1). Note that the quadratic
subproblem (2.7) is always feasible, and we show in this paper that the introduction of the
surplus variables r, s, t, together with the positive definiteness of Wk provide a regularization
effect to the algorithm.

The second challenge in penalty methods concerns the selection of the penalty parame-
ter. If π is too small, the penalty function (2.2) may be unbounded below, and the iterates
will diverge unless the value of π is corrected in time. If π is too large, the efficiency of
the penalty approach may be impaired [8]. The goal of this paper is to propose a dynamic
strategy for updating the penalty parameter in a class of line search methods for nonlinear
programming.

To describe this strategy, we denote the solution of (2.6) by dk(π) to stress its dependence
on the penalty parameter. At iteration k, we first solve (2.6) using the current penalty
parameter πk, to obtain dk(πk). We are content if the linearized constraints are satisfied,
i.e., if mk(dk(πk)) = 0. In this case, the penalty parameter is not changed and we define
the search direction as dk , dk(πk). Thus, no regularization is needed in this case and the
search direction dk coincides with that computed by a classical SQP method (in which r, s, t
are always zero).

On the other hand, if mk(dk(πk)) > 0, we assess the adequacy of the current penalty
parameter by computing the lowest possible violation of the linearized constraints in a
neighborhood of the current iterate. This is done by solving the problem

minimize
d

mk(d), subject to ‖d‖∞ ≤ ∆k, (2.8)

where ∆k > 0 is given. This problem is equivalent to the linear program

minimize
d,r,s,t

∑

i∈E

(ri + si) +
∑

i∈I

ti (2.9a)

subject to ∇hi(xk)
T d + hi(xk) = ri − si, i ∈ E , (2.9b)

∇gi(xk)
T d + gi(xk) ≥ −ti, i ∈ I, (2.9c)

‖d‖∞ ≤ ∆k, (2.9d)

r, s, t ≥ 0. (2.9e)

We denote the solution of this problem by dLP

k . A new penalty parameter π+ ≥ πk is
now determined such that the solution dk(π+) of problem (2.6) yields an improvement in
linearized feasibility that is commensurate with that obtained by the step dLP

k , as measured
by the model mk. This strategy is specified more precisely in Algorithm I, which is the new
line search penalty method.

4

Algorithm I: Line Search Penalty SQP Method

Initial data: x1, π1 > 0, ρ > 0, ǫ1 ∈ (0, 1], ǫ2 ∈ (0, ǫ1), τ ∈ (0, 1), η ∈ (0, 1), and
0 < ∆min ≤ ∆1 ≤ ∆max.

For k = 1, 2, ...

1. Find a search direction dk(πk) by solving the subproblem (2.6) with π = πk. If
dk(πk) = 0 and v(xk) = 0, STOP: xk is a KKT point of problem (2.1).

2. If mk(dk(πk)) = 0, set π+ = πk and go to Step 6.

3. Solve the linear programming subproblem (2.8) to get dLP

k . If

0 < mk(0) = mk(d
LP

k), (2.10)

STOP: xk is an infeasible stationary point of the penalty function (2.2).

4. Update the penalty parameter:

(a) If mk(d
LP

k) = 0, find π+ ≥ πk + ρ and a corresponding vector dk(π+) that
solves (2.6), such that

mk(dk(π+)) = 0. (2.11)

(b) Else set π+ = πk. If the following inequality does not hold

mk(0) − mk(dk(π+)) ≥ ǫ1[mk(0) − mk(d
LP

k)], (2.12)

then find π+ ≥ πk + ρ and a corresponding vector dk(π+), such that (2.12)
is satisfied.

5. If the following inequality does not hold

q
π+

k (0) − q
π+

k (dk(π+)) ≥ ǫ2π+[mk(0) − mk(d
LP

k)], (2.13)

then increase π+ (by at least ρ) as necessary, until the solution dk(π+) of (2.6)
satisfies (2.13).

6. Set dk = dk(π+), and let 0 < αk ≤ 1 be the first member of the sequence
{1, τ, τ2, . . .} such that

φπ+
(xk) − φπ+

(xk + αkdk) ≥ ηαk[q
π+

k (0) − q
π+

k (dk)]. (2.14)

7. Set ∆k+1 ∈ [∆min,∆max].

8. Let πk+1 = π+ and xk+1 = xk + αkdk.

5

It is worth emphasizing that Algorithm I is a line search method. The global convergence
results established in the next section are based on the properties of line search methods
together with the regularization effects of the penalty approach. The trust region constraint
in (2.8) plays an indirect role, since it only influences the choice of the penalty parameter.

Note that since the Hessian Wk in the piecewise quadratic model (2.5) is positive definite,
qπ
k is strictly convex. Therefore the solution of problem (2.6), which we denote by dk(π), is

unique. The model m(d) is convex, but not strictly convex.
The overall design of Algorithm I is based on the following three updating guidelines,

which we call the steering rules and are an adaptation of the strategy given in [8] to the
line search setting:

1. If it is possible to satisfy the linearized constraints in a neighborhood of the current
iterate, we compute such a step. This is achieved by enforcing condition (2.11). In
other words, if a classical SQP step exists and is not too long, we would like to use it.

2. If the linearized constraints are locally infeasible, we will be content with taking a step
that achieves at least a fraction of the best possible local feasibility improvement. We
impose this requirement through condition (2.12). Note that (2.12) could be satisfied
with the current penalty parameter πk, in which case no extra quadratic subproblems
(2.6) need to be solved.

3. Not only feasibility but also improvement in the penalty function has to be commen-
surate with the improvement in feasibility obtained with dLP

k . This is guaranteed by
condition (2.13). We note that it is not necessary to re-solve problem (2.6) when
condition (2.13) is violated because an appropriate value of the penalty parameter is
readily computed. First, if mk(0) − mk(d

LP

k) = 0 then (2.13) is satisfied for any π
because dk(π) is the minimizer of qπ

k . Otherwise, mk(0) > mk(d
LP

k), which implies
that mk(0) > 0. Let π+ be the value of the penalty at the beginning of Step 5 of
Algorithm I, let d+ = dk(π+) and define

π̂ =
1
2dT

+Wkd+ + ∇f(xk)
T d+

(1 − ǫ2)mk(0) − mk(d+) + ǫ2mk(d
LP

k)
+ ρ. (2.15)

(Note that (2.11) or (2.12), together with the relations 0 < ǫ2 < ǫ1 ≤ 1, imply that
the denominator is positive.) Then, by writing d̂ = d(π̂) we have from (2.15) that

ǫ2π̂[mk(0) − mk(d
LP

k)] ≤ −∇f(xk)
T d+ − 1

2dT
+Wkd+ + π̂[mk(0) − mk(d+)]

= qπ̂
k (0) − qπ̂

k (d+)

≤ qπ̂
k (0) − qπ̂

k (d̂),

where the last inequality follows from the fact that d̂ is the minimizer of qk
π̂. Therefore

condition (2.13) is satisfied if the penalty parameter is given by (2.15).

We show in Lemma 3.5-(b) that if the penalty parameter is increased in Step 5 to satisfy
(2.13), it will still satisfy conditions (2.11) and (2.12).

6

When the penalty parameter is updated in Algorithm I, the main cost is in the repeated
solution of the quadratic program (2.6) for different values of π in Step 4(b); the linear
program (2.8) is solved only once. We expect, however, that warm starts can greatly
accelerate the solution of these quadratic programs and that the savings in total iterations
will overcome any extra cost incurred in some iterations.

The choice of penalty parameter π+ in Algorithm I ensures that dk is a descent direction
for the penalty function (see Lemma 3.5 (c)). Note that in the right-hand side of (2.14) we
use the decrease in the piecewise quadratic model q

π+

k , instead of the directional derivative
of the penalty function. This accounts for possible kinks in the merit function near the
current iterate that could be overlooked by a standard Armijo line search and result in
jamming.

The constraint ‖d‖∞ ≤ ∆k in problem (2.8) is not a trust region in the usual sense, and
the value of ∆k is not critical to the performance of the algorithm. The function mk(d) is
always bounded below and the radius ∆k is used only to ensure that ||dLP

k || is of reasonable
size in case there is an unbounded ray of minimizers of mk(d). In fact, the radius ∆k could
be kept constant and the convergence properties of Algorithm I would not be affected. In
practice, however, it may be advantageous to choose ∆k based on local information of the
problem, as discussed in Section 4.

3 Convergence analysis

In this section we study the global convergence properties of Algorithm I. We make the
following assumptions about the sequence of iterates {xk} and the matrices Wk generated
by the algorithm.

Assumptions I.

A1. The functions f, gi, i ∈ I, and hi, i ∈ E , are twice differentiable with bounded deriva-
tives over a bounded convex set that contains the sequence {xk}.

A2. The matrices Wk are uniformly positive definite and bounded above, i.e., there exist
values 0 < µmin < µmax such that

µmin‖p‖
2 ≤ pT Wkp ≤ µmax‖p‖

2, (3.1)

for an p ∈ R
n.

We denote the directional derivative of a function f at x in the direction p by Df(x; p).
A point x is said to be a stationary point of the penalty function if Dφπ(x; p) ≥ 0 for all
directions p. A point x̂ is called an infeasible stationary point for problem (2.1) if v(x̂) > 0
and Dv(x̂; p) ≥ 0 for all p. We say that problem (2.1) is locally infeasible if there is an
infeasible stationary point for it.

The first lemma provides useful relationships between the directional derivatives of the
functions φπ and v and their local models, qπ and m.

7

Lemma 3.1 Given a point xk, the directional derivatives of v and φπ along a vector p
satisfy

Dv(xk; p) = Dmk(0; p) (3.2)

and
Dφπ(xk; p) = Dqπ

k (0; p). (3.3)

Proof. Given xk and a vector d ∈ R
n, let us define the sets

Gk
−(d) = {i ∈ I : ∇gi(xk)

T d + gi(xk) < 0}, (3.4)

Gk
0 (d) = {i ∈ I : ∇gi(xk)

T d + gi(xk) = 0},

Gk
+(d) = {i ∈ I : ∇gi(xk)

T d + gi(xk) > 0},

which determine a partition of I. Similarly, we can define a partition Hk
−(d),Hk

0(d) and
Hk

+(d) of E induced by the value of ∇hi(xk)
T d + hi(xk).

The directional derivative of mk(·) at d in the direction p is given by

Dmk(d; p) =
∑

i∈Gk

0
(d)

[∇gi(xk)
T p]− −

∑

i∈Gk
−(d)

∇gi(xk)
T p (3.5)

+
∑

i∈Hk
+

(d)

∇hi(xk)
T p +

∑

i∈Hk

0
(d)

| ∇hi(xk)
T p | −

∑

i∈Hk
−(d)

∇hi(xk)
T p.

On the other hand, we have that

Dv(xk; p) =
∑

i∈Gk

0
(0)

[∇gi(xk)
T p]− −

∑

i∈Gk
−(0)

∇gi(xk)
T p

+
∑

i∈Hk
+

(0)

∇hi(xk)
T p +

∑

i∈Hk

0
(0)

| ∇hi(xk)
T p | −

∑

i∈Hk
−(0)

∇hi(xk)
T p.

The equality (3.2) follows by comparing this expression with (3.5).
Given a direction p, we have that Dφπ(xk; p) = ∇f(xk)

T p + Dv(xk; p). Also, for any
d we have that Dqπ

k (d; p) = (∇f(xk) + Wkd)T p + Dmk(d; p). By evaluating Dqπ
k (d; p) at

d = 0 and using (3.2) we obtain (3.3). �

The next result is well known (see e.g. [4, 21]). For a given point x∗, we define the
model (2.5) at x∗ by qπ

∗ , and denote its solution by d∗(π). Similarly, m∗ denotes the model
(2.4) at x∗.

Theorem 3.2 The following three statements are true:
(a) x∗ is a stationary point of the penalty function φπ(x) if and only if d∗(π) = 0 solves

problem (2.6).
(b) If x∗ is a stationary point of φπ(x) and v(x∗) = 0, then x∗ is a KKT point of (2.1).
(c) x∗ is a stationary point of the infeasibility measure v(x) if and only if, for any ∆ > 0,

any solution dLP of the linear feasibility problem (2.8) satisfies

m∗(d
LP) = m∗(0). (3.6)

8

Proof. (a) By definition, d∗(π) = 0 is the minimizer of qπ
∗ (d) if and only if Dqπ

∗ (0; p) ≥ 0
for any direction p. The result follows from (3.3). (b) See [26, Theorem 17.4].

(c) Given ∆ > 0, let dLP be a solution of (2.8). Since d = 0 obviously satisfies ‖d‖∞ ≤ ∆,
we have that m∗(d

LP) ≤ m∗(0). Also, from (3.2) we have that x∗ is stationary for v(x) if
and only if 0 is stationary for m∗(d), which holds (by convexity of m∗) if and only if 0 is
an unconstrained global minimizer of m∗(d). Therefore, m∗(0) ≤ m∗(d) for any d, and in
particular for d = dLP. We conclude that (3.6) holds. �

This theorem justifies the stopping tests in Algorithm I. If Algorithm I stops at Step 1,
Theorem 3.2 (a) and (b) imply that the current iterate xk is a KKT point of the nonlinear
program (2.1). If the algorithm stops at Step 3, then Theorem 3.2 (c) and v(xk) > 0 imply
that xk is an infeasible stationary point. If neither stop test is satisfied, we need to show
that that Algorithm I will generate a new iterate xk+1 and that it is always possible to meet
the requirements in Steps 4 and 6. This is done in Lemma 3.5; first we need to establish
two auxiliary results.

Lemma 3.3 Suppose that Assumptions I hold. At any given iterate xk, and for all π > 0,
the minimizers dk(π) of qπ

k (d) are contained in a compact ball

Bk = {d : ‖d‖ ≤ rk} with rk = κ1 + κ2‖d̄k‖, (3.7)

for some global constants κ1 and κ2 and where d̄k denotes the minimum norm minimizer
of mk(d).

Proof. Let d̄k be the minimum norm minimizer of mk(d); it is well defined because mk(d)
is a piece-wise linear convex function that is bounded below. If ‖d‖ is large enough that
µmin‖d‖ ≥ 8‖∇f(xk)‖ and µmin‖d‖

2 ≥ 2µmax‖d̄‖
2, then by (3.1)

−∇f(xk)
T d + ∇f(xk)

T d̄ + 1
2 d̄T Wkd̄ ≤ ‖∇fk‖‖d‖ + ‖∇fk‖‖d̄‖ + µmax

2 ‖d̄‖2

≤ µmin

8 ‖d‖2 + µmin

8

[

µmin

2µmax

]

1
2
‖d‖2 + µmin

4 ‖d‖2

< µmin

2 ‖d‖2

≤ 1
2dT Wd,

and therefore

f(xk) + ∇f(xk)
T d + 1

2dT Wkd > f(xk) + ∇f(xk)
T d̄ + 1

2 d̄T Wkd̄.

Thus, for all
‖d‖ > max{8‖∇f(xk)‖/µmin,

√

2µmax/µmin‖d̄‖} (3.8)

and all π ≥ 0 we have

qπ
k (d) = f(xk) + ∇f(xk)

T d + 1
2dT Wkd + πmk(d)

> f(xk) + ∇f(xk)
T d̄ + 1

2 d̄T Wkd̄ + πmk(d̄) = qπ
k (d̄),

9

since d̄ is a minimizer of mk. Therefore, no minimizer dk(π) can be larger in norm than the
right hand side of (3.8). To establish (3.7), we let κ̃1 be an upper bound for ‖∇fk‖, define
κ1 = 8κ̃1/µmin and κ2 =

√

2µmax/µmin. �

The following result shows that by choosing π sufficiently large, the direction d(π) can
attain any achievable level of linear feasibility.

Lemma 3.4 At any iterate xk, for all all π sufficiently large the minimizer dk(π) of qπ
k ,

also minimizes mk(d).

Proof. It is clear from (2.4) that the piecewise linear function mk(d) may be expressed as

mk(d) = max
j∈M

{aT
j d + βj},

where M is a finite index set, the vectors aj are in R
n and the βj are scalars. It follows

(see e.g. [28, p.66]) that for any d ∈ R
n the subdifferential ∂mk(d) is the convex hull of the

active support functions at d, i.e.

∂mk(d) = conv{aj |j ∈ M and aT
j d + βj = mk(d)}.

Since a vector d minimizes the convex function mk if and only if ∂mk(d) contains 0, then
if d is not a minimizer of mk it follows that ∂mk(d) is a closed convex set not containing 0,
which implies that

σ(d) , min{‖a‖|a ∈ ∂mk(d)} > 0.

Now since ∂mk(d) is defined by the active set {j ∈ M|aT
j d + βj = mk(d)} and only a finite

number of possible sets ∂mk(d) exist as d ranges over R
n, the function σ(d) takes on only

a finite set of values. Therefore

σk , min
d∈Rn

{σ(d)|0 /∈ ∂mk(d)} > 0. (3.9)

Now by Lemma 3.3, there is a compact ball Bk containing the minimizers of qπ
k , for

all π. Therefore, for all such minimizers dk(π) we have ‖∇f(xk) + Wkdk(π)‖ ≤ βk, for
some constant βk. Consider some π̃ > βk/σk and the minimizer dk(π̃) of qπ̃

k . Any vector
g ∈ ∂qπ̃

k (dk(π̃)) may be expressed as

g = ∇f(xk) + Wkdk(π̃) + π̃a for some a ∈ ∂mk(dk(π̃)).

If dk(π̃) does not minimize mk, it follows from (3.9) that

‖g‖ ≥ π̃‖a‖ − ‖∇f(xk) + Wkdk(π)‖ ≥ π̃σk − βk > 0.

This means 0 /∈ ∂qπ̃
k contradicting the fact that dk(π̃) is a minimizer of qπ̃

k . Therefore dk(π̃)
must minimize mk. �

For the remainder of the analysis, it is useful to define the model

qf
k (d) = fk + ∇fT

k d + 1
2dT Wkd, (3.10)

so that
qπk

k (d) = qf
k (d) + πkmk(d). (3.11)

We now prove that Algorithm I is well defined.

10

Lemma 3.5 Suppose that xk is neither a KKT point of nonlinear program (2.1) nor a
stationary point of the infeasibility measure v(x). Then,

a) If Algorithm I executes Step 4, it is always possible to find a value π+ and a corre-
sponding vector dk(π+) such that condition (2.11) holds if mk(d

LP) = 0, or condition (2.12)
holds if mk(d

LP) > 0.
b) If Algorithm I executes Step 5, it is always possible to find a value π+ and a corre-

sponding vector dk(π+) such that condition (2.13) holds.
c) At Step 6, dk is a descent direction for φπ+

(x) at xk. Therefore, there exists αk such
that condition (2.14) is satisfied.

Proof. (a) By Lemma 3.4, for π+ sufficient large dk(π+) is a minimizer of mk(d) and hence
mk(dk(π+)) ≤ mk(d

LP

k); this implies (2.11). Moreover, since ǫ1 ≤ 1, we have that

mk(0) − mk(dk(π+)) ≥ mk(0) − mk(d
LP

k) ≥ ǫ1[mk(0) − mk(d
LP

k)],

so that (2.12) is satisfied.
b) We have already shown in Section 2 that (2.13) is satisfied if the penalty parameter

is chosen by (2.15). We now show that if the penalty parameter is increased in Step 5, this
new value of π still satisfies (2.11) and (2.12).

Let π2 > π1. Then by (3.11) and the fact that dk(πk) is the minimizer of qk
π, we have

qf
k (dk(π1)) + π2mk(dk(π1)) ≥ qf

k (dk(π2)) + π2mk(dk(π2)) (3.12)

qf
k (dk(π1)) + π1mk(dk(π1)) ≤ qf

k (dk(π2)) + π1mk(dk(π2)). (3.13)

Hence
(π2 − π1)mk(dk(π1)) ≥ (π2 − π1)mk(dk(π2)),

which implies that mk(dk(π1)) ≥ mk(dk(π2)). We conclude that mk(dk(π)) cannot increase
as π is increased.

(c) If xk is neither stationary for φπk
nor for v(x), then at Step 6 we must have dk 6=

0. This is a consequence of the logic of Algorithm I and of Theorem 3.2, parts (a) and
(c). Recall that dk is defined to be the minimizer of q

π+

k and hence q
π+

k (dk) ≤ q
π+

k (0).
Furthermore, since q

π+

k (d) is strictly convex and dk 6= 0, we have that q
π+

k (dk) < q
π+

k (0) and
thus dk is a descent direction for q

π+

k at 0. By (3.3), we have

Dφπ+
(xk; dk) = Dq

π+

k (0; dk) < 0,

and therefore dk is also a descent direction for φπ+
(x) at xk. Since the constant η is chosen

in (0,1), it follows that φπ+
(xk +αdk) < φπ+

(xk)+αηDφπ+
(xk; dk) for all sufficiently small

α > 0, or

φπ+
(xk) − φπ+

(xk + αdk) > −αηDφπ+
(xk; dk).

From (3.3) and the convexity of qk
π+

(d), we have that

−αηDφπ+
(xk; dk) = −αηDqk

π+
(0; dk) ≥ αη[q

π+

k (0) − q
π+

k (dk)].

11

We conclude that there always exists a sufficiently small steplength αk that satisfies condi-
tion (2.14). �

We now establish the first convergence result. It gives conditions under which Algo-
rithm I identifies stationary points of the penalty function.

Theorem 3.6 Suppose that Algorithm I generates an infinite sequence of iterates {xk} and
that Assumptions I hold. Suppose also that {πk} is bounded, so that πk = π̄ for all k large.
Then any accumulation point x∗ of {xk} is a stationary point of the penalty function φπ̄(x).

Proof. Note that, whenever π is increased in Algorithm I, it is increased by at least ρ > 0.
Therefore, if {πk} is bounded, there is a value π̄ such that πk = π̄ for all sufficiently large
k.

Let x∗ be a limit point of {xk}, which exists because Assumption A1 states that {xk}
is bounded. Let K be an infinite subset of indices such that {xk}k∈K → x∗. The sequence
of matrices {Wk} is also bounded, by Assumption A2. We restrict K if necessary so that
{Wk}k∈K → W∗, where W∗ is a limit point of {Wk}. Then, from the continuity of the func-
tions f, gi, hi and their gradients, and from the definition (2.5), we have that the sequence
of models qπ̄

k , k ∈ K converges (pointwise) to a function qπ̄
∗ .

Each of the functions qπ̄
k , as well as the limiting function qπ̄

∗ , are strictly convex and
have a unique minimizer. We want to prove that the minimizer of qπ̄

∗ (d) is d∗ = 0, for then
Theorem 3.2 (a) implies that x∗ is a stationary point of φπ̄.

We proceed by contradiction. Assume that d∗ 6= 0, or equivalently, that qπ̄
∗ (0)−qπ̄

∗ (d∗) >
0. From the pointwise convergence of the functions qπ̄

k , we know that there exists ǫ > 0
such that

qπ̄
k (0) − qπ̄

k (d∗) → qπ̄
∗ (0) − qπ̄

∗ (d∗) = 2ǫ > 0.

Therefore, there is a number k0 such that for all k ≥ k0, with k ∈ K, we have that πk = π̄
and

qπ̄
k (0) − qπ̄

k (dk) ≥ qπ̄
k (0) − qπ̄

k (d∗) ≥ ǫ. (3.14)

It is not difficult to show (see e.g. Lemma 3.4 in [6]) that for any α ∈ [0, 1],

|φπ̄(xk + αdk) − qπ̄
k (αdk)| ≤ c1‖αdk‖

2, (3.15)

for some positive constant c1. Recalling that qπ̄
k is a convex function, noting that φπ̄(xk) =

qπ̄
k (0), using (3.14) and (3.15), and assuming that αk ≤ (1 − η)ǫ/(c1‖dk‖

2), we obtain

φπ̄(xk) − φπ̄(xk + αkdk) ≥ [qπ̄
k (0) − qπ̄

k (αkdk)] − φπ̄(xk + αkdk) + qπ̄
k (αkdk)

≥ αk[q
π̄
k (0) − qπ̄

k (dk)] + c1α
2
k‖dk‖

2

= ηαk[q
π̄
k (0) − qπ̄

k (dk)] + (1 − η)αk[q
π̄
k (0) − qπ̄

k (dk)] − c1α
2
k‖dk‖

2

≥ ηαk[q
π̄
k (0) − qπ̄

k (dk)] + (1 − η)αkǫ − c1α
2
k‖dk‖

2

≥ ηαk[q
π̄
k (0) − qπ̄

k (dk)].

12

Thus, for such αk the sufficient decrease condition (2.14) is satisfied, which implies that
Step 6 of Algorithm I will always select αk satisfying

αk ≥ min{τ(1 − η)ǫ/(c1‖dk‖
2), 1}. (3.16)

Now we argue that optimality of dk implies it satisfies the bound

‖dk‖ ≤
2‖∇fk‖

µmin

+

√

2π̄mk(0)

µmin

. (3.17)

This is clear since if (3.17) is violated,

qπ̄
k (d) = f(xk) + ∇fT

k dk +
1

2
dT Wkd + π̄mk(d) (3.18)

≥ f(xk) − ‖∇fk‖‖dk‖ +
1

2
µmin‖d‖

2 (3.19)

> f(xk) + π̄mk(0) (3.20)

= qπ̄
k (0), (3.21)

which would mean dk does not minimize qπ̄
k .

Together with (3.16), the bound (3.17) implies there is a constant c2 > 0 such that
αk > c2 for all k. Now, using this bound on αk together with (3.14), it follows that Step 6
of Algorithm I guarantees that

φπ̄(xk) − φπ̄(xk + αkdk) ≥ ηαk[q
π̄
k (0) − qπ̄

k (dk)]

≥ ηc2ǫ. (3.22)

This relation implies that φπ̄(xk) → ∞, which contradicts Assumption A1. This implies
that the hypothesis qπ̄

∗ (0) − qπ̄
∗ (d∗) > 0 is false, and therefore that x∗ is a stationary point

of φπ̄. �

Now that we have established that, when the penalty parameter is bounded the algo-
rithm will locate a stationary point of φ, the next result shows that such s stationary point
is either a KKT point of the nonlinear program (2.1) or a stationary point of the infeasibility
measure.

Theorem 3.7 Suppose that Algorithm I generates an infinite sequence of iterates {xk},
that Assumptions I hold, and that {πk} is bounded. Let x∗ be any accumulation point of
{xk}. Then either: (a) v(x∗) = 0 and x∗ is a KKT point of (2.1); or (b) v(x∗) > 0 and x∗

is a stationary point of v(x).

Proof. Let x∗ be a limit point of the sequence {xk}. Since πk is bounded there is a scalar
π̄ such that πk = π̄ for all large k. From Theorem 3.6 we have that x∗ is a stationary point
of φπ̄(x).

(a) If v(x∗) = 0, then by Theorem 3.2 (b), x∗ is a KKT point of problem (2.1).
(b) In the case when v(x∗) > 0 we want to show that (3.6) holds for some ∆ > 0. Let

K be an infinite subset of indices for which xk → x∗ for k ∈ K. Let W∗ be a limiting

13

matrix of the sequence {Wk}k∈K, and let qπ̄
∗ (d) be the corresponding piecewise quadratic

model. Restricting K further, if necessary, we obtain pointwise convergence of the models,
i.e., qπ̄

k (d) → qπ̄
∗ (d) for k ∈ K. As before, let dk denote the minimizer of qπ̄

k (d).
Since x∗ is a stationary point of φπ̄(x), by Theorem 3.2 (a) we have that the minimizer

of qπ̄
∗ (d) is d∗ = 0. From the pointwise convergence of the models, it follows that dk → 0,

which in turn implies that
qπ̄
k (0) − qπ̄

k (dk) → 0. (3.23)

This limit together with (2.13) imply that mk(0) − mk(d
LP

k) → 0 for k ∈ K.
We also have pointwise convergence to a limiting piecewise linear model, i.e., mk(d) →

m∗(d), and hence

0 = lim
k→∞,k∈K

[mk(0) − mk(d
LP

k)]

= lim
k→∞,k∈K

[mk(0) − min ‖d‖∞≤∆k
mk(d)]

≥ lim
k→∞,k∈K

[mk(0) − min ‖d‖∞≤∆min
mk(d)],

where the last inequality follows from the fact that Algorithm I requires that ∆k ≥ ∆min > 0.
Therefore, 0 < v(x∗) = m∗(0) = m∗(d

LP(∆min)) and by Theorem 3.2 (c) we conclude that
x∗ is a stationary point of infeasibility for v(x). �

Now we consider the behavior of the algorithm when the penalty parameter increases
without bound. The first result focuses on the development of the penalty parameter in a
vicinity of an infeasible stationary point.

Lemma 3.8 Suppose that Algorithm I generates a sequence {xk} that satisfies Assump-
tions I. Let x∗ be a cluster point of this sequence such that v(x∗) > 0, and suppose that
m∗(0) − m∗(d

LP

k) > 0. Then, along any subsequence {xk}k∈K that converges to x∗ the
penalty parameter is updated only a finite number of times.

Proof. We will show that for any subsequence that converges to such a point x∗, Step 4(a)
cannot be executed infinitely often, and that for xk sufficiently close to x∗, (2.12) and (2.13)
are satisfied for sufficiently large π. This will prove the result because the penalty parameter
is only increased in Steps 4 and 5 of Algorithm I.

As a preliminary observation note that, since we assume

m∗(0) − m∗(d
LP

k) > 0, (3.24)

there exist constants r > 0 and ζ > 0 such that

mk(0) − mk(d
LP

k) > ζ, for all xk ∈ B∗ , {x : ‖xk − x∗‖ < r}. (3.25)

Now we study the situations in which the penalty parameter is increased in Algorithm I.
This increase can happen in Steps 4(a), 4(b) or 5 of Algorithm I, and we study each case
separately.

14

Case (i) Consider an iterate xk where Step 4(a) is executed. By (2.13) and (3.25), for any
such k

q
π+

k (0) − q
π+

k (dk(π+)) ≥ ǫ2π+ζ. (3.26)

Now, by the Lipschitz continuity assumptions in A1, one can show [7, Lemma 3.4] that
there is a constant c1 such that for any xk and any π

|φπ(xk + αdk) − qπ
k (αdk)| ≤ c1(1 + π)‖αdk‖

2. (3.27)

Let us consider the sufficient decrease condition (2.14). From the equality φπ+
(xk) = q

π+

k (0),
the convexity of q

π+

k , (3.27) and (3.26), we have, for xk ∈ B∗,

φπ+
(xk) − φπ+

(xk + αdk) − ηα[q
π+

k (0) − q
π+

k (dk)]

= [q
π+

k (0) − q
π+

k (αdk)] − [φπ+
(xk + αdk) − q

π+

k (αdk)]

−ηα[q
π+

k (0) − q
π+

k (dk)]

≥ α[q
π+

k (0) − q
π+

k (dk)] − c1(1 + π+)‖αdk‖
2 − ηα[q

π+

k (0) − q
π+

k (dk)]

≥ α(1 − η)[q
π+

k (0) − q
π+

k (dk)] − c1(1 + π+)‖αdk‖
2

≥ α(1 − η)ǫ2π+ζ − c1(1 + π+)α2‖dk‖
2.

The right hand side is nonnegative if α ≤ (1 − η)ǫ2π+ζ/c1(1 + π+)‖dk‖
2. Therefore Step 6

of Algorithm I will always choose

αk ≥ min{1, τ(1 − η)ǫ2π+ζ/c1(1 + π+)‖dk‖
2}, (3.28)

where τ is the contraction factor used in Step 6 of the algorithm.
Since when Step 4(a) is executed mk(d

LP

k) = 0, we have that dLP

k is an unconstrained
minimizer of mk and is thus no smaller in norm than the minimum norm minimizer d̄k

mentioned in Lemma 3.3. By applying Lemma 3.3, we obtain the bound ‖dk‖ ≤ κ1 +
κ2‖d

LP

k ‖ ≤ κ1 + κ2∆max, since ‖dLP

k ‖ ≤ ∆max; see Step 7. Using this bound in (3.28) gives

αk ≥ min

{

1,
(1 − η)τǫ2π+ζ

c1(1 + π+)(κ1 + κ2∆max)2

}

≥ c2,

for some constant c2 > 0. This bound, together with (2.14) and (3.26) implies that there is
a constant c3 > 0 such that for any xk ∈ B∗,

φπk+1
(xk+1) ≤ φπk+1

(xk) − c3πk+1. (3.29)

Now, consider the scaled penalty function

1
πφπ(x) = 1

πf(x) + v(x),

and note that since {fk} is assumed bounded below and the algorithm is unaffected by
adding a constant to f , we may assume without loss of generality that f(xk) ≥ 0 for all k.
This assumption and the fact that {πk} is nondecreasing, imply that

1
πk+1

f(xk) + v(xk) ≤
1
πk

f(xk) + v(xk). (3.30)

15

By the sufficient decrease condition (2.14) we have that, for all k,

1
πk+1

φ(xk+1) ≤
1

πk+1
φ(xk).

By combining this expression with (3.30) we have

1
πk+1

φ(xk+1) ≤
1
πk

φ(xk),

which shows that the sequence { 1
πk

f(xk)+v(xk)} is monotone decreasing for all k. Consider
now an iterate xk ∈ B∗ at which Step 4(a) is executed. By combining (3.30) with (3.29) we
obtain, for such xk,

1
πk+1

f(xk+1) + v(xk+1) ≤
1
πk

f(xk) + v(xk) − c3.

This contradicts Assumption A1 that implies that the sequence { 1
πk

f(xk)+v(xk)} is bounded
below. We conclude that Step 4(a) can only be executed finitely often for xk ∈ B∗.

Case (ii) Next, consider Step 4(b). First note that, since Wk is positive definite, the

lowest value of the quadratic model qf
k (d) (defined in (3.10)) is attained at the Newton

step, −W−1
k ∇fk. Thus by (3.1) we have

qf
k (d) ≥ fk −∇fT

k W−1
k ∇fk + 1

2∇fT
k W−1

k WkW
−1
k ∇fk

= fk − 1
2∇fT

k W−1
k ∇fk

≥ fk − 1
2‖∇fk‖

2/µmin. (3.31)

Also, since the linear program (2.8) is constrained by a trust region whose radius cannot
exceed ∆max, we have from (3.10)

qf
k (dLP

k) ≤ fk + ‖∇fk‖∆max + 1
2µmax∆

2
max

. (3.32)

By combining (3.31) and (3.32) and recalling that ‖∇fk‖ is bounded (by Assumption A1),
we deduce that there is constant ν such that, for all xk

qf
k (dLP) − qf

k (dk(πk)) ≤ ν. (3.33)

Now since dk(πk) minimizes qπk
, by (3.10) we have that

qf
k (dk(πk)) + πkmk(dk(πk)) ≤ qf

k (dLP) + πkmk(d
LP).

Combining this relation with (3.33) gives

πk[mk(0) − mk(dk(πk))] ≥ πk[mk(0) − mk(d
LP

k)] − qf
k (dLP) + qf

k (dk(πk))

≥ πk[mk(0) − mk(d
LP

k)] − ν

≥ πk[mk(0) − mk(d
LP

k)](1 − ν
ζπk

),

because (3.25) implies that −ν ≥ −ν[mk(0)−mk(d
LP

k)]/ζ. If the penalty parameter is large
enough that

πk ≥
ν

ζ(1 − ǫ1)
(3.34)

16

then
mk(0) − mk(dk(πk)) ≥ ǫ1[mk(0) − mk(d

LP)], (3.35)

and condition (2.12) will be satisfied. Therefore, πk cannot be increased infinitely often in
Step 4(b), for xk ∈ B∗.

Case (iii) Finally, consider Step 5 of Algorithm I, which enforces condition (2.13). Suppose
that π+ is chosen so that

π+ ≥
ν

ζ(1 − ǫ1)(1 − ǫ2/ǫ1)
(3.36)

(recall that ǫ2 < ǫ1). If we let π̃ = π+(1 − ǫ2/ǫ1) then the fact that d(π̃) is a minimizer of
qπ̃ implies that

qf
k (0) − qf

k (dk(π̃)) + π+(1 − ǫ2/ǫ1)(mk(0) − mk(dk(π̃)) ≥ 0,

and therefore

qf
k (0) − qf

k (d(π̃)) + π+[mk(0) − mk(dk(π̃))] ≥ ǫ2
ǫ1

π+[mk(0) − mk(dk(π̃))].

Thus,
q
π+

k (0) − q
π+

k (dk(π̃)) ≥ ǫ2π+(mk(0) − mk(d
LP

k)),

since π̃ satisfies (3.34) and thus (2.12). The fact that π+ satisfies (2.13) follows from noting
that −q

π+

k (dk(π̃)) ≤ −q
π+

k (dk(π+)) since d(π+) is a minimizer of qπ+ .
Therefore since any π+ satisfying (3.36) satisfies (2.12) and (2.13) and since π increases

by at least ρ, only a finite number of increases can occur for xk ∈ B∗. �

We now consider the behavior of the algorithm in the vicinity of a point that satisfies
the well-known Mangasarian-Fromovitz constraint qualification (MFCQ) [25].

Lemma 3.9 Let x∗ be a point that satisfies MFCQ and suppose that Assumptions I hold.
Then, there is a neighborhood N of x∗ and a constant rF such that, for any iterate xk ∈ N ,
there is a vector dF(xk) with ‖dF(xk)‖ ≤ rF such that mk(dF(xk)) = 0. In addition there are
constants r and β such that, for xk ∈ N , the minimizer dk(π) of qk

π satisfies

‖dk‖ ≤ r (3.37)

and such that
qf
k (d1) − qf

k (d2) ≤ β‖d1 − d2‖ (3.38)

for any vectors d1, d2 such that ‖d1‖ ≤ r, ‖d2‖ ≤ r.

Proof. Let h(x) denote the vector with components hi(x), i ∈ E , g(x) the vector with
components gi(x), i ∈ I and let ∇h(x)T and ∇g(x)T denote their Jacobians. Since MFCQ
holds at x∗, ∇h(x∗) has full rank and there is a direction ‖dM‖ < 1 such that

∇h(x∗)
T dM = −h(x∗) and ∇g(x∗)

T dM + g(x∗) > 0. (3.39)

17

Since ∇h(x∗) has full rank, for any x sufficiently near x∗ the matrix ∇h(x)T∇h(x) is
nonsingular and the vector

dF(x) = dM −∇h(x)(∇h(x)T∇h(x))−1[h(x) + ∇h(x)T dM] (3.40)

satisfies
∇h(x)T dF(x) = −h(x). (3.41)

By continuity of ∇h(x), the vector dF(x) is continuous, and the first condition in (3.39)
implies that the term in square brackets in (3.40) is small in norm near x∗. Therefore, from
the second condition in (3.39) we have that ∇g(x)T dF(x) + g(x) > 0 for x near x∗. Thus,
for xk in some neighborhood N of x∗, we have that mk(dF(xk)) = 0. Continuity of dF(x)
also implies that there is a constant rF such that ‖dF(xk)‖ < rF for all xk in N .

Since dF(xk) is a minimizer of mk, we have that ||d̄k|| ≤ ||dF(xk)||, where d̄k is the
minimum norm minimizer of mk mentioned in Lemma 3.3. Thus, by (3.7) we have ‖dk(π)|| ≤
r, with r = κ1 + κ2rF.

From (3.10), ‖∇qf
k (d)‖ ≤ ‖∇f(xk)‖+‖Wk‖‖d‖. The right hand side of this inequality is

bounded for all xk ∈ N due to the bounds on d1, d2 and the boundedness of Wk stipulated
in Assumptions I . The result (3.38) then follows by a Taylor expansion of qf

k . �

For the following results, we define A∗ to be the set of active inequality constraints at
x∗, i.e., A∗ = {i ∈ I : gi(x∗) = 0}. The next lemma is a technical result establishing a cone
of linearized feasibility with respect to constraints not in A∗.

Lemma 3.10 Suppose that Assumptions I hold and that x∗ is a feasible point with active
set A∗. Then, there exists a constant γ > 0 and a neighborhood of x∗, such that for any xk

in that neighborhood, for any step dk satisfying

gi(xk) + ∇gi(xk)
T dk ≥ 0, for all i 6∈ A∗ (3.42)

and for any direction d̃, we have

gi(xk) + ∇gi(xk)
T (αdk + τ d̃) ≥ 0, for all i 6∈ A∗, (3.43)

if τ > 0 and α ∈ (0, 1) satisfy
τ‖d̃‖ ≤ (1 − α)γ. (3.44)

Proof. Define N ′ to be a neighborhood of x∗ over which gi(x) ≥ 1
2gi(x∗) > 0 for all i 6∈ A∗.

If ∇gi(xk) = 0 for all i 6∈ A∗ then (3.43) holds trivially. Otherwise, the quantity

γ = min
i6∈A∗,x∈N ′

gi(x)

‖∇gi(x)‖

is positive. Multiplying (3.42) by any α ∈ (0, 1) we obtain

gi(xk) + ∇gi(xk)
T (αdk) ≥ (1 − α)gi(xk), for all i 6∈ A∗. (3.45)

18

Now consider the composite direction αdk + τ d̃, with τ ≥ 0 and d̃ an arbitrary direction.
We have

gi(xk) + ∇gi(xk)
T (αdk + τ d̃) ≥ (1 − α)gi(xk) + τ∇gi(xk)

T d̃, for all i 6∈ A∗. (3.46)

If xk ∈ N ′, then gi(xk) > 0 for i 6∈ A∗, so that if ∇gi(xk)
T d̃ ≥ 0, the right-hand side of

(3.46) is nonnegative. If, on the other hand ∇gi(xk)
T d̃ < 0 and τ satisfies (3.44), then

τ ≤
(1 − α)γ

‖d̃‖
≤

(1 − α)gi(xk)

‖∇gi(xk)‖‖d̃‖
≤

(1 − α)gi(xk)

−∇gi(xk)T d̃
, i 6∈ A∗; (3.47)

hence the right-hand side of (3.46) is nonnegative. �

The next result shows that, in a vicinity of a feasible point that satisfies the Mangasarian-
Fromowitz constraint qualification and for sufficiently large values of the penalty parameter,
the step dk generated by the algorithm satisfies the linearized constraints (i.e. the vectors
r, s, t in (2.7) are all zero).

Lemma 3.11 Suppose that Algorithm I generates a sequence {xk} that satisfies Assump-
tions I. Let x∗ be a cluster point of this sequence such that v(x∗) = 0, and suppose that
MFCQ holds at x∗. Then for all xk sufficiently close to x∗ and πk sufficiently large, the
minimizer dk of qπk

k satisfies mk(dk) = 0.

Proof. As in the proof of Lemma 3.9, we denote by h(x) the vector with components
hi(x), i ∈ E and denote the Jacobian of h by ∇h(x)T , and similarly for g(x) and ∇g(x)T .
Since MFCQ is satisfied at x∗, we have that ∇h(x∗) has full rank and there is a direction
‖dMF‖ < 1 such that

h(x∗) + ∇h(x∗)
T dMF = 0 and ∇g(x∗)

T dMF + g(x∗) > 0. (3.48)

Let us define
dM(x) , dMF −∇h(x)[∇h(x)T∇h(x)]−1∇h(x)T dMF, (3.49)

which is well defined for x near x∗ because the matrix ∇h(x)T∇h(x) is nonsingular since it
is close to the nonsingular matrix ∇h(x∗)

T∇h(x∗). Clearly,

∇h(x)T dM(x) = 0. (3.50)

Since x∗ is feasible, we have that h(x∗) = 0, and thus by the first relation in (3.48) the term
∇h(x)T dMF is close to zero for xk near x∗ — and this implies that dM(x) is close to dMF.
Since ∇h is a continuous function, dM(x) varies continuously with x, and therefore by the
second relation in (3.48) there is a constant σ > 0 such that for all xk near x∗, the vector
dk

M
, dM(xk) satisfies

∇gi(xk)
T dk

M
> σ for all i ∈ A∗, (3.51)

where, as before, A∗ denotes the set of active inequality constraints at x∗.

19

Let us define g = 1
2 minj /∈A∗{gj(x∗)}. Then, for xk sufficiently near x∗, we have that

v(xk) < ǫ where ǫ > 0 is a constant that may additionally be chosen sufficiently small to
satisfy both

gj(xk) ≥ g − ǫ > 0 for j /∈ A∗, and 2ǫ < g. (3.52)

We denote by N a neighborhood of x∗ contained in the neighborhoods given by Lemmas
3.9 and 3.10, and such that for all xk ∈ N , conditions (3.50), (3.51) and (3.52) hold and
v(xk) < ǫ. Let us re-write (2.4) as

mk(d) =
∑

i/∈A∗

[gi(xk)+∇gi(xk)
T d]− +

∑

i∈A∗

[gi(xk)+∇gi(xk)
T d]− +

∑

i∈E

|hi(xk)+∇hi(xk)
T d|.

(3.53)
The proof proceeds in three stages; each shows that one of the summations is zero for any
xk ∈ N and for sufficiently large πk.

Part (i) Let dk minimize qπk

k , and suppose by way of contradiction that the first summation
is nonzero for xk ∈ N . Then,

gj(xk) + ∇gj(xk)
T dk < 0 for some j /∈ A∗. (3.54)

By (3.52), we have that gj(xk) > 0 for xk ∈ N , and since (3.54) also holds, we know that
there exists α ∈ (0, 1) such that

gj(xk) + α∇gj(xk)
T dk = 0. (3.55)

It follows that
α(gj(xk) + ∇gj(xk)

T d) = −(1 − α)gj(xk),

which together with (3.52) and the condition α < 1 implies

gj(xk) + ∇gj(xk)
T dk ≤ −(1 − α)(g − ǫ). (3.56)

Define the function
ak

j (d) , mk(d) − [gj(xk) + ∇gj(xk)
T d)]−, (3.57)

which consists of excluding the jth inequality term from (3.53) (and therefore ak
j (dk) ≥ 0).

For j satisfying (3.54), we have

ak
j (dk) = mk(dk) + (gj(xk) + ∇gj(xk)

T dk). (3.58)

Clearly, ak
j is a convex function, which implies that for any dk

ak
j (αdk) ≤ (1 − α)ak

j (0) + αak
j (dk),

and thus
ak

j (αdk) − ak
j (dk) ≤ (1 − α)(ak

j (0) − ak
j (dk)) ≤ (1 − α)ǫ, (3.59)

20

since by (3.57) ak
j (0) = mk(0) = v(xk) < ǫ, and ak

j (dk) ≥ 0. Now, we have from (3.57),
(3.55), (3.58), (3.59) and (3.56) that

m(αdk) − m(dk) = ak
j (αdk) − ak

j (dk) + (gj(xk) + ∇gj(xk)
T dk)

≤ (1 − α)ǫ − (1 − α)(g − ǫ)

= (1 − α)(2ǫ − g).

Finally, by Lemma 3.9 and since qπk

k (dk) = qf
k (dk) + πkmk(dk),

qπk

k (αdk) − qπk

k (dk) ≤ (1 − α)βr + πk(1 − α)(2ǫ − g). (3.60)

By (3.52), 2ǫ − g < 0, and if πk > βr/(g − 2ǫ), we have that qπk

k (αdk) < qπk

k (dk), which
contradicts the fact that dk is the minimizer of qπk

k . Therefore, for xk ∈ N and for πk suffi-
ciently large, there cannot exist an index j satisfying (3.54), and thus the first summation
in (3.53) is zero.

Part (ii) Next, suppose that the step dk that minimizes qπk

k is such that the second sum
in (3.53) is nonzero for xk ∈ N , while the first sum is zero. Then

gℓ(xk) + ∇gℓ(xk)
T dk < 0 for some ℓ ∈ A∗. (3.61)

As above, consider the linearized model of the constraints other than ℓ:

ak
ℓ (d) = mk(d) − [gℓ(xk) + ∇gℓ(xk)

T d)]−. (3.62)

By (3.50), (3.51) we have that the vector dk
M

= dM(xk) satisfies ∇hi(xk)
T dk

M
= 0, i ∈ E and

∇gi(xk)
T dk

M
≥ σ, i ∈ A∗; furthermore, for

τ < (1 − α)γ, (3.63)

we have by Lemma 3.10 that (3.43) is satisfied for d̃ = dk
M

and for i /∈ A∗, (recall that
‖dM‖ < 1). These observations show that each of the terms in (3.53) is not larger for
d = αdk + τdk

M
than for d = αdk, and the same is true for ak

ℓ since ak
ℓ consists of all but one

of the terms in mk. Thus,

ak
ℓ (αdk + τdk

M
) ≤ ak

ℓ (αdk) ≤ (1 − α)ak
ℓ (0) + ak

ℓ (dk), (3.64)

where the second inequality follows from the convexity of ak
ℓ and the condition α ∈ (0, 1).

Since ℓ ∈ A∗, we also have from (3.51) that

gℓ(xk) + ∇gℓ(xk)
T (αdk + τdk

M
) ≥ gℓ(xk) + α∇gℓ(xk)

T dk + τσ. (3.65)

If we choose τ > 0 small enough so that

τσ ≤ −(gℓ(xk) + ∇gℓ(xk)
T dk) (3.66)

then by (3.61)

[gℓ(xk) + ∇gℓ(xk)
T dk + τσ]− = −(gℓ(xk) + ∇gℓ(xk)

T dk) − τσ

= [gℓ(xk) + ∇gℓ(xk)
T dk]

− − τσ. (3.67)

21

By making use of (3.65), the fact that [·]− is a non-increasing convex function, the condition
α < 1 and (3.67) we have

[gℓ(xk) + ∇gℓ(xk)
T (αdk + τdk

M
)]− ≤ [gℓ(xk) + α∇gℓ(xk)

T dk + τσ]−

≤ (1 − α)[gℓ(xk) + τσ]− + α[gℓ(xk) + ∇gℓ(xk)
T dk + τσ]−

≤ (1 − α)[gℓ(xk)]
− + α[gℓ(xk) + ∇gℓ(xk)

T dk + τσ]−

≤ (1 − α)[gℓ(xk)]
− + [gℓ(xk) + ∇gℓ(xk)

T dk + τσ]−

≤ (1 − α)[gℓ(xk)]
− + [gℓ(xk) + ∇gℓ(xk)

T dk]
− − τσ. (3.68)

Now, using (3.62) to decompose mk and then applying (3.64) and (3.68), we obtain

mk(αdk + τdk
M
) = ak

ℓ (αdk + τdk
M
) + [gℓ(xk) + ∇gℓ(xk)

T (αdk + τdk
M
)]−

≤ (1 − α)ak
ℓ (0) + ak

ℓ (dk) + (1 − α)[gℓ(xk)]
− + [gℓ(xk) + ∇gℓ(xk)

T dk]
− − τσ

≤ (1 − α)mk(0) + mk(dk) − τσ

≤ (1 − α)ǫ + mk(dk) − τσ, (3.69)

for any α ∈ [0, 1], and τ > 0 satisfying (3.63) and (3.66). Since, by Lemma 3.9, ‖dk‖ ≤ r,
we may also choose τ small enough that ‖αdk +τdk

M
‖ ≤ 2r. Then, if we additionally require

that (3.63) holds with equality, we have from (3.11), Lemma 3.9 and (3.69) that

qk
π(αdk + τdk

M
) − qk

π(dk) ≤ qk
f (αdk + τdk

M
) − qf

k (dk) − π(τσ − (1 − α)ǫ)

≤ β‖(α − 1)dk + τdk
M
‖ − π(τσ − (1 − α)ǫ)

≤

(

r

γ
+ ‖dk

M
‖

)

βτ − πτ

(

σ −
ǫ

γ

)

,

where we have applied Lemma 3.10 with the condition that τ is small enough that α ∈ (0, 1).
If we choose ǫ < γσ/2, then for π > 2β(r/γ+‖dk

M
‖)/σ the right hand side is negative, which

is not possible because dk is the minimizer of qk
π. Therefore the inequality (3.54) cannot

hold for xk ∈ N and πk large enough.

Part (iii) Last, suppose that the step dk that minimizes qπk

k satisfies all the linearized
inequalities (so that the first two summations in (3.53) are zero), but is such that h(xk) +
∇h(xk)

T dk 6= 0. Then
m(dk) = ‖h(xk) + ∇h(xk)

T dk‖. (3.70)

Consider taking a step from dk in the direction

p = −∇h(xk)[∇h(xk)
T∇h(xk)]

−1(h(xk) + ∇h(xk)
T dk) + θdk

M
, (3.71)

for some θ > 0. We have from (3.50) that, for any α, τ , such that τ < α < 1,

h(xk) + ∇h(xk)
T (αdk + τp) = h(xk) + ∇h(xk)

T αdk − τ [h(xk) + ∇h(xk)
T dk],

= (α − τ)[h(xk) + ∇h(xk)
T dk] + (1 − α)h(xk). (3.72)

22

Since for xk ∈ N we have ‖h(xk)‖ ≤ ǫ, and since αk ≤ 1, we obtain

‖h(xk) + ∇h(xk)
T (αdk + τp)‖ ≤ (1 − τ)‖h(xk) + ∇h(xk)

T dk‖ + (1 − α)ǫ. (3.73)

By Assumption A1, the fact that ∇h(x) has full rank near x∗ and (3.51), we have that for
i ∈ A∗, there is a constant C1 such that

∇gi(xk)
T p ≥ −∇gi(xk)

T∇h(xk)
[

∇h(xk)
T∇h(xk)

]−1
(h(xk) + ∇h(xk)

T dk) + θσ

≥ −C1‖h(xk) + ∇h(xk)
T dk‖ + θσ

= 2
3θσ > 0,

provided we choose θ = 3C1‖h(xk) + ∇h(xk)
T dk‖/σ. This bound and the fact that [·]−

is a non-increasing convex function, imply that for all i ∈ A∗

[gi(xk) + ∇gi(xk)
T (αdk + τp)]− ≤ [gi(xk) + ∇gi(xk)

T αdk]
−

≤ (1 − α)[gi(xk)]
− + α[gi(xk) + ∇gi(xk)

T dk]
−

≤ (1 − α)[gi(xk)]
−, (3.74)

where the last inequality follows from the assumption that dk satisfies all linearized inequal-
ities. Our choice of θ implies that the length of vector p is bounded as follows,

‖p‖ ≤ C2‖h(xk) + ∇h(xk)
T dk‖ + θ‖dk

M
‖

= ‖h(xk) + ∇h(xk)
T dk‖(C2 + 3C1‖d

k
M
‖/σ)

≤ C3‖h(xk) + ∇h(xk)
T dk‖, (3.75)

for suitable constants C2 and C3. If we choose τ and α ∈ (0, 1) to satisfy

τC3‖h(xk) + ∇h(xk)
T dk‖ = (1 − α)γ, (3.76)

then by Lemma 3.10 we have that condition (3.43) is satisfied for d̃ = p. This observation
together with (3.73), (3.74) and the convexity of [·]−, yield

mk(αdk + τp) = ‖h(xk) + ∇h(xk)
T (αdk + τp)‖ +

∑

i/∈A∗

[gi(xk) + ∇gi(xk)
T (αdk + τp)]−

+
∑

i∈A∗

[gi(xk) + ∇gi(xk)
T (αdk + τp)]−

≤ ‖h(xk) + ∇h(xk)
T (αdk + τp)‖ +

∑

i∈A∗

[gi(xk) + ∇gi(xk)
T (αdk + τp)]−

≤ (1 − τ)‖h(xk) + ∇h(xk)
T dk‖ + (1 − α)ǫ + (1 − α)

∑

i∈A∗

[gi(xk)]
−

≤ m(dk) − τ‖h(xk) + ∇h(xk)
T dk‖ + 2(1 − α)ǫ,

where the last inequality follows from (3.70) and the condition mk(0) < ǫ. It follows from
this inequality, the Lipschitz condition (3.38) of Lemma 3.9, (3.37) and (3.75), that

qk
π(αdk + τp) − qk

π(dk) ≤ qf
k (αdk + τp) − qf

k (dk) + π[−τ‖h(xk) + ∇h(xk)
T dk‖ + 2(1 − α)ǫ]

≤ β(‖τp‖ + (1 − α)‖dk‖) + π[−τ‖h(xk) + ∇h(xk)
T dk‖ + 2(1 − α)ǫ]

≤ β(1 − α)r + (βC3 − π)τ‖h(xk) + ∇h(xk)
T dk‖ + 2π(1 − α)ǫ]

≤ (βC3 − π)τ‖h(xk) + ∇h(xk)
T dk‖ + (βr + 2πǫ)(1 − α).

23

Since we have chosen τ and α to satisfy (3.76), we have

qk
π(αdk + τp) − qk

π(dk) ≤ [(βC3 − π) + (βr + 2πǫ)C3/γ]τ‖h(xk) + ∇h(xk)
T dk‖

≤ [(βC3 + βrC3/γ) + π(−1 + 2C3ǫ/γ)]τ‖h(xk) + ∇h(xk)
T dk‖.

If the neighborhood of x∗ is chosen small enough that ǫC3/γ < 1/4, then for π > 2βC3(1 +
r/γ) , we have that qk

π(αdk + τp) − qk
π(dk) < 0, which contradicts the fact that dk is the

minimizer of qπk
. Therefore, we must have that h(xk)+∇h(xk)

T dk = 0, and this concludes
the proof. �

We can now prove the main convergence result of this paper.

Theorem 3.12 Suppose that Algorithm I generates an infinite sequence of iterates {xk}
and that Assumptions I hold. Then,

(a) If {πk} is bounded, any limit point of {xk} is either a KKT point of the nonlinear
program (2.1) or is an infeasible stationary point;

(b) If {πk} → ∞, then either there is a limit point x∗ that is an infeasible stationary
point or there is a feasible limit point x∗ where MFCQ fails.

Proof. Part (a) follows directly from Theorem 3.7.
To prove part (b), when {πk} → ∞, consider an infinite subsequence xk, k ∈ K over

which πk is increased without bound. Since by Assumption A1 this sequence is bounded,
it has at least one limit point, say x∗.

Suppose that v(x∗) > 0. Then by Lemma 3.8, if m∗(0) − m∗(d
LP) > 0, the penalty

parameter π can be increased only finitely often in a neighborhood of x∗. So the fact that
x∗ is a limit point of the sequence xk, k ∈ K defined above, implies that m∗(0)−m∗(d

LP) = 0,
i.e. that x∗ is an infeasible stationary point (see Theorem 3.2 (c)).

Suppose on the other hand that v(x∗) = 0. If x∗ satisfies MFCQ, then by Lemma 3.11
we have that, for πk sufficiently large, mk(dk) = 0, for all xk in a neighborhood of x∗. By
Step 2 of Algorithm I, this implies that once πk is large enough it will no longer be increased
in this neighborhood of x∗. This contradicts our assumption that x∗ is the limit point of
a subsequence over which the penalty parameter is increased without bound. Therefore,
MFCQ must fail at x∗.

�

4 Numerical Experiments

We developed a matlab implementation of Algorithm I and tested its performance on
several difficult situations. We present results on five small-dimensional examples that
exhibit inconsistent constraint linearizations at some iterate or that fail to satisfy the linear
independence constraint qualification at the solution. One of the test problems is infeasible.
The analysis in this paper indicates that the algorithm should be very robust, and these
examples are chosen to test that robustness in cases where the theory applies and in cases
that go beyond the theory. Important issues related to the efficient sparse implementation
of Algorithm I are not addressed here as they lie outside the scope of this paper.

24

To solve the subproblems in Algorithm I, we employed the codes provided by the matlab

optimization toolbox. The linear program (2.9) was solved using linprog and the
quadratic program (2.7), using quadprog.

We mentioned in Section 2 that the trust region radius ∆k used in the linear program
(2.9) is not crucial; in fact the convergence properties established in the previous section
hold even if this radius is kept constant. In practice, however, it may be advantageous to
choose ∆k based on local information of the problem, and in our implementation this choice
is based on the most recently accepted step. Given the search direction dk and the step
length αk at the end of iteration k of Algorithm I, we compute

ak
red = φπ+

(xk) − φπ+
(xk + αkdk), pk

red = q
π+

k (0) − q
π+

k (αkdk)

and update the LP trust region radius as follows

Procedure for Updating ∆k.
Initial data: η1 < η2 ∈ (0, 1), ∆min,∆max > 0.
If ak

red < η1p
k
red

set ∆k+1 = 1
2‖αkdk‖;

else if ak
red > η2p

k
red

set ∆k+1 = 2‖αkdk‖;
else

set ∆k+1 = ‖αkdk‖;
Set ∆k+1 = mid(∆min,∆k+1,∆max).

The initial penalty π1 is set to 1 in all tests. Algorithm I stops in Step 1 and reports
optimality if the infinity norm of the KKT error is less than 10−6. Convergence to an
infeasible stationary point is reported if Algorithm I executes Step 3 and mk(0)−mk(d

LP) <
10−15. We multiply π by 10 whenever it is increased and set ∆min,∆1, ∆max to 10−3, 1, 103,
respectively. The rest of the parameters are chosen as τ = 0.5, η = 10−4, ǫ1 = ǫ2 = 0.1 and
η1 = 0.25, η2 = 0.75.

The first example illustrates the behavior of Algorithm I when the linearizations of the
constraints are inconsistent. In this situation, some SQP methods trigger a switch and
revert either to a feasibility restoration phase in which the objective function is ignored, as
in filterSQP [15], or to an elastic mode (ℓ1 minimization) phase, as in snopt [18]. There
is no switch in Algorithm I, which always takes steps based on the penalty function φπ.
An important difference between Algorithm I and the penalty update strategy in snopt is
that the latter follows a traditional approach in which the penalty parameter is held fixed
during the course of the minimization, and is only increased when a stationary point of the
penalty function is approximated. Algorithm I, on the other hand, employs the steering
rules described in §2 for updating π.

Example 1. The problem

minimize x1 (4.1)

subject to x2
1 + 1 − x2 = 0,

x1 − 1 − x3 = 0,

x2 ≥ 0, x3 ≥ 0

25

was introduced by Wächter and Biegler [29] to show that a class of line search interior-point
methods may converge to a non-stationary point. We use the starting point (−3, 1, 1); the
solution is x∗ = (1, 2, 0). The output is summarized in Table 1, which reports the iteration
number (it) the value of the penalty parameter πk, the trust region ∆k−1 used to generate
the latest iterate, the number of quadratic programs (QPs) solved at the current iterate,
and the number of linear programs (LPs) solved (0 or 1). The table also prints the values
of the first two components of x, the KKT and feasibility errors, as well as the value of the
objective function f and the penalty function φ.

Table 1: Output for Example 1.

it πk ∆k−1 QPs LPs x1 x2 KKT(x) feas(x) f(x) φπ+
(x)

0 1 -3 1 9.00E+00 1.40E+01 -3.00E+00 1.10E+01

1 1 1.00E+00 1 1 -1.5405 1.2432 2.54E+00 4.67E+00 -1.54E+00 3.13E+00

2 1 2.92E+00 1 1 -0.9428 1.5316 1.94E+00 2.30E+00 -9.43E-01 1.36E+00

3 1 1.20E+00 1 1 -0.8115 1.6414 1.81E+00 1.83E+00 -8.12E-01 1.02E+00

4 1 2.63E-01 1 1 -0.8043 1.6468 1.80E+00 1.80E+00 -8.04E-01 1.00E+00

5 1 1.45E-02 2 1 -0.2924 0.8234 6.10E+00 1.55E+00 -2.92E-01 1.53E+01

6 10 8.23E-01 1 0 0.3538 0.5766 8.25E+00 1.19E+00 3.54E-01 1.23E+01

7 10 6.46E-01 1 1 1 1.4265 1.23E+01 5.73E-01 1.00E+00 6.73E+00

8 10 1.70E+00 1 0 1 2 5.73E-01 2.69E-16 1.00E+00 1.00E+00

9 10 1.15E+00 1 0 1 2 2.22E-15 2.69E-16 1.00E+00 1.00E+00

The linearized constraints are not satisfied in the first few iterations, i.e., if mk(dk) > 0
and Algorithm I therefore solves the linear feasibility LP subproblem. Note that progress
toward the solution is made during these initial iterations. The penalty parameter is in-
creased only once, at iteration 5, meaning that the initial penalty π = 1 adequately relaxed
the constraints at the earlier iterations. At iteration 5, the search direction has to be recom-
puted and hence two QPs are solved. Accurate optimal values for the primal variables are
found at iteration 8, but Algorithm I performs one extra iteration to determine the correct
final multipliers.

Example 2. The problem

minimize (x2 − 1)2 (4.2)

subject to x2
1 = 0,

x3
1 = 0

is presented in Fletcher et al. [17] and is also discussed by Chen and Goldfarb [10]. MFCQ
is violated at the solution x∗ = (0, 1), and the linearized constraints are inconsistent at
every infeasible point.

Fletcher et al. [17] mention that, starting from the infeasible point (1, 0), a feasibility
restoration phase is likely to converge to (0, 0), which is not the solution of the problem.
We ran the filterSQP solver [14] and observed that it did indeed converge to (0, 0).
Algorithm I does not exhibit such behavior. The sequence of iterates moves toward the
solution from the very first step, and is not attracted to the origin because the objective
function influences the choice of search direction. As shown in Table 2, the linearized

26

constraints are never satisfied (an LP is solved at every iteration) but the algorithm finds
that the penalty π = 1 is adequate to enforce progress. (No LP is solved in the last iteration,
because the optimality stopping test is satisfied at that point). Thus, although the linear
feasibility subproblem (2.8) of Algorithm I has some of the flavor of a feasibility restoration
phase, it is only used to determine the penalty parameter and not to compute iterates,
which is beneficial in this example. �

Table 2: Output for Example 2.

it πk ∆k−1 QPs LPs x1 x2 KKT(x) feas(x) f(x) φπ+
(x)

0 1 1 0 2.00E+00 2.00E+00 1.00E+00 3.00E+00

1 1 1.00E+00 1 1 0.6667 0.6667 6.67E-01 7.41E-01 1.11E-01 8.52E-01

2 1 1.33E+00 1 1 0.4444 0.8736 3.95E-01 2.85E-01 1.60E-02 3.01E-01

3 1 4.44E-01 1 1 0.2222 0.952 2.59E-01 6.04E-02 2.30E-03 6.27E-02

4 1 4.44E-01 1 1 0.1111 1 6.48E-02 1.37E-02 0.00E+00 1.37E-02

5 1 2.22E-01 1 1 0.0556 1 1.62E-02 3.26E-03 4.93E-32 3.26E-03

6 1 1.11E-01 1 1 0.0278 1 4.05E-03 7.93E-04 4.93E-32 7.93E-04

7 1 5.56E-02 1 1 0.0139 1 1.01E-03 1.96E-04 1.23E-32 1.96E-04

8 1 2.78E-02 1 1 0.0069 1 2.53E-04 4.86E-05 0.00E+00 4.86E-05

9 1 1.39E-02 1 1 0.0035 1 6.33E-05 1.21E-05 4.93E-32 1.21E-05

10 1 6.94E-03 1 1 0.0017 1 1.58E-05 3.02E-06 4.93E-32 3.02E-06

11 1 3.47E-03 1 1 0.0009 1 3.96E-06 7.54E-07 1.23E-32 7.54E-07

12 1 1.74E-03 1 0 0.0009 1 8.48E-07 7.54E-07 1.23E-32 7.54E-07

Example 3. The following problem belongs to the class of mathematical programs with
complementarity constraints (MPCCs). These problems have received much attention in
recent years because of their many practical applications [12]; they can be challenging to
solve because MFCQ is violated at every feasible point. The problem is given by

minimize x1 + x2 (4.3)

subject to x2
2 − 1 ≥ 0,

x1x2 ≤ 0,

x1 ≥ 0, x2 ≥ 0.

The solution is x∗ = (0, 1) and is a strongly stationary point, which in the context of this
paper means that there is a finite value of the penalty parameter π∗ such that x∗ is a
stationary point for the penalty function φπ(x), for all π ≥ π∗. Equivalently, there exist
multipliers at x∗ that satisfy the KKT conditions for (2.1) (although these multipliers are
not unique; in fact the set of multipliers is unbounded). Fletcher et al. [16] show that the
linearization of the constraints of this problem is inconsistent for any point of the form
(ǫ, 1 − δ), with ǫ, δ > 0.

In the results reported in Table 3, the starting point was chosen as (0.1, 0.9). At the first
iteration, the linearized constraints are not satisfied; the search direction computed with
the initial penalty parameter satisfies condition (2.12), and the penalty parameter is not
increased. At the second iteration, the search direction violates the linearized constraints,
and the LP subproblem indicates that the linearized constraints can be satisfied. The

27

Table 3: Output for Example 3.

it πk ∆k−1 QPs LPs x1 x2 KKT(x) feas(x) f(x) φπ+
(x)

0 1 1.00E-01 9.00E-01 1.70E+00 2.80E-01 1.00E+00 1.28E+00

1 1 1.00E+00 1 1 -1.17E-02 1.01E+00 3.08E-01 1.17E-02 9.94E-01 1.01E+00

2 1 2.23E-01 3 1 -6.42E-17 1.01E+00 1.00E+00 6.42E-17 1.01E+00 1.01E+00

3 100 2.35E-02 1 0 -1.28E-16 1.00E+00 4.82E-01 1.28E-16 1.00E+00 1.00E+00

4 100 1.11E-02 1 0 -2.57E-16 1.00E+00 3.07E-05 2.57E-16 1.00E+00 1.00E+00

5 100 1.00E-03 1 0 -2.57E-16 1.00E+00 2.36E-10 2.57E-16 1.00E+00 1.00E+00

penalty parameter needs to be increased twice so that the solution of the QP satisfies the
linearized constraints. The new iterate is feasible and from that point on, the iterates
converge quadratically to the solution.

Several specialized methods have been developed in recent years that exploit the struc-
ture of MPCCs (see e.g. [2, 3, 11, 16, 22, 23, 24, 27]. In these methods, the complementarity
constraints must be singled out and relaxed (or penalized). Algorithm I is, in contrast, a
general-purpose nonlinear programming solver that treats MPCCs as any other problem.

�

Example 4. MFCQ is also violated in a subset of the feasible region in the class of switch-off
problems, also known as problems with vanishing constraints; see Achtziger and Kanzow
[1]. An instance of such problems is

minimize 2(x1 + x2)

subject to x1 ≥ 0, (4.4)

x1x2 ≥ 0,

x2 ≥ −1,

which has a unique solution at x∗ = (0,−1). The feasible region is the union of the first
quadrant, where the constraints are regular (except at the origin), and a portion of the
negative x2–axis, where MFCQ is violated. The performance of Algorithm I, starting at
the origin, is summarized in Table 4.

Table 4: Output for Example 4.

it πk ∆k−1 QPs LPs x1 x2 KKT(x) feas(x) f(x) φπ+
(x)

0 1 0 0 1.00E+00 0.00E+00 0.00E+00 0.00E+00

1 1 1.00E+00 2 1 0 -1 9.00E+00 0.00E+00 -2.00E+00 -2.00E+00

2 10 2.00E+00 1 0 0 -1 2.66E-15 0.00E+00 -2.00E+00 -2.00E+00

At the starting point, the direction obtained by solving subproblem (2.7) is given by
d = (−1,−1) and leads away from the feasible region. Algorithm I, however, discards this
direction because it does not satisfy the linearization of the constraints, which are satisfiable.
The penalty parameter is increased from 1 to 10, and the new search direction d = (0,−1)
not only satisfies the linearized constraints but leads straight to the solution of problem
(4.4). The second iteration is required simply to compute the optimal multipliers.

28

This example shows how a prompt identification of an inadequate penalty parameter
can save a great deal of computational work. Classical penalty methods would not increase
the penalty parameter at the first iteration and would follow the initial direction (−1,−1).
The penalty function φπ is unbounded below along this direction and a classical algorithm
would generate a series of iterates with decreasing values of x1 until the algorithm detects
that the iterates appear to be diverging. Not only would those iterations be wasted, but
extra effort would be required to return to the vicinity of the solution.

�

Example 5. The following infeasible problem has been studied by Burke and Han [5] and
Chen and Goldfarb [10]:

minimize x (4.5)

subject to x2 + 1 ≤ 0,

x ≤ 0.

Chen and Goldfarb report that, starting from x1 = 10, their method converges to the
infeasible stationary point x∗ = 0 after 50 iterations, with a final penalty parameter of
π ≃ 106. Algorithm I converges to that infeasible stationary point in 3 iterations; see
Table 5.

It may seem surprising that the final penalty parameter reported in the Table 5 is only
10, given that our analysis suggests that the penalty parameter will tend to infinity in the
infeasible case. We note, however, that π = 10 is the penalty at the beginning of iteration
3 and that Algorithm I drives the penalty parameter to infinity in Step 4. It does so, while
staying at the current iterate, and once it detects that the problem is locally infeasible, it
stops. �

Table 5: Output for Example 5.

it πk ∆k−1 QPs LPs x KKT(x) feas(x) f(x) φπ+
(x)

0 1 10 1.01E+02 1.11E+02 1.00E+01 1.21E+02

1 1 1.00E+00 1 1 4.95 2.55E+01 3.05E+01 4.95E+00 3.54E+01

2 1 1.01E+01 2 1 0 4.01E+00 1.00E+00 8.88E-16 1.00E+01

3 10 9.90E+00 1 1 0 1.00E+00 1.00E+00 8.88E-16 1.00E+01

More results obtained with our matlab implementation of Algorithm I are reported in
[24]. The test set used in those experiments includes both regular problems and problems
that are infeasible or do not satisfy constraint qualifications. The results in [24] indicate that
Algorithm I is efficient on problems that do not require regularization because condition
(2.11) guarantees that a pure SQP step is used whenever the linearized constraints can
be satisfied in a neighborhood of the current iterate. Therefore, for regular problems,
Algorithm I performs very similarly to a classical SQP method, except that a few extra
QPs and LPs are solved when the initial penalty parameter is too small. On the other
hand, Algorithm I is more robust and efficient than a classical SQP method on problems

29

(such as those in the Examples 1-5) that require regularization. We believe that by using
warm starts, the cost of solving the additional QPs is not significant, but a careful sparse
implementation of Algorithm I is needed to measure the computational cost of various
components of the iteration.

5 Final Remarks

In this paper we have proposed a line search SQP penalty method for nonlinear program-
ming. The method updates the penalty parameter dynamically using an extension of the
steering rules described in [8] to the line search setting. The resulting algorithm is robust
and its global convergence properties are as strong as those of trust region methods. Specif-
ically, we have proved that under common assumptions all limit points of the sequence
of iterates are either KKT points, infeasible stationary points, or points of MFCQ fail-
ure. This fact shows that use of exact penalties, together with a positive definite Hessian
approximation, has a regularizing effect similar to a trust region.

References

[1] W. Achtziger and C. Kanzow. Mathematical programs with vanishing constraints: opti-
mality conditions and constraint qualifications. Mathematical Programming, 114(1):69–
99, 2008.

[2] M. Anitescu. Global convergence of an elastic mode approach for a class of Mathe-
matical Programs with Complementarity Constraints. SIAM Journal on Optimization,
16(1):120–145, 2005.

[3] H.Y. Benson, A. Sen, D.F. Shanno, and R.J. Vanderbei. Interior-point algorithms,
penalty methods and equilibrium problems. Computational Optimization and Appli-
cations, 34(2):155–182, 2006.

[4] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
and Examples. Springer Verlag, New York, 2000.

[5] J. V. Burke and S. P. Han. A robust sequential quadratic-programming method. Math-
ematical Programming, 43(3):277–303, 1989.

[6] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for non-
linear optimization using linear programming and equality constrained subproblems.
Mathematical Programming, Series B, 100(1):27–48, 2004.

[7] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of
successive linear-quadratic programming algorithms. SIAM Journal on Optimization,
16(2):471–489, 2006.

[8] R. H. Byrd, J. Nocedal, and R. A. Waltz. Steering exact penalty methods. Optimization
Methods and Software, 23(2), 2008.

30

[9] R. H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,
pages 35–59. Springer, 2006.

[10] L. Chen and D. Goldfarb. Interior-point ℓ2 penalty methods for nonlinear programming
with strong global convergence properties. Mathematical Programming, 108(1):1–36,
2006.

[11] De Miguel, A.V., M.P. Friedlander, F.J. Nogales, and S. Scholtes. A two-sided relax-
ation scheme for mathematical programs with equilibriums constraints. SIAM Journal
on Optimization, 16(1):587–609, 2005.

[12] M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity
problems. SIAM Review, 39(4):669–713, 1997.

[13] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, Eng-
land, second edition, 1987.

[14] R. Fletcher and S. Leyffer. User manual for filterSQP. Technical Report NA/181,
Dundee, Scotland, 1998.

[15] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-
ematical Programming, 91:239–269, 2002.

[16] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes. Local convergence of SQP methods
for mathematical programs with equilibrium constraints. SIAM Journal on Optimiza-
tion, 17(1):259–286, 2006.

[17] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP
algorithm. SIAM Journal on Optimization, 13(1):44–59, 2002.

[18] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

[19] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London, 1981.

[20] N. I. M. Gould and D. P. Robinson. A second derivative SQP method with imposed
descent. Technical Report 08/09, Oxford University Computing Laboratory, 2008.

[21] S. P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear programming.
Mathematical Programming, 17(1):251–269, 1979.

[22] S. Leyffer, G. López-Calva, and J. Nocedal. Interior methods for mathematical pro-
grams with complementarity constraints. SIAM Journal on Optimization, 17(1):52–77,
2006.

[23] X. Liu and J. Sun. Generalized stationary points and an interior-point method for
mathematical programs with equilibrium constraints. Mathematical Programming,
101(1):231–261, 2004.

31

[24] G. López-Calva. Exact-Penalty Methods for Nonlinear Programming. PhD thesis,
Industrial Engineering & Management Sciences, Northwestern University, Evanston,
IL, USA, 2005.

[25] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality conditions in
the presence of equality and inequality constraints. Journal of Mathematical Analysis
and Applications, 17:37–47, 1967.

[26] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, second edition, 2006.

[27] Raghunathan, A. and L. T. Biegler. An interior point method for mathematical pro-
grams with complementarity constraints (MPCCs). SIAM Journal on Optimization,
15(3):720–750, 2005.

[28] A. Ruszcyynski. Nonliner Optimization. Princeton University Press, 2006.

[29] A. Wächter and L. T. Biegler. Failure of global convergence for a class of interior point
methods for nonlinear programming. Mathematical Programming, 88(3):565–574, 2000.

[30] R. A. Waltz and T. D. Plantenga. Knitro 5.0 User’s Manual. Technical report, Ziena
Optimization, Inc., Evanston, IL, USA, February 2006.

32

