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Abstract

This paper proposes a content-aware image resizing

method which simultaneously preserves both salient im-

age features and important line structure properties: paral-

lelism, collinearity and orientation. When there are promi-

nent line structures in the image, image resizing methods

without explicitly taking these properties into account could

produce line structure distortions in their results. Since the

human visual system is very sensitive to line structures, such

distortions often become noticeable and disturbing. Our

method couples mesh deformations for image resizing with

similarity transforms for line features. Mesh deformations

are used to control content preservation while similarity

transforms are analyzed in the Hough space to maintain line

structure properties. Our method strikes a good balance

between preserving content and maintaining line structure

properties. Experiments show the proposed method often

outperforms methods without taking line structures into ac-

count, especially for scenes with prominent line structures.

1. Introduction

Image retargeting, adapting images for displays with dif-

ferent aspect ratios, has received considerable attention re-

cently. Content-aware image retargeting methods utilize

saliency maps to minimize noticeable distortions of promi-

nent parts in an image at the expense of the less important

ones. While many such methods have been proposed, few

specifically pays attention to preserve line structure prop-

erties. Human are often very sensitive to distortions of

geometric structures such as lines. Such distortions often

look more noticeable and disturbing. Several papers have

pointed out that failures to preserve geometric structures

such as prominent lines of arbitrary orientations could be

one of the reasons for unsatisfactory retargeting results [15].

This paper proposes an image resizing method to simul-

taneously minimize content distortion of prominent regions
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Figure 1. Examples of artifacts due to failures to preserve line

structure properties. (a) The input image. (b) The result of 0.5x

height by the SNS method [15]. (c) Our result.

and preserve important properties of line structures: (1)

Parallelism. Parallel line segments remain parallel after

image resizing. (2) Collinearity. The line segments lying

on the same line remain collinear after resizing. (3) Ori-

entation. A line segment maintains its original orientation

after resizing. Figure 1 shows an example for artifacts due

to failures to preserve these properties. When reducing the

height of the image by 50% using the SNS method [15],

parallel lines do not remain parallel and collinear line seg-

ments do not maintain collinearity. Our method preserves

these properties and gives a much better result.

As most continuous methods, we place a grid mesh onto

the image and compute a new geometry for this mesh so

that the boundaries fit the desired image dimensions. For

preserving line structure properties, we first extract line seg-

ments. The mesh deformation driven by content preser-

vation and image dimension change induces a similarity

transform for each line segment. To preserve line struc-

ture properties, we need to enforce properties on parame-

ters of these induced similarity transforms. We found that

line structure properties are easier to describe in the Hough

space. Thus, we formulate the relationships between simi-

larity transforms in the image space and point movements in

the Hough space. The formulation helps us define an energy

striking a balance between preserving salient image features

and maintaining important line structure properties.



2. Related work

Content-aware retargeting methods can be categorized as

discrete, continuous, layered and hybrid approaches [13].

Discrete methods. The seam carving method [1] is a well-

known discrete approach that uses dynamic programming

to find the optimal seam to be removed. Rubinstein et al.

improved it with a forward energy and extended it to video

resizing [9]. Pritch et al. proposed a shift map [7] to rep-

resent an optimal map for mapping each pixel in the out-

put image into the input image. Because of their discrete

nature, these approaches do not preserve structured objects

well, and often produce disturbing artifacts.

Continuous methods. Continuous methods treat image re-

targeting as a mesh deformation/warping problem [15, 16,

3]; prominent regions are constrained so that their shapes

are preserved as much as possible while less salient areas

are allowed to be distorted more. They create less disconti-

nuity artifacts and better preserve structured objects.

Layered and hybrid methods. Setlur et al. decomposed

an image into important foreground layers and less impor-

tant background layer [12]. The background layer is resized

and the foregrounds are pasted onto the resized background.

Mansfield et al. proposed scene carving [6] which also de-

composes the input image into layers. Rubinstein et al. pro-

posed a hybrid approach to combine seam carving, cropping

and scaling in an optimal manner [10].

Straight-line preservation. Several continuous methods

are capable of preserving straight lines. Krähenbühl et al.’s

approach constrains warps for pixels sampled on a line seg-

ment provided by the user so that they remain on the same

line after warping [5]. Slope of lines are determined by op-

timization. Guo et al. used Hough transform to detect lines

and formed a structure-aware mesh [4]. Straight lines are

maintained and their slopes are determined similarly. Both

methods maintain collinearity, but not necessarily orienta-

tion and parallelism. In addition, based on our experience,

line detection algorithms often output several shorter line

segments for a long line. Thus, their approaches can only

maintain collinearity within each short line segments, but

not necessarily the line as a whole. Our method clusters line

segments in the Hough space and does not suffer from this

problem. Note that it is also true for the case in which a long

line is divided into several line segments due to partial oc-

clusion. Our method still maintain them as a long line even

if line detection algorithms fail to group them together. Car-

roll et al. used similar straight line constraints for a different

application, perspective manipulation [2]. Their application

is interactive and the lines are specified by users.

Rubinstein et al. created a RetargetMe benchmark [8] for

methodological evaluation of retargeting results and eval-

uated many retargeting methods. In their study, manual

cropping, multi-operator [10] and streaming video [5] ap-

proaches tended to outperform other methods.
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Figure 2. Line parameterization. A line can be parameterized by

(r, θ) which maps to a point in the Hough space.
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Figure 3. Line structure properties in the Hough space.

3. Background

Line parameterization. Hough transform is a classical

method for line detection. It transforms a line y = ax+ b in

the 2D Euclidean space (the image space in our application)

into a point (r, θ) in the Hough space as shown in Figure 2.

The range of θ is
[

−π
2 , π

2

)

. The distance r can be positive

or negative. If the closest point to the origin on the line lies

within the first and fourth quadrant, r is positive. Otherwise,

it is negative. Given a point (r, θ) in the Hough space, the

parametric representation of the corresponding line in the

image space is x cos θ+y sin θ = r. Although a line can be

represented exchangeably in both the image space and the

Hough space, we found it more convenient to analyze line

properties in the Hough space.

Uniform scaling. Uniform scaling could change line ori-

entations after resizing. The amount of changes depend on

both the scaling factor s and the original line orientation

θ. Horizontal and vertical lines do not change their orien-

tations while slanted lines suffer from orientation changes.

However, since the orientation changes are global and co-

herent, parallel lines remain parallel and collinear line seg-

ments remain collinear after uniform scaling. Thus, al-

though uniform scaling is notorious in its inability to pre-

serve important content, it maintains important line struc-

ture properties: parallelism and collinearity. On the other

hand, content-aware methods often cannot preserve such

properties. Figure 3 illustrates an example and shows

how the line structure properties can be described in the

Hough space. Given the input image, uniform scaling (Fig-

ure 3(b)) preserves both parallelism among orange lines and

collinearity between red lines. This is evident in the Hough



space: orange lines’ corresponding points in the Hough

space lie on a vertical line with the same θ (parallelism)

while red line segment’s corresponding points collide in the

Hough space (collinearity). With SNS (Figure 3(c)), such

properties are not preserved as evident in the Hough space.

Our method has the preferred behavior in the Hough space

(Figure 3(d)). Thus, it maintains line structure properties

while better preserving prominent contents. Note that bells

are better preserved in shapes than uniform scaling.

Similarity transformations. We describe the relationship

between a similarity transformation in the image space and

its induced update on line parameters in the Hough space.

A similarity transform to a point p in the image space is

composed by a scaling s, a rotation φ and a translation t =
(tx, ty)

T as follows:

p′ = sRφp+ t = s

[

cosφ − sinφ
sinφ cosφ

] [

x

y

]

+

[

tx
ty

]

. (1)

It can be shown that, when applying a similarity transform

to a line in the image space, it translates the corresponding

point (r, θ) in the Hough space to (r′, θ′) as follows:

θ′ = θ + φ (2)

r′ = sr + tT
[

cos θ′

sin θ′

]

= sr + tT
[

cos(θ + φ)
sin(θ + φ)

]

. (3)

Note that r′ depends on θ′ and also on φ. It is because that

the translation is performed after the rotation. This makes

the optimization that will be introduced in the next section

more difficult. Therefore, we propose to use another param-

eterization for similarity transformations,

p′ = S(p) = Rφ

(

sp+ t̃
)

. (4)

Note that the translation t̃ is different from the original

translation t. The main difference of the new parameteriza-

tion from the standard one is that the rotation is performed

as the last step. This is crucial because the similarity trans-

formation can then be decomposed into two parts, “scaling

and translation” followed by a “rotation,” and each part only

affects one parameter in the Hough space. When applying

the re-parameterized similarity transform to a line, the cor-

responding parameter changes in the Hough space are:

θ′ = θ + φ (5)

r′ = sr + t̃T
[

cos θ
sin θ

]

. (6)

Note that, although the new translation vector is less intu-

itive, every similarity transform in the standard form can be

re-parameterized as the proposed form. The proposed form
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(a) original transform (b) proposed transform
Figure 4. (a) When using the standard similarity transformation,

the change of r introduced by the translation is the inner product

of translation vector and the red unit vector, which is dependent to

the rotation. (b) When using the proposed parameterization, the

change is the inner product of the translation vector and the green

unit vector, which is known and fixed.

Saliency map
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Figure 5. Overview of the proposed method.

is advantageous for that each parameter is only affected by

a set of transforms: θ′ only depends on the rotation and

r′ is only affected by the scaling and translation. Figure 4

illustrates why the new parameterization can decompose

a similarity transformation into two parts. Our optimiza-

tion framework leverages this decomposition property and

makes the optimization more efficient.

4. Method

Our approach belongs to the category of continuous

methods. We use a quad mesh to guide the deformation of

the input image for resizing. The mesh deformation is de-

termined by the set of vertex positions V of the mesh after

deformation. Traditional methods use content preservation

and mesh conformality to find the optimal deformation V.

To achieve the goal of line structure preservation, we detect

line segments from the input image. The mesh deformation

for image resizing will induce changes to the line segment’s

sizes, positions and orientations, which can be described as

similarity transforms. Applying similarity transforms could

destroy some preferred line structure properties if they are

not constrained. Our method attempts to preserve these

properties by constraining the similarity transforms induced

by mesh deformation described by V.

Figure 5 illustrates the overview of our method. As the

first step, we extract line segments from the input image.

We use the LSD line segment detector [14] to detect line

segments because it runs in linear-time, gives accurate re-

sults and requires no parameter tuning. If a detected line



segment spans over multiple quads, the line segment is di-

vided into several segments, cutting by edges of the quad

mesh so that every line segment completely locates within a

quad. Assume that n line segments li are detected through

this process. Each line segment li has two end points ei1
and ei2. We have also calculated each line segment’s Hough

coordinate (ri, θi). Each line segment li is then associated

with a similarity transform Si parameterized by a scale si, a

translation t̃i and a rotation Ri. These transforms describe

how line segments move and scale after the image is resized.

We would like to control these transforms to preserve line

structure properties after image resizing.

The first property we would like to preserve is paral-

lelism. To achieve this, instead of associating each line with

an independent rotation, we require that line segments with

similar orientation θ share the same rotation R so that they

remain parallel after image resizing. Therefore, we parti-

tion the range of θ,
[

−π
2 , π

2

)

, into m bins. The mapping

Φ(i) finds the orientation bin for the line li according to its

orientation, i.e., Φ(i) = ⌊ θi+π/2
π ·m⌋+1. We associate the

j-th orientation bin with a rotation Rj . Thus, the rotation

of the i-th line segment li becomes RΦ(i). By doing so,

we not only ensure that line segments with similar orien-

tations share the same rotation but also reduce the number

of variables. In addition to parallelism, we also would like

to preserve orientations as much as possible. That is, we

prefer that line segments stay with their original orientation

after image resizing. Finally, we would like to preserve the

collinearity property. This can be achieved by requiring line

segments with the same (r, θ) map to the same point (r′, θ′)
in the Hough space. Note that (r′, θ′) is controlled by the

transforms. To sum up, each line segment li is associated

with the transform parameterized by si, t̃i and RΦ(i). Thus,

the variables include n scales, n translation vectors and m

rotation angles. In our implementation, we used 50 orienta-

tion bins, i.e. m = 50.

4.1. Energy function

Our energy function is composed of five energy terms:

shape distortion, orientation preservation, collinearity and

two coupling terms. We detail them in the following.

Shape distortion energy Ed(V). This term is for con-

tent preservation, maintaining the shapes of the prominent

objects, and it only depends on the mesh deformation V.

Many energy terms for this purpose have been proposed

and studied. We choose to use the conformal energy used

by Zhang et al. [16]. This term encourages that each quad

undergoes a similarity transformation as much as possi-

ble. The energy is measured as the sum of quad distortions

weighted by quad saliency. The quad distortion is measured

by the deviation of the deformed quad from a similarity

transform. Note that similarity transformations for quads

are different from those for line segments.
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Figure 6. Neighborhood relationship in terms of r for lines associ-

ated with the same orientation bin.

Orientation preservation energy Eo(Rj). This term re-

quires the line segments stay with their original orientations

as much as possible. It is thus defined by measuring the de-

viation from the identity transform for each the rotation Rj

associated with each orientation bin.

Eo(Rj) =
1

m

m
∑

j=1

‖Rj − I‖
2
F , (7)

where m is the number of bins and I is the identity matrix.

Collinearity preservation energy El(si, t̃i). To maintain

collinearity, all line segments with the same Hough coordi-

nate (r, θ) should have the same transformed Hough coordi-

nate (r′, θ′) after their own associated similarity transforms

induced by image resizing. Due to numerical precision, it

is unlikely to find line segments with the same Hough co-

ordinate. Instead, we require that line segments who are

clustered in Hough space stay close in the Hough space af-

ter resizing. Note that we have already clustered line seg-

ments by binning their orientations. Assume that Lj is the

set of line segments associated with the j-th orientation bin.

We sort all line segments in Lj by their r-parameters. The

neighboring relationships can then be assigned in the sorted

list. Two line segments are neighboring to each other if their

rank difference is 1 in the sorted list. Figure 6 illustrates the

process. For each pair of neighboring line segments, how

close they should be after resizing depends on how close

they were in terms of r in the original image. Thanks to

the proposed parameterization for similarity transforms, the

transformed r′i coordinate only depends on si and t̃i, but not

RΦ(i). This makes the optimization much easier and more

efficient. The collinearity preservation energy El(si, t̃i) is

then defined as

1

nl

m
∑

j=1

∑

(lα,lβ)

∈N(Lj)

ωαβ

∥

∥

(

r′α − r′β
)

− (rα − rβ)
∥

∥

2
, (8)

where N(Lj) is the set of all neighboring line pairs in

the j-th line cluster; nl =
∑m

j=1 |N(Lj)| and ωαβ =

exp
(

−
|rα−rβ |

2

2σ2

)

is a weighting function. This weighting



function requires line segments which are very close in the

original image stay very close after image resizing. σ = 5
in our experiments. Using Equation 6, we can substitute r

as a linear form of s and t̃, and obtain El(si, t̃i) as

1

nl

m
∑

j=1

∑

(lα,lβ)

∈N(Lj)

ωαβ

∥

∥sαrα−sβrβ+nT
α t̃α−nT

β t̃β−(rα−rβ)
∥

∥

2
,

where nα = [cos θα sin θα]
T and nβ = [cos θβ sin θβ ]

T .

Position coupling energy Ep(V,Rj , si, t̃i). This term
couples together the deformed mesh vertices V and the sim-
ilarity transform parameters of lines, Rj , si and t̃i. It en-
forces the mesh deformation and line transforms to strike a
balance between each’s constraints. Assume that e is an
endpoint of a line li. According to the deformed mesh
vertices V, its position after mesh deformation should be
Ψ(e)TV where Ψ(e) is a vector containing e’s bilinear in-
terpolation coefficients. On the other hand, according to
the similarity transform associated with li, e’s new position
should become S(e) = RΦ(i)

(

sie+ t̃i
)

. The coupling
term requires these two positions to be similar for all end
points by penalizing their differences:

Ep(V,Rj , si, t̃i) =
1

n

n
∑

i=1

∥

∥

∥
S(ei1)−Ψ(ei1)

T
V

∥

∥

∥

2

+
1

n

n
∑

i=1

∥

∥

∥
S(ei2)−Ψ(ei2)

T
V

∥

∥

∥

2

.

Angle coupling energy Ea(V,Rj , si). In addition to po-

sition coupling, we also require angle coupling. That is, we

want to minimize the angle difference between the line seg-

ments defined by similarity transforms and the line segment

defined by mesh deformation. Thus, we define the angle

coupling term Ea as

1

n

n
∑

i=1

∥

∥(Si(ei2)−Si(ei1))−
(

Ψ(ei2)
TV−Ψ(ei1)

TV
)
∥

∥

2

=
1

n

n
∑

i=1

∥

∥RΦ(i)(si(ei2−ei1))−
(

Ψ(ei2)
TV−Ψ(ei1)

TV
)
∥

∥

2
.

Note that, although the angle coupling term seems related

to the position coupling term, in practice, we found that in-

troducing angle coupling term improves the results.

The total energy can then be written as a weighted sum

of the above five energy terms,

E(V,Rj , si, t̃i) = Ed(V) + λoEo(Rj) + λlEl(si, t̃i)

+ λpEp(V,Rj , si, t̃i) + λaEa(V,Rj , si).

In all of our experiments, we used the set of parameters:

λo = 1, 800, λl = 2, λp = 1 and λa = 200. We look

for the vertex positions V of the deformed mesh, rotation

matrices Rj for orientation bins, scale si and translation t̃i

for line segments to minimize the above energy to strike the

balance between content preservation (Ed) and line struc-

ture preservation (Eo and El).

4.2. Optimization

We use an iterative optimization strategy to minimize the

energy function. The optimization process alternates be-

tween the following two steps iteratively until convergence.

In the first step, we optimize for Rj while assuming that si,

t̃i and V are fixed. In the second step, we fix Rj and solve

for si, t̃i and V. We detail these two steps below.

Fix si, t̃i and V, optimize for Rj . Assume that si, t̃i and

V are constants, the energy function becomes

E(Rj)=λoEo(Rj)+λpEp(V,Rj ,si,t̃i)+λaEa(V,Rj ,si).

Note that, since the rotation matrices Rj for each orien-
tation bin are independent to each other, the above energy
function can be decomposed into a sum of a set of indepen-
dent functions,

∑m
j=1 E

′(Rj). Each of these terms E′(Rj)
can be optimized independently to find the optimal rotation
for the j-th bin. Another thing to note is that E′(Rj) is non-
linear to the rotation angle φ as the rotation matrix consists
of the nonlinear terms cosφ and sinφ. By adopting the the-
orem from Schaefer et al.’s paper [11], we reparameterized
each rotation matrix with the form of

[

a −b

b a

]

with two parameters a and b. The energy function E′ then

becomes linear to the parameters a and b. After optimiza-

tion, the resultant matrix is then decomposed into scaling

and rotation. The rotation is the optimum solution for Rj .

Fix Rj , optimize for si, t̃i and V. When Rj are known
and fixed, the energy function becomes a linear least squares
problem with variables si, t̃i and V,

E(si, t̃i,V) =Ed(V) + λlEl(si, t̃i)

+λpEp(V,Rj , si, t̃i) + λaEa(V,Rj , si).

It can be solved by sparse linear solvers.

For a 640×480 image with quad size 20×20, the optimiza-

tion usually converges in 2 ∼ 20 iterations. The running

time of our unoptimized MATLAB implementation ranged

from 2s to 40s (on a 2.39GHz Pentium Duo CPU) .

5. Results

We tested our method and compared to other methods

on two sets of images, Flickr and RetargetMe. The first set

was collected from Flickr by selecting images with strong

line structures to demonstrate our algorithm. For Flickr, we

compared to uniform scaling and SNS [15]. For the Re-

targetMe benchmark [8], we have resizing results from dif-

ferent methods. For this set, we compared to SNS, SV [5]

and Multiop [10]. The later two methods ranked on the top



(a) Original (b) Scaling (c) SNS (d) Ours
Figure 7. Resize to 2x width. (Flickr)

in Rubinstein et al.’s study [8]. Note that images in Re-

targetMe usually have weaker line structures, making our

strengths less obvious.

We first show results for Flickr. Figure 7 show results

for two images. For the first image, our method preserves

line orientations better than scaling. SNS maintains the

sofa and plants at the bottom well at the expense of heav-

ily distorted line structures at the top. Our method makes

a balance between them. For the second image, we pre-

serve both the salient area (floor) and the line structures.

Linear scaling intensively changes line orientations, mak-

ing the perspective perception distorted. Because this is a

highly structured and textured scene, SNS does not perform

well in either content preservation or line structure preserva-

tion. Figure 8 shows the importance of preserving orienta-

tion and collinearity. If the orientation preservation energy

is removed (Figure 8(a)), drastic changes of line orienta-

tions make the result similar to scaling. If the collinear-

ity preservation energy is removed (Figure 8(b)), collinear

lines could become noncollinear. Figure 9 shows another

set of results which are resized to 0.5x width. Similarly, our

method compares favorably to scaling and SNS.

Figure 10 shows results for two images from Retar-

getMe. In the first row, all methods except for ours dis-

tort the lines on the top of the image. In the second row,

SNS and SV fail to preserve all line structures. Multiop

is comparable with our method because it degenerates to

linear scaling in this case. Our method preserves all line

structures and is free of artifacts. Figure 11 shows another

set of images from ReatrgetMe. For the first image, SNS

and SV severely distort the clouds. In addition, the white

canopy becomes curved in both results (as highlighted be-

(a) λo = 0 (b) λl = 0
Figure 8. Results of removing different energy terms. (a) Remove

orientation energy Eo. (b) Remove collinearity energy El.

low). Our method preserves the shape of clouds, and the

parallel edge structures at the border of the canopy. Also,

the linear edge of the deck becomes curved in all three other

methods while our methods preserves it well. In the second

row, our method preserves the roof structure by preserving

its orientation. The orientation of the roof changes signifi-

cantly in all other methods. For Figure 12, only SV and our

method preserves the wood stand on the ceiling as high-

lighted below. The other two methods bend it into curved.

6. Conclusions

This paper proposes a line-structure-preserving image

resizing method which preserves parallelism, collinearity

and orientation. By explicitly taking line structure prop-

erties into account, our method preserves both prominent

content and important line structure properties. For images

with strong line structures, our method compares favorably

to other methods. Our method depends on the accuracy of

line extraction and saliency maps. In addition, results look

similar to scaling if lines distribute evenly over images.



(a) Original (b) Scaling (c) SNS (d) Ours
Figure 9. Resize to 0.5x width. (Flickr)

(a) Original (b) SNS (c) SV (d) Multiop (e) Ours
Figure 10. Resize to 0.75x width. (RetargetMe)
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