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Abstract

In this paper we show that given two homography
matrices for two planes in space, there is a linear algo-
rithm for the rotation and translation between the two
cameras, the focal lengths of the two cameras and the
plane equations in the space. Using the estimates as an
initial guess, we can further optimize the solution by
minimizing the difference between observations and re-
projections. Experimental results are shown. We also
provide a discussion about the relationship between this
approach and the Kruppa equation.

1 Introduction
In man-made environments, planes are ubiquitous:

buildings, floors, ceilings, streets, walls, furnitures,
etc. If we can recover the planar scenes, it can be
used in many applications like image-based modeling
and rendering, robotics, etc. In this paper we try to
solve the problem of using two perspective images of
planes to auto-calibrate cameras, recover the motion
between the cameras, and reconstruct the planes in
space.
It is widely known that the projective transforma-

tion between two images of a plane can be described
by a homography matrix. Many researchers have pro-
posed various approaches to make use of the homog-
raphy matrix. In his textbook on vision, Faugeras
describes in detail how a homography matrix between
normalized images (that is, assuming calibrated cam-
eras) can be decomposed into rotation, translation
and plane equation, without describing how to auto-
calibrate cameras [Lon 86, Faugeras 93, Fau-Tos 86].
To ”auto-calibrate” cameras, Triggs proposed to use
an image sequence of a single plane [Triggs 98]. But
he needs at least 5 images and has difficulty to ini-
tialize. Sturm and Maybank [Str-May 99] and Zhang
[Zhang 99] independently proposed to use planar pat-
terns in 3D space to precisely calibrate cameras. While
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Sturm and Maybank also discuss singularities, Zhang
also calibrates radial distortions. They both require
a planar pattern known a priori. Lowbowitz and Zis-
serman describe a technique of metric rectification for
perspective images of planes using metric information
such as a known angle, two equal but unknown angles,
or a known length ratio. They also mentioned that
calibration is possible without showing results or al-
gorithms. Johansson describes how to synthesize new
views given two images of planar scenes. His work
does not try to reconstruct scenes in the Euclidean
space [Joha 99].

In this paper, we propose a linear algorithm to solve
the problem of self-calibrating cameras, and recover-
ing camera motion and plane equations. The solution
is generally unique. Using the estimates as an initial
guess, we can further optimize the solution by mini-
mizing the difference between observations and repro-
jections.

In the following, Section 2 presents the configura-
tion, assumptions and homography. Section 3 presents
a linear algorithm. Section 4 describes how to do bun-
dle adjustment. Section 5 presents the experimental
results, followed by a discussion and a conclusion.

2 Configuration, Assumptions and Ho-
mography

In this section, we briefly review how homography is
introduced. As shown in Fig. 1, there are two cameras
separated by a rotation R and a translation t. They
look at a scene that has two or more planes.

Let us denote a point in the first camera’s coordi-
nate system X = [X,Y, Z]T , and the same point in the
second camera’s coordinate system X! = [X !, Y !, Z!]T .
They are related by

X = RX! + t (1)

Planes are defined in the second camera’s coordi-



Figure 1: A planar scene with two or more planes

nate system by

nT X!/d = 1 (2)

where n is the unit normal vector for the plane and
d is the distance from the origin (the second camera’s
focal point) to the plane.
By multiplying (2) from the right to t in (1), we

obtain

X = (R+
tnT

d
)X! (3)

This equation means that given the rotation, transla-
tion between the cameras and the plane equation, a
point can be transformed from one coordinate system
to another by a 3× 3 matrix.
The projection from the 3D coodinates to the image

coordinates can be described by

m̃ ∼= AX, m̃! ∼= A!X!. (4)

where m and m! are the coodinates of the point in the
first and second images, andA andA! are the intrinsic
matrices of the first and second cameras, respectively.
∼= means equal up to a scale.
Substituting the above equation for (3), we have

m̃ ∼= Hm̃! (5)

where

H ∼= A(R+
tnT

d
)A!−1 (6)

is the homography matrix. Eq.(5) means that given
a point in one image, the corresponding point can be
determined in the other image, using the homography
matrix given in (6).
Since one pair of points in (5) provides 2 constraints

on the homography, given 4 or more feature points

that are visible in both images, we can determine the
homography matrix up to a scale.
In general, a camera has 5 intrinsic parameters: fo-

cal length, aspect ratio, skew angle and the 2 coor-
dinates of the principal point [Faugeras 93]. If very
high precision is required, one needs to also consider
radial distortion [Zhang 99]. However, for certain pur-
poses like rendering new images that does not require
very high precision, one can assume that the cameras
have zero skew and unit aspect ratio, and the prin-
cipal point is at the image center. Zero skew and
unit aspect ratio are two assumptions well satisfied
by modern cameras. And it is also well known that
reconstruction is not sensitive to the position of the
principal point [Bougnoux 98]. The only unknown,
then, is the focal length. Since focal length changes
also with focusing, it is not practical to assume that
the focal length is fixed. Therefore, with two images,
we have two unknown focal lengths. The intrinsic ma-
trices can then be written as

A = diag(f, f, 1), A! = diag(f !, f !, 1) (7)

where f, f ! are the focal lengths of the first and second
cameras, respectively. Using (7) requires the origin of
the image coordinate system be moved to the image
center first.

3 A Linear Algorithm
Suppose that there are two planes, and we have

already obtained two homography matrices H1 and
H2. We can easily get the epipole e in the first image.
Given two planes, the line linking two optical cen-

ters intersect the two planes somewhere. Both inter-
sections are projected onto the first image at the same
point, the epipole e and onto the second image at the
epipole e!. Given H1 and H2, we have a generalized
eigen value equation

γH−1
1 e = H−1

2 e(∼= e!) (8)

where γ is an unknown scale. As Johansson shows,
(8) is a generalized eigenvalue problem, and has two
equal generalized eigenvalues and a third one. e can
be obtained as the generalized eigenvector associated
with the third eigenvalue [Joha 99]. The sign of e has
to be determined later.
Since the scale of H determined from image points

is arbitrary, we can rewrite (6) as

sH = ARA!−1
+At

nT

d
A!−1

(9)

where s is an unknown scale. Using At = ae with
a being a scale such that "e" = 1, and doing some



algebraic manipulations, we obtain

sHA! − en̄T = AR (10)

where n̄ = an/d = [n1, n2, n3]
T . Multiplying the

transpose of each side of (10) from the right yields

s2HA!A!T HT+neeT−s(HA!n̄eT+en̄T A!T HT ) = AAT

(11)
where n = n̄T n̄. The above equation is linear with
respect to a 7-dimensional vector
p = [s2f !2, s2, f2, n, sf !n1, sf

!n2, sn3]
T .

Since the matrices are symmetric, generally there
are only six independent equations. We can rewrite it
as

Lp = q, (12)

where L and q are a 6× 7 matrix and a 6× 1 vector,
respectively, uniquely determined from H and e.
We cannot directly obtain a unique solution from

the above equation, but we can express the solution
in the following form

p = L+q+ λg (13)

where L+ = LT (LLT )−1 and g is the null vector of
L which can be obtained as the right singular vector
associated with the smallest singular value of L. λ is
an unknown scalar to be determined.
We express the i-th component of p as pi = fi+λgi.

Since we know nT n = 1, we can build the following
equation

p2
5 + p

2
6 +

p1

p2
p2

7 = p1p4 (14)

which is cubic with respect to λ. It can be solved in
closed form. Experimental results show that the cu-
bic equation usually degenerates to a quadratic equa-
tion (see Section 6) and there are usually two solu-
tions. Which one is right can be determined by forcing
det(R) = 1.
Once p is determined, we can express the estimated

rotation matrix R! as

R! = sA−1HA! −A−1en̄T (15)

The above equation does not guarantee that the ma-
trix is an orthogonal one, nor does it guarantee that
its determinant is positive. Only one of two solutions
of p gives R! a positive determinant. The other is
abandoned. Next, the orthogonal matrix that is clos-
est to R! can be obtained as UVT where U and V are
the left and right singular matrices of R!, respectively
[Kana 93]. It is the rotation matrix we look for.
There is still one more ambiguity in the sign of e.

Since the second term in the righthand side of (6)

includes the product of t and nT , we need only re-
verse their signs simultaneously to keep the product
unchanged.
The sign of e is chosen such that the computed 3D

point is in front of both cameras. Given a pair of
corresponding points x and x! in the two images, zx̃
and z!x̃! are the 3D coordinates of the point in space
where z, z! are unknown. They satisfy

zx̃ = Rz!x̃! + t . (16)

The depths can be computed as!
z
z!

"
= (BT B)−1BT t (17)

where
B = [ x̃ −Rx̃! ]

This computation is repeated for each pair of matched
points. When the sign of t is reversed, the signs of the
depths are also reversed. If the signs of the depths for
the current e are positive, the current e is chosen. If
the signs of the depths are negative, we choose −e and
simultaneously −n.
Up to now, we have obtained a unique solution of

all the unknown parameters for each plane. The re-
sults for those parameters shared by all planes, such
as focal lengths, rotation and translation, usually are
not identical. we can choose any one set from them.
These parameters, together with the normal and dis-
tance for each plane, are then used as initial guesses
to minimize the difference between the observed image
points and their reprojections so that the estimation
is optimized in the least-square sense.

4 Bundle Adjustment
Suppose that there are M planes and N matched

points in the two images. The difference between the
observed image points and the reprojections of the
computed 3D points is defined as

E =

M#
j=1

N#
i=1

ω(i, j){"ui − p((R+ tnT
j /dj)X

!
i)"2

+"u!i − p!(X!i)"2} (18)

where

p([X,Y,Z]T ) = [f
X

Z
, f
Y

Z
]T ,

p!([X !, Y !, Z !]T ) = [f !
X !

Z!
, f !
Y !

Z!
]T ,

and ω(i, j) = 1 when the i-th point belongs to the j-th
plane; otherwise it is zero. Adding ω(i, j) facilitates
representing points that belong to two or more planes.



Since the 3 coordinates of a point is not independent
given the equation of the plane on which they must
lie, we choose the X !

i’s, Y
!

i ’s, nj ’s and dj ’s as the in-
dependent structure parameters over which the cost
function is to be minimized.
There are 3 more parameters for the rotation and

2 more parameters for the orientation of translation.
Note that the scale of translation cannot be recovered,
just as the scale of the space cannot be determined.
So we set the length of the translation vector to be 1.
The minimization can be executed by the

Levenberg-Marquartd algorithm [Press-et-al 88].

5 Experimental Results
We have done experiments for a number of multi-

planar scenes. One of the example is shown here.
Fig. 2 shows the two input images which are taken of a
scene composed of a wall and a floor. The image size
is 1280 × 960 pixels. The homography matrices are
determined from point matches using the algorithm
proposed by Hartley [Hartley 97]. The points are cur-
rently manually matched.
The final focal lengths of the two images are 1246

and 1166 pixels, respectively. The angle between these
two planes is estimated to be about 86.3◦.
The reconstructed scene is modelled by VRML with

texture maps from one of the original images. New im-
ages are generated of the scene for new view points.
One of them is shown in Fig. 3. The geometry agrees
with our perception of scene. The reason for the defor-
mation of the texture is because the texture mapping
is done independently for each triangle, so the global
consistency is not guaranteed. Also note that the sofa
is not treated as a separate object, but as parts of the
two planes.
Fig. 4 shows how large the angle between the two

planes looks. It looks just like a right angle, though
we do not have this knowledge in our program.

6 Relationship to the Kruppa Equa-
tion

The experimental results show that in most cases,
the first 3 components of g are very close to zero. This
means that the two focal lengths can be determined
regardless of the unknown λ. In other words, the two
cameras can be calibrated separately before comput-
ing the structure and motion.
Actually, we find that this is equivalent to

the Kruppa equation [Luong-Fau 97, May-Fau 92,
Xu-Sugi 99]. Starting from (10), we can derive the
Kruppa equation. Multiplying [e]× from the left to
both sides of (10), we obtain

s[e]×HA! = [e]×AR (19)

Figure 2: Two images of a scene with two planes



Figure 3: Images are generated for new viewpoints
from the reconstructed planes with the original image
as texture maps.

Figure 4: The two reconstructed planes are perpendic-
ular to each other. The small balls show the positions
of the feature points.

Again, multiplying the transpose of each side from the
right yields

s2[e]×HA!A!T HT [e]T× = [e]×AAT [e]T× (20)

This is exactly the Kruppa equation, because F =
[e]×H.

It is widely known and our own experience also
shows, that camera calibration using the Kruppa
equation is very sensitive to noise [Bougnoux 98]. Be-
cause the epipolar geometry provides only two con-
straints on the intrinsic parameters, we can solve for
the two focal lengths if all other intrinsic parame-
ters are already known [Hartley 92, Brooks et al 96,
Bougnoux 98]. In our experience, it is often the case
that one or both of the focal lengths do not have a real
solution in the Kruppa equation, because we have to
solve a second order equation in terms of f2 and f !2

and they often have negative solutions.
Compared with the solution using Kruppa’s equa-

tion, our result using this new algorithm is more re-
liable. The reason is probably that the epipole and
the fundamental matrix (though not explicitly ex-
pressed in our algorithm) are more reliable in our
new algorithm. Recall that we do not compute the
fundamental matrix directly from the image points
[Xu-Zhang 96], but rather, we compute the homogra-
phy matrices from image points first, and the epipole
and implicit fundamental matrices are determined
from the homography matrices. Global constraints of
coplanarity are incorporated in this process so that
the computation is more robust to noise.
It should be noted that since our algorithm is es-

sentially equivalent to solving the Kruppa equations,
it inherits the degeneracies of the Kruppa equations
[Brooks et al 96]. One such degeneracy is the case of
coplanar optical axes.

7 Conclusion
In this paper we have described a new algorithm to

determine camera focal lengths, camera motion and
planes in space given two perspective images of multi-
planar scenes. The algorithm is based on a linear al-
gorithm solution of the parameters. The solution can
be used as an initial guess to minimize the difference
between observations and reprojections. Experimen-
tal results show that the new algorithm is reliable and
robust to noise. We have also given a discussion about
the relationship between our new algorithm and those
using the Kruppa equation.

We are currently investigating how to match and
group/segment points by finding which points satisfy
the same homography matrix. The final result will be



an automatic system that can detect and reconstruct
planes.
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