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The development of large coherent structures in a shallow mixing layer is analyzed. The results are
validated with experimental data obtained from particle tracking velocimetry. The mean flow field
is modeled using the self-similarity of the velocity profiles. The characteristic features of the
down-stream development of a shallow mixing layer flow, like the decrease of the velocity
difference over the mixing layer, the decreasing growth of the mixing layer width, and the transverse
shift of the center of the mixing layer layer are fairly well represented. It turned out that the
entrainment coefficient could be taken constant, equal to a value obtained for unbounded mixing
layers:a=0.085. Linearization of the shallow water equations leads to a modified Orr—Sommerfeld
equation, with turbulence viscosity and bottom friction as dissipative terms. Growth rates are
obtained for each position downstream, using the model for the mean flow field. For a given energy
density spectrum at the inflow boundary, integration of the growth rates along the downstream
direction yields the spectra at various downstream positions. These spectra provide a measure for the
intensity and the length scale of the coherent structtites dominant mode The length scales
found are in good agreement with the measured ones. The length scale of the most unstable mode
appears much larger than the length scale of the dominant mode. Obviously, the longevity of the
coherent structures plays a significant role. Three growth regimes can be distinguished: in the first
regime the dominant mode is growing, in the second regime the dominant mode is dissipating, but
other modes are still growing, and in the third regime all modes are dissipating. It is concluded that
the development of the coherent structures in a shallow mixing layer can fairly well be described
and interpreted by the proposed linear analysis.2@2 American Institute of Physics.
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I. INTRODUCTION ment by the injection of dye in the center of a shallow mix-
ing layer. Figure 1 shows large scale coherent structures, to
Rivers, in particular low-land rivers, belong to the classbe interpreted as Kelvin—Helmholtz instabilities. The dye
of wide open channel flows. The aspect rqgtdepth/width is band rolls up by the action of large scale motion, whereas the
on the order of 5% or less. At several places in rivers, shaldispersion of dye on smaller scales results in a widening of
low mixing layers can arise, i.e., transverse shear layers bahe dye band.
tween contiguous flows of different velocity. Examples are ~ Due to the difficulties it causes for turbulence modeling,
found at the confluence of two rivetsn a compound chan- the anisotropy in shallow shear flows has been the subject of
nel at the interface between the main channel and a floothany studies;*~’ with emphasis on the interaction between
plain, or between the main channel and a groyne fi@tiar-  the large scale motion and the small scale motion. The influ-
acteristic of these shallow shear flows is the anisotropy of th€nce of the no-slip wall on the large scale motion is often
turbulent motion. The no-slip boundary at the bottom givesepresented by a bottom friction parame&raccording to
rise to a turbulent wall flow, with a characteristic length scaleAlavian and Chut
of the order of the water depth. The transverse shear layer
can, however, contain length scales much larger than the wa- _ ©f i &
ter depth, resulting in a large scale motion restricted to the 2 HAU’
horizontal plane. This large scale motion has a significant
influence on the transverse exchange of mass and momewith ¢c;= r,/p3U? the bottom friction coefficients the mix-
tum, which is important for example for the dispersion of ing layer width,H the water depthU, the velocity in the
pollutants and for sediment transport. center of the mixing layer, andU the velocity difference
The typical length scales can be visualized in an experiover the mixing layer. This bottom friction parameter is in-
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FIG. 2. Schematic top and side view of the shallow flow facility. The mixing
layer region is indicated by dotted lines. The measurement areas are indi-
cated by the dashed squares.

Il. EXPERIMENTS
A. The flume and flow conditions

Experiments were conducted in a shallow flow facility
with a length of 20 m and a width of 3 m, Fig. 2. The inlet
section of the flume consists of two parts, each with a sepa-
rate water supply, in order to establish a velocity difference.
The inlet section has a vertical contraction that connects to
the horizontal part of the flume. Screens are placed between
the contraction and the entrance of the horizontal part to
obtain a homogeneous inflow. Floating foam boards are
placed just downstream from the screens to suppress surface
FIG. 1. Large pgherent s.tructures are visualized by dye injection in th waves. In order to have a fu"y develop'eq.turbulent boundary
center of the mixing layer just downstream of the splitter plate. The arrowjayer at the confluence, the flows are initially separated by a
indicate the velocities in the two undisturbed streams. The width of the flon3-m-long thin splitter plate. The horizontal bottom and the
domain is 3 m and the ater depth is 67 mm. sidewalls of the flume consist of glass plates, assuring a

smooth surface. A sharp crested weir regulates the outflow.

Two shallow mixing layers are examine@able ),

terpreted as a measure of the ratio of dissipation to produGyhich are similar to the cases studied by Uijttewaal and
tion of kinetic energy contained in the large eddies. AcriticaIBooijj who used laser Doppler anemometry. Here we use
value Sc de.notes equilibrium of production and Qissipation particle tracking velocimetryPTV) as a measurement tech-
and lies n the range of 0-065_0-12’ _confirmed by pique since it yields a dense grid of velocity points. This is
egp.enment% and stability analys'e‘k. The critical bottom  5qyantageous for the determination of high velocity gradi-
friction number is used to determine the development of the:nts in transverse direction and for a proper determination of
mixing layer width and for the prediction of the presence ofie development of the mixing layer width in the down-
large scale motion. However, the critical bottom friction gtream direction. The data of this study compare well with
number just indicates the equilibrium of the production andhe results of Uijttewaal and BodijThe two configurations
dissipation of kinetic energy, and is not a measure for th§jemonstrate the effect of the water depth on the evolution of
amount of kinetic energy. As the advection of kinetic energyihe coherent structures. The Reynolds number, based on the
plays a role, the growth rate itself is not sufficient for the y,a5n velocity and the water depth, is sufficiently high (Re
determination of turbulence characteristics, like the energy. 4000) to ensure the flow is fully turbulent and the Froude

density and typical length scale. In this study we aim ton,mper sufficiently low (F<0.5) to minimize the effects of
determine the development of the coherent structures in thg,face disturbances.

downstream direction, taking into account the effect of ad-
vected kinetic energy. For simplicity we consider a mixing g, particle tracking velocimetry ~ (PTV)

layer in a straight horizontal flume without variations in ) ] ) ) ] )
bathymetry or bottom roughness. Particle tracking velocimetryPTV) is applied to obtain

The development of the mean flow field is described byS€quences of velocity maps of the surface veloqity. quating
a quasi-one-dimensional model, based on self-similarity oP°lyPropylene beademore than 90% submergedith a di-
the velocity profiles. The development of the properties of
the I'a‘rge Scale.mOtlo.n IS SUbsequently determined b.y IInea1rABLE I. Flow conditions at the end of the splitter plate.
stability analysis, using the calculated mean flow field as

base flow. We make use of simplified analyses in order to H (mm) U1(xo) [m/s] U,(Xo) [m/s] ct [-]
understa_nd the main mecl*_uamsm_s. The_results are vallda_te 2 0.25 011 0.0064
by experimental data, obtained with particle tracking veloci- 67 0.32 0.13 0.0054
metry.
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ameter of 2 mm are used as tracers. A distributor is used to o
Ju Ju Jo dh ¢

spread the beads homogeneously on the water surface. A — 4+ f— +5—=—g—— — 7 \VU2+5%+ 1LV,
digital camera mounted on a bridge over the flume recorded  dt X ay ay 2h
the positions of the particles. The caméf@dak ES] has a (4)
resolution of 100& 1018 pixels with 256 gray levels and a . A . S

; . . . whereu is the velocity in streamwise direction andv the
frame rate of 30 Hz. Time series of images are stored d|rectI¥/ o N .

elocity in lateral directiony of the horizontal plane. The

: ®

on the hard disk of a PC to a maximum of 10 000 frames for . : .

. . dgpth—and—short—ume—average operator is denoted by a tilde
a single continuous sequence. Measurements are perform " o .

. . g ~). The bed friction coefficient; for turbulent flow is de-

for nine connected areas, covering the mixing layer over L rmined over a smooth bottom b
length of 11 m, as indicated in Fig. 2. Since the upstream par y
of the mixing layer contains small details the first three mea- 1 1 1
surement planes have a dimension of 0.82 @82 m to ob- In| Re\/—c¢|+1
tain a resolution sufficiently high to resolve the relatively Vie, X 2
small coherent structures. The last six areas have dimensions
of 1.65mx<1.65m to capture the full mixing layer width. Wwhere ReUH/») denotes the depth-based Reynolds num-
Typically 2500 particles were detected per image. The larg®er. Since we aim to “resolve” the large scale coherent mo-
scale motion can therefore be captured, but the small scaléon the turbulence to be modeled as an effective eddy vis-
turbulence is not fully resolved. A PTV-algoritiris used to ~ COsity v, is restricted to the small-scale turbulence, produced
determine the velocity of the individual particles. This in the bottom boundary layésee also Chen and JifkaThe
method tracks the paths of individual particles and calculatesmall scale bottom turbulence is estimated here by using a
the velocity, resulting in an unstructured velocity map. Inter-Simple expression fog the turbulence eddy viscosity, see, for
polation of the velocity vectors yields a sequence of velocityexample, Fisheet al:
maps on a structured grid. »,=0.15Hu, . 6)

This definition differs from the approach of Alavian and
IIl. MODELING Chu? who used an eddy viscosity based on the large scale
. motion, using the mixing layer width and the velocity differ-
The modeling Of. the deveI(_)pment 9f the coherenf[ SUCHnce over the mixing layer, which resulted in a higher eddy
tures in a shallow mixing layer is done in two steps. First the\fiscosity.
mean flow field is determined using a quasi-one-dimensional
model,i b_ased on self—similar?ty. Second, a linear stabilityB_ Mean flow field
analysis is performed to predict the development of the co-
herent structures for the given base flow. This procedure as- [n order to determine the base flow for the stability
sumes that the influence of the coherent structures on thnalysis, an analytical model is formulated to predict the
mean flow is a|ready accounted for in the quasi_onemean streamwise velocity field. For the determination of the

dimensional model. Both models are based on the shallowhean velocity, the influence of the small scale bottom turbu-

water equations, which are described first. lence is neglected, i.e., the eddy viscosityis set to zero. A
characteristic property of an unbounded plane mixing layer
A. Shallow water equations is the self-similarity of the transverse profile of the stream-

wise velocity'® This self-similarity is also found for shallow
mixing layers, according to the current and previous
experiments:’ Characteristic properties of the shallow mix-

r7ng layer are: the downstream decrease of the velocity differ-

the water depth the ﬂ.OW Is describec_i by the two-dime_nsionaénce, the decreasing growth rate of the mixing layer width,
shallow water equationgthe De Saint Venant equatigus and the shift of the center of the mixing layer to the low

The continuity equation and the momentum equations in th?/elocity side. A model for the mean flow field should capture

horizontal plane are integrated over the water depth and av \1ase properties.

eraged over a period larger than the time scale of the three- The flow outside the mixing layer defines the mean ve-

dimensional bottom turbulence, but smaller than the timeiocity difference over the mixing layerU = U, —U,) and
. . L . . — U4
scale of the large scale motion, resulting in: continuity, the mean velocity in the center of the mixing layed (

oh  ohu  ohT =(U;+U,)/2). The width of the mixing layetd) is defined
= (20 here by the ratio of the velocity differenddJ and the lateral
gradient of the velocity in the centes{/dy.):

The shallow water equations form the basis of the mod
eling of the mean flow field and the linear stability analysis.
As the horizontal length scales are significantly larger tha

—+—+—=0;
gt ooax oy

X momentum,

AU

= 0= ——. 7
Jgu _du _du dh ¢ U
AU 4T = — g —— —UNT2+ T2+ V2, =
gt ox  ay X 2h e

3 Self-similarity implies that the transverse profiles of the
y momentum: streamwise velocity can be described by a profile function. A
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FIG. 3. Sketch of the lateral profile of the stream wise velocity, according to

Eq. (8). FIG. 4. Development of the velocity differendeJ (x) in streamwise direc-
tion for the 42 and 67 mm cases according to the measurements and the
model, Eq.(12).

variety of functions can be considered, e.g., the error func-

tion or the hyperbolic tangent. We use the hyperbolic tangent 1 dU§ Ct, , dH,

(tanh, because it fits the data well. The exact shape turned 5 —g,+ Z_HZU2+QW:0' (12)

out to affect the results of this analysis only weakly. The

mean flow field is then approximated ligee the sketch in The streamwise gradient of the water level is the same for

Fig. 3 both sides as demonstrated in previous experinfeAter
subtraction of Eq(11) from Eg. (10), using cr=cq =(Cy,
U(x,y)=U(x)+ AUGO YYD} ® *Cr)/2, and using a constartl;, the velocity difference
2 78(x) AU(X) is expressed by

By using a profile function the two-dimensional formulation
is reduced to a formulation depending on the downstream
position(x) only. The development of the velocity difference
AU, the velocity in the center of the mixing laygt,, the
transverse position of the center of the mixing laygr and
the mixing layer widthd will be specified in the following.
The velocity in the center of the mixing layer is approxi-
mated by a constant).. This assumption is justified by
using the incompressibility condition. The discharge at th
inlet section should be equal to the discharge far down- dé  AU(x)
stream: dx YU,

) (12
whereAU, denotes the velocity difference at the inflow. The
predicted exponential decrease of the velocity difference is in
good agreement with the measurements as shown in Fig. 4.

In an unbounded self-preserving mixing layer the
spreading rate, i.e., the growth of the mixing layer width
eéS(x), is proportional to the relative velocity difference:

Cs
AU(X)=AU, ex;{ - =X

(13

H W The entrainment coefficient has an empirically determined
U1(Xo) —— +Ua(Xo) 5~ =U(x:)HW, (9 value of@=0.085 for undisturbed unbounded mixing layers,
based on numerous independent experimEnibstitution
with W denoting the width of the flow domairty the con-  of the velocity differenceAU from Eg.(12) and integration
stant water depth);(xg) andU,(xy) the initial streamwise overx leads to

velocities outside the mixing layer, andl, the uniform ve-

locity far downstream. This leads tdJ(X.)=(U(Xg) X)=a —(1—exp<——x )+50. (14
+U5(Xp))/2=U.. In the experimentsJ. shows a slight c ~f h

increase(<3%) in downstream distance due to the free-The initial width 5, is imposed by the thickness of the
surface slope and the horizontal bottom. boundary layers that have developed on both sides of the

The velocities outside the mixing layer are not influ- splitter plate and is approximateliy=h. The virtual origin
enced by the mixing layer. These flows can be considered tef the mixing layer is located upstream of the splitter plate
be one-dimensional. The development of the velocity differ-apex. The development of the mixing layer width as pre-
enceAU(x) is then determined by the momentum equationdicted by Eq.(14) is in fair agreement with the measure-
in streamwise directionEq. (3)] for the high velocity side, ments, Fig. 5. Note that no fitted function with an empirical
denoted by the index 1, and the low velocity side, denoted byalue of S, is needed, as proposed by Chu and Babatutsi.
the index 2: According to Eq.(14), the mixing layer width will reach its
maximum value ak— .

Due to the deceleration of the high velocity side and the
acceleration of the low velocity side, the center of the mixing

1dUf Cr o dH,

EW'FZ—H]-UJ_"FQ dx 0, (10)
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FIG. 7. Velocity vectordmeasurementsand profiles(mode) of the mean
velocity field of the 67 mm case. The dashed line indicates the position of

01r, the center of the mixing layer.

0 2 4 6 8 10 12 14
x [m] C. Stability analysis

FIG. 5. The measured and modeldeh. (14)] development of the mixing
layer width for the 42 and 67 mm cases.

1. Model description
A straightforward linear stability analysis for shallow
water flows has been carried out by various autfiot€om-
parison of linear stability analyses with measurements is
however scarce, although a first successful comparison of the
pical wave number in a compound channel flow was made
An integral mass balance can then be derived for as an e )y Tamaiet al.”* The equatipns for the stabili_ty ana!ysis are
ample, the high velocity side: equal to the ones of Alavian and Chuut dlffer.sllghtly
from the analyses of Chat al® and Chen and Jirka® A
Ye(x) w o . . . )
JO HU(x.y)dy=H Eul(XO) (15 Isor::l)irr:gd.escrlptlon of the model is therefore given in the fol
_ _ ) _ The shallow water equatior{8)—(4) are used as starting
from whichy. is solved. The predicted shift of the center of point. In contrast with the analysis by Chual.® the viscos-
the mixing layer is compared with the measurements in Figity term is maintained here. Chen and Jftkeave demon-

layer is displaced in the lateral direction to the low velocity
side. To estimate this lateral shift, the center of the mixing
layer is assumed to be a streamline of the mean flow fielqg

6. Again, the agreement is satisfactory. _ strated the importance of the turbulence viscosity since it
The mean flow field is now completely determined by 4¢ects the stability of the flow.
Egs.(8), (9), (12), (14), and(15) and the boundary condi- Following the common approach of linear stability

tions, i.e., the two inflow velocities and the water depth. They41ysis, small perturbations are superposed on the mean ve-
only empirical parameter used is the entrainment coefﬂmenpbcity and water level:

a, for which the empirical value determined from unbounded

mixing layers is used. The value of is well defined for U=U(x,y)+u(xy,t), v=v(Xy,t),

fully developed flows over smooth surfaces. Figure 7 shows F=H+h(xy.0) (16)

an overview of the measured and modeled mean streamwise AR

velocity for the 67 mm case. The model predicts the meaReynolds decomposition of the shallow water equati@s

sured flow field rather well and the results are considered4) results in equations for the perturbations. The low Froude

suitable as input for the stability analysis. numbers (<0.5 allow for the use of the rigid lid
assumptiort? through which the fluctuations in water level
are now expressed as pressure fluctuatmnBropping the

0 . . . . . : higher order terms, this leads to

. . X X .| + measurement 42
X : : . - | — model 42 Jdu v
Y . . . : - measurement 67 —

01F- - *>+ ------ TRRREE Cl= modeler [ IX (?_y_

0, (17)

&u+U<9u+ U ap csU . 82u+&2u
at Yoy U o2 Ty )

(18
v N v
e ay?)
(19
; ; ; ; ; ; ; The second term on the right-hand side of EG8) and(19)
0 2 4 6 8 10 12 14 is obtained from a first-order Taylor expansion of the bottom
X [m] friction contribution. It should be noted here that the bottom

FIG. 6. Development of the measured and modeled transverse position §FiCtion term obtaingd by Chen and Jifkd is a factor 2
the center of the mixing layer for the 42 and 67 mm cases. larger than the one in Eq19).

____U+Vt
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A normal mode solution of the form[u,v,p]
=[0(y),0(y),p(y) lexdi(kx—wt)] has been applied, in 012 X Tk
which k and w are the respective complex wave number and X *x
frequency. Substitution of the normal mode solution into 01r X %
(17)—(19) results in X X
o 0.08 < %,
ikG+0'=0, (20 X x,
7)) % %
ciU 0.06F % %
—iw0+ikU0+f;U’=—ikp—?Uﬂtvt(ﬂ”—kzﬂ), %
(21 0.04F X,
ciU I 2
—iw13+ikUz“)=—f)’—Zf—HbJrvt(z}”—ka)). (22) 002
The prime denotes the differentiation with respect to the lat- 02 04 05 03 1
eral coordinatey. The set of equation®0)—(22) can be re- k

duced by elimination ofl andp to

w
(u—E)(a"—kzﬁ)—au":obfwvis (23)
with
cU( 1., U
Dor=iqq | ~ kot go'+o7),

14
Dyic=1| f(a"" —2K25" +K*D).

The form of this equation is similar to the Orr—
Sommerfeld equatiot®. The terms on the right-hand side,

however, are different. The first term denotes the stabilizin
influence of the bottom shear stress and the second term t
stabilizing influence of the turbulence viscosity. The viscos

ity term differs from the viscosity term in the Orr—
Sommerfeld equation by the use of an eddy viscosity th

stabilizing as follows directly from Eqg21) and (22). The
eigenvalue problerhEqg. (23)] can be solved by following a

spatial approach or a temporal approach. The spatial a
proach assumes an exponential growth of the perturbatio
in downstream directior. The frequency of the disturbance

w is therefore real, anklis complex, withk, representing the

wave number and; the spatial growth rate. The temporal
approach assumes the disturbances to grow exponentially

time. In that casd is real andw complex, withw; represent-
ing the temporal growth rate:

[u,v,p]=[0U(y),0(y),p(y) Jexdi(kx— (o +iwj)t)].

a
represents the small scale turbulence instead of the molecul
viscosity. The bottom friction term is a consequence of th
depth-and-short-time averaged vertical shear, and is alwa

FIG. 8. Neutral stability curves of an inviscid flow obtained with E2Q)
with the correct(X) and erroneous$+) bottom friction term and the result
by Chen and Jirka—Ref. &-).

which the growth takes place is much larger than the length
scale of the perturbations. A comparison of the temporal
method with a spatial methdavill be made in the following.
According to Gastel’ the spatial growth ratkiS can easily
be determined from the temporal growth ratd by k°
=w,/cT with cT=w//k" as the propagation velocity.

The eigenvalue problem of EqR3) is solved for given
wave numbers yielding the growth rate and frequency

iur, by using a finite difference technique. The stability of

l&e flow follows from the stability curvesk(w;(k)). Pertur-
bations with wave numbek are growing if w;(k)>0. In

order to validate the proposed temporal method for the linear
§tability analysis, a comparison is made with the inviscid
i’;llculations of Chen and Jirkawho solved the eigenvalue

eoroblem with the spatial method. Stability curves are there-
>jgre calculated for a range of profiles, determined by a bed

friction number S [Eq. (1)]. The zero crossings of these
curves determine the neutral stability curve, which is chosen

pa_s the criterion for comparison. The neutral stability curves
I,%etermine the critical wave numbers whesgk) =0. Figure

shows three different neutral stability curves. The first
curve is the neutral stability curve according to the above-
described model, and the second is obtained from Chen and
iJd'rka.4 The large difference between these curves can be as-
cribed to the incorrect derivation of the bottom friction term
in the eigenvalue problem of Chen and Jifkmplementa-
tion of the erroneous bottom friction term into the current
model results in the third curve, which coincides with the

original curve of Chen and Jirkawith this comparison the

As shown by Michalk® the spatial approach covers the . .
. . - : use of the temporal approach instead of the spatial approach
physical phenomenon of a spatial mixing layer slightly more. .~ " .. . ; .
. .~ “is justified. In subsequent sections the above-described linear
precisely than the temporal approach. However, the eigen:,’ . . . e
stability analysis model is used. For sensitivity analyses re-

value problem OT the spatial approach is more complicated tr%arding bottom friction and eddy viscosity we refer to Chen
solve than the eigenvalue problem of the temporal approac

et
due to the nonlinearity ik. For this study we have chosen to dnd Jirka.
solve the temporal eigenvalue problem instead of the spatial . o
one. The wave number is therefore real and will be denoted- EXperimental validation
without a subscripk=k,, unless defined differently. The The above-described stability analysis is applied to the
temporal approach is allowed since the length scale oveexperiments of Sec. Il. The validated velocity profiles, com-
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25 - - - - - - - - - consequence of the broadening of the mixing layer width.
) The wave number of the most unstable mode is decreasing
more rapidly for the 67 mm case than for the 42 mm case as
the mixing layer width is growing faster for the 67 mm case.
The magnitude of the growth rate also decreases in down-
stream direction. This decrease in magnitude is stronger for
the 42 mm case than for the 67 mm case. The dissipative
influence of the bottom friction is the same for each wave
number, as directly follows from Eq$21) and (22). Note
that the influence of the bottom friction is also implicitly
present in the decrease of the mean velocity difference. The
dissipation due to the turbulence viscosity is proportional to
k?, thus affecting the modes with large wave numbers stron-
ot - - - - - - - - ger than the modes with small wave numbers. Comparing the
2 3 4 65 6 7 8 9 10 two cases shows that the growth rates of the modes with
k [rad/m] small wave numbers are larger for the 67 mm case than for
FIG. 9. Dispersion relation for the 42 mm case) and the 67 mm case).  th€ 42 mm case, because the influence of the bottom friction
The solid lines represeitU. . is smaller for the deeper 67 mm case. The growth rates of the
modes for the large wave numbers are more strongly influ-
enced by the eddy viscosity, resulting in smaller growth rates
puted with the one-dimensional-model of £8), are used as for the 67 mm case than for the 42 mm case in the high wave
base flow. Stability curves are determined for a number opumber range. In the case with bottom friction and/or viscos-
positions downstream of the splitter plate up to a length of 18ty, the dissipative terms can become larger than the produc-
m. In Fig. 9 the determined frequencies are shown versus tion terms, resulting in a negative growth rate. For these
k. The frequencies are linearly proportional to the wave numcases existing disturbances are being dissipated, the stable
bers with a proportionality constant equal to the velocity atsituation is reached, as for example for the 42 mm case at
the center of the mixing layer, justifying the use of the tem-X=10 m.
poral method again. The stability curves of Fig. 10 represent the growth rate
Figure 10 shows the growth rates at several position$0r the various wave numbers at a given downstream posi-
downstream of the splitter plate for both mixing layers. Ation, but they do not predict the energy density of the wave
positive value of the growth rate indicates growth of thenumbers at that particular position. In order to find this en-
perturbation of the particular wave number and a negativ€rgy density, the history of the development of the structures
value indicates decay of that mode. For each position downPas to be taken into account. Integrating the growth rates
stream, a maximum growth rate is found, determining theover the streamwise coordinate yields an amplification factor
locally most unstable mode. The wave number of this unfor the initial perturbation. The energy density spectrum, of
stable mode is close tk=0.445/(0.%) as found by the lateral velocity component, for a certain position down-
Michalke® The most unstable mode is therefore propor-streamx; is then determined by
tional to the mixing layer width. The wave number of this

-
o1

o [rad/s]

T

sy
T

05}

most unstable mode decreases in downstream direction as a E(k,xl)zE(k,xo)le exp( wi(k) kx| dx. (24)
Xo o (K)
0.2 ' ' . ' The initial spectrum denoted b (k,Xg) is assumed to be
that of an undisturbed open channel flow. Such a spectrum is
015r o X=2m flat for small wave numbers. The initial energy density level
041k i - \\ | is taken such that it equals the measured energy density at a
/\ position just downstream of the splitter plate, Fig. 11. The
— 0051 .~ ~ o AN . resulting spectra at several positions, which are obtained by
§ discretization of Eq(24), are plotted in Figs. 1&) and 11b)
= 0 for the 42 mm case and the 67 mm case, respectively. The
S .05 measured energy density spectra of the lateral velocity ob-
tained in the center of the mixing layer are also plotted in
-0.1 Fig. 11, showing a remarkably good agreement. Since the
015 measured spectra are obtained from time series, the fre-
' quency axes are converted to wave numbers by using the
-0.20 propagation velocity.

« Irad The presence of large coherent structures is reflected in a
[rad/m] significant peak in the spectra. Moving in downstream direc-
FIG. 10. Stability curves for the 42 mm caémlid) and the 67 mm case tion, the wave number O_f the peak shifts to the low wave
(dashedl for different positions downstreanx€2, 4.5, and 10 number side, corresponding to an enlargement of the struc-
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tures. The energy density of the peak is growing for the 67btained from the stability analysis as well as from the ex-
mm case over the full stretch, yielding intenser vortices. Theperiments.

peak in the spectrum of the 42 mm caseat10 m is, how- The growth in intensity of the coherent structures is de-
ever, lower than the one &at=4.5 m, indicating a decrease in termined in downstream direction by following the growth
strength for the large coherent structures. rate of the dominant mode. The growth ratesof the domi-

Although the linear stability analysis is used here beyonchant modes are plotted as function of the downstream posi-
its limits of small perturbations, and the growth rates aretion x in Fig. 12. At a certain position downstream, the
integrated over a stretch several times the length scale of thgrowth rate of the dominant mode becomes zero indicating
perturbations, the analysis gives a good prediction of thehat from that position on the coherent structures are losing
energy density and the typical wave number of the coherergnergy. The coherent structures are still present, but are de-
structures. The high wave number range of the spectrungaying. An unstable mode with positive growth rate can,
which is influenced by the dissipative small scale motion, is
underestimated. Obviously E¢6) does not fully apply to
this range of the spectrum, because the small scale three-

Ty N T T T T T T T T T —

dimensional motion in this range is not resolved in this 15 = e Biimm

analysis. The successful prediction using a linear analysis o008 '\ e e R |

suggests that the coherent structures are hardly influencin ViR -+ - most unstable 42mm
0.06 ~

each other and that the energy density spectrum at a certai
position downstream is governed by the spectral distribution [
of the turbulent kinetic energy at the inflow boundary.
In order to track the development of the large coherentg 0.02f
structures, the dominant mode is followed. The dominant
mode is defined as the wave number associated with the
maximum energy density and is therefore representing the ;!
large coherent structures. As mentioned earlier, the most un
stable mode is the wave number for which the energy is -004
growing fastest. A more sophisticated way to identify the 0 1 2 3 4 5 6 7 8 © 10 1T 12 13 14 15
coherent structures and their evolution from the measure: X [m]
ments is by conditional averaging, see, for example, SC"jlranlgG. 12. Development of the growth rates of the most unstable modes and

19 : :
etal™ In this study hOW_ever- we reSt“_Ct oursfelves to th?the dominant modes for the 42 and 67 mm cases. The three different growth
development of the dominant mode, since this property isSegimes are indicated for the 67 mm case.

[1/s]
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FIG. 13. Development of the length scale of the most unstable mode, th&IG. 14. Development of the dimensionless wave nuniter k /2 of the
dominant mode, and the measured dominant mode for the 42 and 67 mmost unstable mode and the dominant mode for the 42 and 67 mm cases.
cases.

=0.445>18The wave number of the dominant mode is, how-

. . ever, not constant, but changes in downstream direction as
however, still be found up to the downstream position wher .
he advection of the coherent structures play a role. The

the most unstable mode has a growth rate equal to zero. : .
. . .~ wave number found far downstream is about twice as large
From that position on the flow is stable and all perturbations

. . " " as the wave number of the most unstable mode.
will decay. At this position the bottom friction parameter has S .
) . The determination of the most unstable mode is there-
reached its critical valudS=S,.

Three different regimes can now be distinguishede fore not suitable for characterization of the large scale mo-

Fig. 12. The first regime(l) is characterized by the positive tion. It highly overestimates the size of the coherent struc-
; tures. The accumulated energy of the coherent structures has
growth rate of the dominant mode. In the second regiihe

. : to be taken into account for the determination of the typical
the growth rate of the dominant mode is negatives coher- . . .
. .. length scale using the dominant mode instead of the most
ent structures are decayingvhile some other modes still

have positive growth rates. The flow is therefore not stableunstable mode.

yet. The third regimegllll) is the stable regime, where all
modes are dissipating and the growth rates are negative. A
though the flow is stable, coherent structures still might exist ~ This study demonstrates that with relatively simple tech-
in this stable regime. As these large perturbations have miques and means, a detailed view can be obtained on the
small wave numbek, they are hardly influenced by the tur- shallow mixing layer and its large scale structures.
bulence viscosity. Therefore, an exponential decay of the en- The quasi-1-D model predicts a mean flow field in ac-
ergy content due to effects of bottom friction is expectedcordance with the measured flow field. The validity of the
beyond this point. model suggests that the effects of shallowness on the mean
The development in downstream direction of the characflow field are mainly governed by the decrease of the veloc-
teristic length scale associated with the coherent structures ity difference over the mixing layer as a result of bottom
related to the wave number of the dominant mode and can bfeiction. The contribution of small scale three-dimensional
determined from the modeled and measured spectra. Tharbulence to the growth rate of the mixing layer and the
time scale of the dominant mode is determined by the freassociated entrainment appears to be negligible. Only at
guency of the peak in the spectrum. Multiplying this time downstream locations where Reynolds stresses in the hori-
scale by the propagation velocity results in the length scaleontal plane have become of the same order of magnitude as
of the dominant mode. The development of these measurdtiose in the vertical plane, a change in the entrainment coef-
and modeled length scales is plotted in Fig. 13 together witliicient « could be expected.
the development of the length scales of the most unstable The use of a mean flow field as a base flow gives an
modes. As demonstrated in Fig. 11, the modeled and meaxtension to the use of linear stability analysis. In contrast
sured length scales of the dominant modes are in good agrewith the classical analysis based on a single velocity profile
ment. As Fig. 13 shows, the length scale of the most unstabl®r which the growth rates and the most unstable mode are
mode is much larger than the length scale of the dominandetermined at a single location, the use of a flow field here
mode. The coherent structures generated upstream have haltbws for the determination of the spatial evolution of the
the opportunity to grow in strength while being advectedenergy densities and the characteristic length scales. The de-
downstream. The effect of the advection is made more clearelopment of the growth rate of the dominant mode shows
in Fig. 14 by the dimensionless wave numliér=ks/2 as  that the flow “stabilizes”(i.e., the dominant mode decays
also used by Michalk& The wave number of the most un- well before the critical bottom friction number is reach®d
stable mode is almost constant and close to the valdeg of =S., where all modes decay. The critical bottom friction

\y CONCLUSIONS
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