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Abstract

This paper presents the first absolute pose estimation ap-

proach tailored to Light Field cameras. It builds on the ob-

servation that the ratio between the disparity arising in dif-

ferent sub-aperture images and their corresponding base-

line is constant. Hence, we augment the 2D pixel coordi-

nates with the corresponding normalised disparity to ob-

tain the Light Field feature. This new representation al-

lows for linear estimation of the absolute pose of a Light

Field camera using the well-known Direct Linear Trans-

formation algorithm. We evaluate the resulting absolute

pose estimates with extensive simulations and experiments

involving real Light Field datasets, demonstrating the com-

petitive performance of our linear approach. Furthermore,

we integrate our approach in a state-of-the-art Light Field

Structure from Motion pipeline and demonstrate accurate

multi-view 3D reconstruction.

1. Introduction

A well-known computer vision problem with many ap-

plications in Structure from Motion (SfM) is that of esti-

mating the absolute pose of a camera [39, 40, 10]. In this

work, we focus on the estimation of absolute pose for non-

central projection cameras with overlapping fields-of-view,

specifically Light Field (LF) cameras. We propose the first

domain-specific approach that is linear, non-iterative and

provides a unique solution for an arbitrary number of corre-

sponding input points.

Multi-camera arrays have long been used in LF or

plenoptic imaging [26]. LF cameras avoid the angular inte-

gration of rays impinging on each pixel, and therefore cap-

ture a 4D slice of the plenoptic function [1]. An alterna-

tive to multi-camera arrays are monocular microlens-based

LF cameras, which have a microlens array placed between

the main lens and a conventional image sensor. The intro-

duction of this microlens array allows the imaged scene to

be captured from multiple viewpoints, termed sub-aperture

images [33], trading off reduced spatial resolution on the

sensor with increased angular resolution. It is also worth

pose?
LF-DLT









A

A

A

A









x = 0 R, t

Figure 1. Our method linearly estimates the camera pose from a

set of at least four 3D points projecting on a LF image.

noting that an increasing number of recent smartphones fea-

ture LF cameras (either arranged in a grid or in the form of

dual-pixel cameras [9]). Various applications have been ex-

plored for post-processing LF images [51], such as depth es-

timation [16], deblurring [42], view synthesis [18], among

which SfM has attracted considerable interest [17, 52, 36].

SfM with LF cameras (LF-SfM for short) is also the topic

where our work finds its primary application.

LF cameras can be considered as a special case of a gen-

eralised camera model [11]. Contrary to central (i.e pin-

hole) cameras, in which all rays captured by the camera

are constrained to pass through a single point known as

the camera optical center, each pixel in a generalised cam-

era samples an arbitrary 3D ray. After extensive research

on absolute pose estimation for central cameras, efforts are

now also concerned with absolute pose estimation for gen-

eralised cameras, e.g. [46, 49, 30, 31, 4]. Although the gen-

eralised imaging model is an elegant formulation, we argue

(and we will discuss in more detail in Sec. 3.3) that LF cam-

eras have implicit constraints which, if directly exploited,

can yield very efficient and accurate algorithms.

1
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To the best of our knowledge, there exists no other abso-

lute pose estimation algorithm customised for LF cameras.

Thus, the contributions of this work are the following:
• A new representation for Light Field points and deriva-

tion of the LF projection matrix for a 3D point.

• A linear solution for LF camera absolute pose estima-

tion based on the Direct Linear Transformation.

• Extensive evaluation of our method with simulations

and datasets acquired with commercial LF cameras.
The rest of the paper is organized as follows. We dis-

cuss related prior work in Section 2. The normalised dis-

parity concept and the proposed LF feature representation

are presented in Section 3. Based on the introduced feature

representation, we derive in Section 4 the proposed abso-

lute pose estimation algorithm, which we call LF-DLT. We

evaluate the performance of LF-DLT and compare it with

state-of-the-art methods in Section 5. A LF-SfM pipeline

using LF-DLT is presented and assessed in Section 6, and

the paper is concluded in Section 7.

2. Related Work

Throughout this paper, the term Light Field (LF) will re-

fer to a configuration where the camera centers are arranged

on a rectangular grid (cf. Fig. 2). This can stem from either

a camera array [50] (a configuration also found on some re-

cent smartphones) or a set of sub-aperture images after the

calibration of a micro-lens based LF camera [7, 3, 35]. In

both cases, we consider an LF frame to consist of a set of

different central views, i.e. the sub-aperture images. The

sub-aperture image whose optical center coincides with the

origin of the LF frame is referred to as the central sub-

aperture image [36, 52].

2.1. Absolute Pose for Light Fields

Central Cameras: When all rays converge to a single op-

tical center, the pose of a central camera can be determined

from n 2D-3D correspondences, solving what is known as

the Perspective-n-Point (PnP) problem. PnP is a widely

studied topic in computer vision, e.g. [8, 54, 32]. The

minimal case, namely P3P, requires 3 correspondences for

which efficient and accurate solvers exist, since the result-

ing polynomials can be solved non-iteratively by radicals.

Non-central (generalised) cameras: In the non-central

case, the problem is known as generalised or non-

perspective PnP (respectively gPnP or NPnP), in which

correspondences between 3D rays and 3D points are as-

sumed. For the minimal case involving 3 ray-point corre-

spondences, Chen et al. [5] derived one of the earliest al-

gorithms. They compute the pose by solving an eighth de-

gree polynomial and proposed to randomly select triplets

to obtain an initial solution, which is further optimized us-

ing ICP [2]. Additional solvers for the NP3P problem

were designed by Nistér and Stewénius [34] and Lee et.

al [23], which reduce to the solution of octic polynomi-

als. If 4 correspondences are available, the scale of the

translation between cameras can be recovered in addition to

pose. Thus, Ventura et al. [49] derive a minimal solution for

generalised pose and scale using Gröbner basis techniques

whereas Kukelova et. al [22] present a solution based on an

efficient algorithm for finding all intersections of 3 quadrics.

Several algorithms for the overdetermined case of ar-

bitrary n > 3 have also been proposed. For example,

Schweighofer and Pinz developed an iterative globally op-

timal O(n) solution, where the distance of a 3D point and

its projection to the line of sight is minimised using Semi-

Definite Positive Programming (SDP) [41]. An extension

of EPnP [25] to the case of generalised cameras is proposed

in [20]. A unified approach to both central and non-central

cameras, namely UPnP, is developed in [21]. However, de-

spite its flexibility, UPnP still needs to disambiguate be-

tween 16 solutions and its implementation is quite involved.

Sweeney et al. [45] formulate the pose-and-scale problem

for generalised cameras as a minimisation of a least squares

cost function, which can be solved as a system of third de-

gree polynomials derived from n ≥ 4 correspondences.

Assuming that the gravity vector direction is given,

Sweeney et al. recover the depths of the points by solv-

ing a quadratic equation and then align the reconstructed

point clouds [44]. Similarly, using lines as features (i.e.

gPnL) and given the vertical direction, Horanyi et al. de-

rive a minimal solver using 3 line correspondences [14].

A more general solution to gPnL (i.e. without any prior

knowledge) is proposed by Miraldo et al. where the pose of

the generalised camera is obtained by minimising the Klein

quadric between 3D lines and their corresponding projec-

tion lines [30]. More recently, minimal solvers for combi-

nations of features (e.g. 1 point-2 lines or 2 lines-1 point)

were proposed in [31].

Owing to their dependence on the solution of high order

polynomials which cannot be solved non-iteratively by rad-

icals, gP3P solvers are significantly slower than their P3P

counterparts. Our linear estimation trades accuracy for effi-

ciency, which is often essential in practical applications.

2.2. SfM for LF Cameras

Recently, Nousias et. al [36] developed uLF-SfM, the

first large-scale SfM pipeline tailored to LF images, in

which the scene is incrementally reconstructed. uLF-SfM’s

reconstruction accuracy is competitive to that of mature

conventional pipelines like COLMAP [40] using only the

central sub-aperture images, but is obtained at a fraction of

the computational cost. In Sec. 6 we will report a modifica-

tion of uLF-SfM to include the proposed method, hence we

provide next a brief description of the former’s operation.

uLF-SfM starts by selecting the two views with the high-

est number of matches, avoiding degenerate configurations

2
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(e.g. pure rotation or zoom-in motion). Their relative mo-

tion is computed with the 17-pt algorithm [27]. Despite the

fact that outlier removal in central cameras is straightfor-

ward, it is more involved in LF cameras primarily due to

the fact that the Generalised Epipolar Constraint (GEC) [38]

should be satisfied by all pairs of corresponding rays be-

tween LF frames. As a consequence, an outlying ray in a LF

frame may result in a set of outliers after RANSAC. uLF-

SfM meticulously filters outliers by examining the number

of incidences of each feature, so that correct features are not

discarded. The scene is reconstructed incrementally by reg-

istering LF frames with gP3P [20] and performing robust

multi-view triangulation among the sub-aperture images of

two-view-LF frames, taking into consideration the idiosyn-

crasies of small baselines. Drift is bounded by periodically

performing bundle adjustment.

3. The Light Field Projection

In this section, we present our main observation that

the normalised disparity is constant for a grid of cameras

(Sec. 3.1), and proceed in developing the proposed LF fea-

tures in Section 3.2. We discuss how these features can be

extracted in LF cameras in Section 3.3 and develop the LF

projection matrix in Section 3.4.

3.1. The Normalised Disparity

Referring to the simplified 2D case depicted in Figure 2,

consider the case where a point O =
[

X Z
]T

is observed

by camera Ci, i ∈ {1, 2, 3}. Let oi denote O’s correspond-

ing 1D pixel projection, dji = oj − oi and bij be the base-

line between the i-th and j-th camera. From Fig. 2, using

the rule of similar triangles it follows that

dij
bij

=
f

Z
, (1)

where f is the focal length of the cameras. It follows from

eq. (1) that for any two cameras that are stereo-rectified, i.e.

aligned either horizontally or vertically, the ratio between

the disparity and their baseline is constant and inversely pro-

portional to the depth of the 3D point they observe. This

fact is well-known in the stereo literature, see e.g. [37]. In-

tuitively, one can think that scaling the baseline between

cameras (i.e. moving the cameras further away or bringing

them closer) results in scaling the disparity so that the ratio

remains constant.

In general, for a set of N collinear cameras with parallel

optical axes and a 3D point Ok, we can rewrite eq. (1) as

∀ i, j ∈ {1, 2, . . . , N} ,
dij
bij

=
f

Zk

. (2)

In total, there are
(

N

2

)

scaled disparity estimates. From

hereon, we will refer to the ratio between the disparity and

the baseline as the normalised disparity, denoted by ρ.

o
1

o
2

O

C
1

f

C
2

C
3

o
3

Z

b
12

b
23

Figure 2. A 3D point projecting on three sub-aperture images ar-

ranged on a 1D grid.

3.2. Light Field Features

LF systems are composed of either multiple pinhole

cameras arranged in a grid or from micro-lens based LF

cameras (whose sub-aperture images after calibration are

equivalent to a set of pinhole cameras arranged on a grid).

As discussed in Sec. 3.1, for a N × N grid and a single

3D point we can obtain 2N
(

N

2

)

estimates of the normalised

disparity ρ (stemming from the vertical and horizontal con-

figurations). We define the homogeneous LF feature as:

l =









xcent

ycent
ρ
1









, (3)

where (xcent, ycent) are the pixel coordinates in the central

sub-aperture image. Note that given l, the projections in

other sub-aperture images can be obtained simply by mul-

tiplying its 3rd element, i.e. ρ, by the baseline between the

central camera (or sub-aperture image) and the camera (or

sub-aperture image) we wish to project to.

3.3. Light Field Features in LF­SfM

The prevalent approach for feature extraction in LFs is

to repeatedly apply a 2D detector across sub-aperture im-

ages and match the corresponding descriptors, which gives

rise to sets of features. Each of these features describes the

projections of a 3D point to the sub-aperture images. These

sets of features are converted to 3D rays, provided that the

LF system is internally calibrated, to be used for either rel-

ative or absolute pose estimation. However, we argue that

due to the very short baseline of LF cameras, these rays do

not provide valuable information [24].

Consider, for example, a LF camera of focal length

f and calibration matrix K. Let two matched features

be s1 =
[

u v 1
]T

=
[

192 276 1
]T 1 and s2 =

[

u+ d v 1
]T

, where d is the disparity between the fea-

ture locations. Converting pixels to rays (i.e. homogeneous

1Sub-aperture images in a Lytro Illum camera are 383× 552 pixels.
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coordinates) as K−1
s1 and K

−1
s2, we observe that the dif-

ference in the x-coordinate of the rays is d/f . This means

that for disparities less than 1 pixel and a focal length of 800
pixels, the angle between the resulting rays will be 0.07◦,

which numerically can as well be considered as the same

ray corrupted with noise. As a consequence, the sampled

rays from a LF camera are not sufficiently distinct from each

other and may lead to significant errors (especially when the

LF camera is modeled as a generalised camera).

Departing from the naive and exhaustive feature ex-

traction approach, Dansereau et al. [6] recently developed

LiFF, a SIFT-like feature detection algorithm in which they

extend the idea of the standard SIFT detector to the 4D

LF. LiFF provides the pixel location, scale, orientation and

slope of each interest point. For a calibrated LF camera,

slope can be mapped to depth [6]. This is very similar to

our feature representation of normalised disparity since ρ is

inversely proportional to depth.

Our approach can use both types of features, i.e. ei-

ther SIFT features in sub-aperture images or LiFF features.

Specifically, one can extract SIFT features in all the sub-

aperture images, estimate different values of ρ (resulting,

for example, from all pairwise combinations of collinear

cameras), and use the median of these values as a robust

estimate of ρ. An alternative would be to extract LiFF fea-

tures and simply invert the depth value obtained from them.

In our experiments, we compute multiple estimates of

ρ using the features linked to the same 3D point within a

LF frame (a.k.a. intra-frame), as provided by [36]. A LF

feature is then obtained by robustly estimating ρ from the

median of all corresponding values.

3.4. Light Field Projection Matrix

Let Xw =
[

X Y Z 1
]T

be the homogeneous coor-

dinates of a 3D point in the world coordinate frame. Using

eq. (3), the homogeneous projection l of Xw in a light field

can be obtained as:

l =
1

Zc









f 0 cx 0
0 f cy 0
0 0 0 f
0 0 1 0









[

R t

0 1

]

Xw, (4)

where R, t are respectively the rotation matrix and trans-

lation vector specifying the displacement from the world

coordinate frame to the LF camera coordinate frame, and

(cx, cy) is the principal point of the central sub-aperture im-

age. For simplicity, we assume that the intrinsic parameters

are the same for all the sub-aperture images2. Finally, Zc is

the z-coordinate of the 3D point expressed in the LF cam-

era coordinate frame (i.e. after applying the rotation and

translation in eq. (4)).

2If the intrinsic parameters differ among sub-aperture images, they can

be made identical by suitable image coordinate transformations.

We denote the LF Projection Matrix as:

L =









f 0 cx 0
0 f cy 0
0 0 0 f
0 0 1 0









. (5)

For later use, we also denote with T the camera pose matrix:

T =

[

R t

0 1

]

. (6)

4. Absolute Pose Estimation

In this section, we estimate absolute pose based on the

projection equation defined in Section 3. Specifically, in

Section 4.1 we show how we can obtain the projection ma-

trix up to scale. In Section 4.2, we examine the number of

constraints provided by a single LF feature. Finally, in Sec-

tion 4.3 we discuss how to extract translation and rotation

from the recovered projection matrix.

4.1. Light Field DLT

Close inspection of the projection equation (4) reveals

that there exists an equivalence relation between LF points

and their corresponding 3D points. We can rewrite eq. (4)

as:

Zcl = LTXw, (7)

or

l ≃ LTXw = PXw, (8)

with ≃ denoting equality up to a scale factor and P ≡ LT.

Note that the absolute dual quadric matrix Ω = [ I 0
0 0

]
projects to the dual image of the absolute quadric

(DIAC) [47, 29]:

ω = PΩP
T = KK

T, (9)

where K is the intrinsic parameters matrix:

K =









f 0 cx 0
0 f cy 0
0 0 0 0
0 0 0 0









. (10)

Essentially, the upper 3 × 3 block of K becomes the upper

block of matrix L. We will use eq. (9) to convert constraints

on the matrix K to constraints on candidate projections P.

In order to estimate the pose of the LF camera, we start

by rewriting eq. (8) as:

λl = PXw, (11)

where λ is an unknown scalar that needs to be eliminated.

In the classic Direct Linear Transformation (DLT) algo-

rithm [43], elimination of λ is achieved by taking the cross

4
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product of the left and right-hand sides [12]. However, since

l ∈ R
4, this approach is not feasible here as the cross-

product operation is not defined. Yet, DLT can still be ap-

plied to eq. (11) using the fact that for any skew-symmetric

matrix S and vector x, the quadratic form associated with S

vanishes3, i.e. xT Sx = 0. Thus, the scalar λ can be elim-

inated by forming the inner product of the right-hand side

of eq. (11) with l
T
S. Specifically, given a skew-symmetric

matrix S, we obtain:

l
T
SPXw = 0. (12)

Using the Kronecker product, eq. (12) can be rewritten as:

(

X
T
w ⊗ (lT S)

)

vec(P) = 0, (13)

where vec(P) ∈ R
16 is the vector formed by stacking the

columns of P.

Each choice of a matrix S provides one constraint on

the elements of P. The space of skew-symmetric matrices

in R
4×4 is six-dimensional4. Considering that the general

form of a 4× 4 skew-symmetric matrix is

S =









0 s1 s2 s3
−s1 0 s4 s5
−s2 −s4 0 s6
−s3 −s5 −s6 0









, (14)

we can express S as a linear combination of six basis matri-

ces, i.e.

S =

6
∑

i=1

si Bi. (15)

Each Bi in eq. (15) is a skew-symmetric matrix, for exam-

ple

B1 =









0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









. (16)

Therefore, each Bi yields one constraint on the elements of

P. Note that P has 3 zero elements in the third row, thus

there are 13 unknowns in total.

Given n correspondences, we can estimate P from the

singular value decomposition (SVD) of matrix A made up

of n six-row matrices Ai, i.e.

A =

















A1

.

.

.

.
An

















, Ai =

















X
T
w,i ⊗ (lTi B1)

X
T
w,i ⊗ (lTi B2)

X
T
w,i ⊗ (lTi B3)

X
T
w,i ⊗ (lTi B4)

X
T
w,i ⊗ (lTi B5)

X
T
w,i ⊗ (lTi B6)

















. (17)

3xT Sx = xT ST x ∈ R and, since ST = −S, xT Sx = 0.
4In general, the space of skew-symmetric n × n matrices over a field

has dimension n(n− 1)/2.

4.2. A Note on Matrix Ai

Consider a sub-block Ai of A, which originates from a

LF point correspondence. We state the following:

Theorem 4.1. The rank of Ai is 3.

Proof. We can rewrite Ai from (17) as:

Ai = X
T
w,i ⊗

















l
T
i B1

l
T
i B2

l
T
i B3

l
T
i B4

l
T
i B5

l
T
i B6

















= X
T
w,i ⊗Bli . (18)

From the Kronecker product properties, we have that

rank(X ⊗ Y) = rank(X) · rank(Y) for two general

matrices X and Y. Thus, it follows from eq. (18)

that rank(Ai) = rank(XT
w,i ⊗ Bli

) = rank(XT
w,i) ·

rank(Bli
) = 1 · 3 = 3.

A direct consequence of Theorem 4.1 is that only three

of the rows of Ai are independent and hence each corre-

spondence provides 3 constraints. Since P consists of 13
uknown elements, we conclude that in total at least 4 corre-

spondences suffice to obtain P up to scale. Finally, we note

that there is no restriction on the choice of the Bi (as long

as the resulting matrix is of rank 3). In our implementation,

we choose B1,B2 and B3.

4.3. Extracting Rotation and Translation

In practice, the rank of A may vary depending on the ge-

ometric configuration of the 3D points (e.g. collinear, copla-

nar, etc). However, provided a sufficient number of points,

the rank of A is 10, 11 or 12. Thus, P is obtained from the

linear combination of the vectors spanning the null space of

A. Reshaping each null vector to a matrix, similarly to [48],

we obtain:

P(µ) =

n
∑

i=1

µi Pi, (19)

where n is the dimension of the nullspace of A and µi are

random scalars and µ =
[

µ1 µ2 . . . µn

]T

In the case where rank(A) = 12, i.e. 3D points are in a

general configuration, we obtain P up to a single scalar µ1.

By enforcing the constraints of the dual image quadric (9),

we can compute µ1 with

µ1 =

√

ω11

[PΩPT]11
, (20)

where Aij denotes the element of A in the i-th row and j-th

column. Note that more singular vectors (i.e. rank(A) =
10, 11) can be handled similarly to [48].
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In practice, due to noise and numerical errors, it is ex-

pected that rank(A) = 13. The goal in this case is to min-

imise ‖Ax‖ subject to the constraint ‖x‖ = 1. We can then

obtain P as the eigenvector of AT
A corresponding to the

smallest eigenvalue, which is computed via the SVD of A.

Given P, the matrix T comprising the rotation and trans-

lation of the camera with respect to the world coordinate

frame (cf. eq. (6)), is obtained as T = L
−1

P.

Note that the matrix R extracted from T is not in gen-

eral orthogonal, as the orthonormality constraints were not

enforced during the estimation of P. Thus, we project

R to SO(3) by solving the nearest orthogonal approxi-

mation problem [13, 53] that involves finding the orthog-

onal matrix that minimises the Frobenius distance from

a given matrix. If R = UΣV
T is the SVD, the or-

thogonal matrix nearest to R is given by UCV
T , with

C = diag(1, 1, det(UV
T )). Alternatively, the nearest or-

thogonal matrix can be computed without matrix factoriza-

tion as in [28].

5. Results

In this section we evaluate LF-DLT with both simu-

lated data and real LF images. Throughout all the experi-

ments, we compute the error between rotation matrices as

the amount of rotation needed to bring one rotation matrix

to align with the other (i.e., using the geodesic on the unit

sphere [15]) and the error between translation vectors using

the L2 norm.

5.1. Simulation Results

Using simulated data, we study the performance of LF-

DLT under different noise levels in Section 5.1.1, under

varying point depths in Section 5.1.2 and compare it with

baseline DLT in Section 5.1.3 as well as state-of-the-art

generalised absolute solvers in Section 5.1.4.

5.1.1 Performance in the presence of noise

To evaluate our algorithm in a challenging scenario, we sim-

ulated a realistic LF camera similar to Lytro Illum, whose

sub-aperture images are arranged in a 5 × 5 grid; each

sub-aperture image is 500 × 400 pixels. We set the focal

length of the simulated camera to 600 pixels and the base-

line between two adjacent cameras to 0.5 mm. For each

noise level, we carried out 200 tests, and for each test we

randomly selected 50 3D points having a distance between

0.1 m and 10 m from the origin. Note that we did not con-

sider outliers in this experiment, since the purpose of the

simulation is to evaluate the performance of LF-DLT un-

der different levels of noise. Sub-aperture images that are

neighbouring on the grid of a LF image have a very short

baseline, resulting in sub-pixel disparities. Hence, as de-
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Figure 3. Mean rotation and translation estimation error for LF-

DLT with various levels of noise and different numbers of points.

tailed in [36], many algorithms fail to correctly recover the

motion in this setting.

Figure 3 illustrates the mean rotation error (in degrees)

for different numbers of observed 3D points. The minimal

case, i.e. 4 points, yields significant errors in the presence

of noise exceeding 1 pixel. However, the error considerably

decreases when using more points (3◦ error for up to 2 pix-

els noise). The translation is estimated very accurately even

in the presence of 2 pixels noise. Using as few as 5 points,

we obtain a translation error on the order of 0.2 cm for up

to 2 pixels noise. Considering that the proposed algorithm

is linear, these results are particularly encouraging.

5.1.2 Sensitivity to different point depths

Subsequently, we examined the accuracy of the proposed

method in three different scenarios for the arrangement of

3D points. This evaluation was also employed in [36] and

is critical for motion estimation with small baseline cam-

eras, especially for methods relying on 3D point triangula-

tion from sub-aperture images. Similarly to Sec. 5.1, we

randomly selected 50 3D points for which the depth was

uniformly distributed in a certain interval. The intervals

considered are 0.1−0.5 m, 0.5−1 m, 1−4 m and 5−10 m.

Note that points lying further than 3 m result in disparities

less than 0.1 pixels. We applied LF-DLT using 8 points.

Figure 4 illustrates the error in the estimated rotation and

translation. The accuracy of the estimated rotation is not

affected by the depth of the scene points. However, the ac-

curacy of the translation estimate decreases as the depth in-

creases. This is expected since it is well-known that larger

parallax (decreased depth) results in better estimation of

translation. In all cases though, we observe that the pose

estimate is quite accurate.

5.1.3 Comparison with the classic DLT

We compare LF-DLT with the classic DLT algorithm ap-

plied to central sub-aperture images denoted as DLTc. We

consider DLTc to be the baseline algorithm. We generated

random points uniformly distributed between 0.5−3 m and

ran both algorithms using the same 3D points as input. For
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Figure 4. Rotation and translation estimation error for varying

scene depth for LF-DLT using 8 points.
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Figure 5. Comparison of LF-DLT and classic DLT on central sub-

aperture images for different noise levels and numbers of points.

the minimal case of LF-DLT, i.e. n = 4, we selected subsets

of the 6 point samples provided to DLTc.

Figure 5 depicts the mean rotation and translation errors.

We observe that the minimal case for both algorithms be-

haves similarly. As a consequence, since LF-DLT requires

less points than DLTc for its minimal case, LF-DLT is more

efficient than DLTc in a RANSAC framework. Further-

more, using the same number of points, especially in the

minimal case for DLTc, LF-DLT provides more accurate

estimates for both rotation and translation.

5.1.4 Comparison with generalised absolute pose

solvers

Using a simulation scenario similar to that in Sec. 5.1, we

employed synthetic data to compare the performance of

several absolute pose estimation algorithms for generalised

cameras. Specifically, we simulated LF frames comprising

5× 5 sub-aperture images with a 0.5 mm baseline, employ-

ing 50 3D points and performing 200 random tests for each

noise level. The percentage of outliers was set to 20%.

We compared the following solvers embedded in

RANSAC: the minimal solver gP3P [20], gPnP [20] which

is an n-point solver extending EPnP [25] to the non-

central case, g1P2R [4] which employs one point-point and

two point-ray correspondences, and the UPnP algorithm

of [21]. We employed the authors’ implementation5 for

g1P2R and OpenGV [19] for the remainder of the algo-

rithms. Since OpenGV uses the angle between the original

and re-projected rays as en error metric, we use this crite-

rion for all algorithms including LF-DLT.

5http://people.inf.ethz.ch/fcampose/publications
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Figure 6. Comparison of rotation and translation errors pertaining

to different generalised absolute pose estimation algorithms.

Figure 6 illustrates the performance of the algorithms

with respect to the mean translation and rotation absolute

pose errors. Note that g1P2R does not perform well since it

locally triangulates a point, which in the case of a LF cam-

era with small baseline does not yield accurate 3D points.

What stands out from both figures is that LF-DLT, with an

estimation error of around 2◦ − 3◦ in rotation and 0.1 cm

in translation, is competitive to iterative polynomial solvers

like gP3P, while being more computationally efficient due

to its linear nature.

5.2. Experiments on real LF datasets

Next, we evaluate the accuracy of LF-DLT in real LF

datasets from [36], using the poses recovered for them by

uLF-SfM as reference. Furthermore, using the same data,

we compare LF-DLT with DLTc and a state-of-the-art ab-

solute pose minimal solver.

5.2.1 Performance of LF-DLT

We evaluated LF-DLT on real LF datasets from [36].

Specifically, for each dataset we ran uLF-SfM and obtained

the camera poses, 3D points and feature matches. The poses

from uLF-SfM serve as pseudo ground truth. Then, for

each dataset, we employed LF-DLT using 12 points within

RANSAC to register each LF frame using the provided fea-

ture matches and the reconstructed 3D points. We used the

reprojection error with a threshold of 1.5 pixels to determine

inliers.

Table 1 depicts the mean rotation and translation er-

ror obtained from LF-DLT compared to the pose estimates

from uLF-SfM for the “Octopus”, “House”, “Toycar” and

“Chameleon” datasets. From all datasets considered, the

maximum mean rotation and translation errors amount to

0.19◦ and 0.61 cm respectively. Furthermore, Fig. 7 illus-

trates the distribution of errors in the two largest “Toycar”

and “Chameleon” datasets.

5.2.2 Comparison with central absolute pose solvers

Similarly to Section 5.2, we ran the classic DLT, indicated

as DLTc, with 12 points on the central sub-aperture im-

age and optDLS [32], which is a state-of-the-art minimal

7
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Figure 7. Histograms of rotation and translation errors for LF-DLT and DLTc on “Toycar” and “Chameleon” datasets from [36].

Rotation Difference (◦) Translation Difference (cm)

LF-DLT DLTc optDLS LF-DLT-O LF-DLT DLTc optDLS LF-DLT-O

Octopus 0.19± 0.13 0.22± 0.16 0.04± 0.05 0.02± 0.02 0.61± 0.4 0.89± 0.63 0.11± 0.13 0.06± 0.03
House 0.19± 0.15 0.25± 0.15 0.04± 0.05 0.03± 0.03 0.45± 0.43 0.96± 0.49 0.06± 0.06 0.05± 0.04
Toycar 0.14± 0.11 0.25± 0.18 0.03± 0.03 0.02± 0.02 0.44± 0.57 0.95± 0.84 0.07± 0.06 0.05± 0.05

Chameleon 0.19± 0.15 0.25± 0.15 0.04± 0.05 0.03± 0.03 0.45± 0.43 0.96± 0.49 0.06± 0.06 0.05± 0.04

Table 1. Evaluation of LF-DLT on real datasets captured with a Lytro Illum camera.

# LFs # Registered # 3D points Avg. repr. error [pix]

uLF-SfM Ours uLF-SfM Ours uLF-SfM Ours

Octopus 7 7 7 1226 978 0.25 0.29
House 16 16 16 1654 1423 0.30 0.34
Toycar 103 103 102 10793 10624 0.49 0.53

Chameleon 303 303 303 28079 27769 0.42 0.45

Table 2. Comparison of reconstruction fidelity when integrating

LF-DLT in uLF-SfM.

solver for the central absolute pose problem. Both algo-

rithms were used within a RANSAC framework with a re-

projection threshold of 1.5 pixels. Furthermore, we used the

solution obtained from LF-DLT to initialise the non-linear

minimisation with the Levenberg-Marquardt algorithm of

the re-projection error (for the central sub-aperture features

only) corresponding to inliers, denoted by LF-DLT-O.

Table 1 presents the mean rotation and translation error

for all methods with the corresponding variance. It is obvi-

ous that LF-DLT is superior to DLTc, especially in the es-

timate of translation. The error distribution of LF-DLT and

DLTc is depicted in Fig. 7. As expected, LF-DLT is not as

accurate as optDLS, since the latter uses a minimal parame-

terization of the rotation matrix to explicitly enforce the or-

thonormality constraints, which is not the case for LF-DLT.

However, using the pose from LF-DLT as the initialisation

to the non-linear minimisation, we obtained more accurate

pose estimates than optDLS.

6. Integration in a LF-SfM pipeline

We modified the implementation6 of uLF-SfM to use LF-

DLT for LF frame registration. Specifically, we substituted

gP3P with LF-DLT embedded in RANSAC (with a repro-

jection error threshold of 1.5 pixels) to register the subse-

quent LF frames after initialisation. The final pose of each

6http://www.github.com/sotnousias/uLF-SfM

LF frame is obtained by minimising the reprojection error

of the inliers. Note that in this process, only central features

are used for estimation, thus an outlier from RANSAC re-

sults in discarding all the features associated with this cen-

tral feature. As a consequence, correct sub-aperture fea-

tures may erroneously be discarded. This might explain

why uLF-SfM reconstructs more 3D points. Furthermore,

the inliers consist of central features only but there is no

safeguarding against outliers in the associated sub-aperture

features in this case. To account for such cases, we discard

sub-aperture outliers in the triangulation step of uLF-SfM.

Table 2 demonstrates the fidelity of the modified recon-

struction using LF-DLT. Note that our modifications con-

stitute a very basic adaptation of an incremental pipeline;

more sophisticated approaches in point filtering and trian-

gulation using our new LF feature representation are beyond

the scope of this paper.

7. Conclusion

This paper has proposed a linear solution to the abso-

lute pose problem for LF cameras. The solution relies on

the observation that the ratio between the disparity in dif-

ferent sub-aperture images and the corresponding baseline

is constant. In turn, this facilitates a feature representation

that allows the absolute pose of a LF frame to be estimated

with the Direct Linear Transformation. The latter operates

in a non-iterative manner and can accommodate an arbitrary

number of corresponding input points. Comprehensive ex-

periments with real and simulated data have demonstrated

the effectiveness of the proposed solution and its superior

performance compared to the classic DLT applied to the

central sub-aperture image.
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