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Abstract

In this paper, we present a robust and efficient method to statistically recover the full

3D shape and texture of faces from single 2D images. We separate shape and texture

recovery into two linear problems. For shape recovery, we learn empirically the general-

ization error of a 3D morphable model using out-of-sample data. We use this to predict

the 2D variance associated with a sparse set of 2D feature points. This knowledge is

incorporated into a parameter-free probabilistic framework which allows 3D shape re-

covery of a face in an arbitrary pose in a single step. Under the assumption of diffuse-

only reflectance, we also show how photometric invariants can be used to recover texture

parameters in an illumination insensitive manner. We present empirical results with com-

parison to the state-of-the-art analysis-by-synthesis methods and show an application of

our approach to adjusting the pose of subjects in oil paintings.

1 Introduction

3D Morphable Models (3DMM) have been used for modelling face appearance for over

a decade [1]. They represent the state-of-the-art in pose and illumination insensitive face

recognition [9] due to their explicit image formation model. This means the statistical model

need only capture intrinsic face variation caused by changes in identity, leaving extrinsic

factors to be estimated as part of the fitting process. Despite this, there have been relatively

few developments since 3DMMs were first introduced. There are two obvious developments

required to improve their performance for face analysis tasks. The first is to improve the

generalisation ability of the models to overcome problems of model dominance. The second

is to develop new methods for fitting the model to images which improve efficiency and

robustness.

In this paper we focus on a new, highly efficient means to accurately fit a 3DMM in a pose

and illumination insensitive manner. Most previous work in this area has taken the form of

iterative optimisation in an analysis-by-synthesis framework. The idea here is to iteratively

refine estimates of parameters describing shape, texture, illumination, pose and camera prop-

erties such that the error between predicted and observed appearance is minimised. This is

a highly complex and expensive optimisation, littered with local minima. Results are also
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dependent on a regularisation parameter which trades off implausibility against a low data

error. If the model prior is allowed to dominate, the results appear face-like but loose their

distinctiveness. Data dominance on the other hand, results in over-fitting and faces that ap-

pear unrealistic and caricature like.

There have been some attempts to address these problems. At the expense of simplifying

the reflectance assumptions by using a Lambertian model, Zhang and Samaras [11] showed

that a morphable model could be fitted under unknown and arbitrarily complex illumination

conditions using a spherical harmonic basis. On the other hand, both Romdhani and Vetter

[8] and Moghaddam et al. [6] focus on improving the accuracy and efficiency of the fitting

process respectively. In both cases, they avoid the problems of local minima by using features

derived from the input images rather than the intensity data itself. Romdhani and Vetter [8]

used edges and specular highlights to obtain a smooth cost function, while Moghaddam et

al. [6] used silhouettes computed from a large number of input images. Knothe et al. [5]

have begun to consider the problem of model dominance and used local feature analysis to

locally improve the fit of the model to a set of sparse feature points.

The closest work in spirit to what we present here is that of Romdhani et al. [10]. They

present linear solutions to computing an incremental update to the shape and texture param-

eters given dense measurements of residual errors provided by optical flow. However, their

iterative approach requires nonlinear optimisation of pose parameters and illumination terms.

In this paper, we propose a shape estimation method which incorporates an empirically mea-

sured model of variance into a linear objective function. By doing so, we do not need a

weight factor that trades off between the model and the data. We recover texture using a

linear error based on a photometric invariant which is unaffected by illumination conditions.

At the expense of assuming diffuse-only reflectance and that the location of sparse feature

points are known, we are able to accurately fit a 3DMM at greatly reduced computational

expense whilst closely competing with the accuracy of much more sophisticated methods.

We present the first quantitative comparative evaluation of 3DMM fitting algorithms.

2 3D Morphable Models

A 3D morphable model is constructed from m face meshes which are in dense correspon-

dence. Each mesh consists of p vertices and is written as a vector v= [x1 y1 z1 . . . xp yp zp]
T ∈

R
n, where n = 3p. Applying principal components analysis to the data matrix formed by

stacking the m meshes provides us with m−1 eigenvectors Si, their corresponding variances

σ2
s,i and the mean shape v̄. An equivalent model is constructed for surface texture (or more

precisely, diffuse albedo). Any face can be approximated as a linear combination of the

modes of variation:

v = v̄+
m−1

∑
i=1

aiSi, u = ū+
m−1

∑
i=1

biTi, (1)

where a= [a1 . . . am−1]
T and b= [b1 . . . bm−1]

T are vectors of parameters. For convenience,

we also define the variance-normalised shape parameter vector as:

cs = [a1/σs,1 . . . am−1/σs,m−1]
T .
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3 Shape Parameter Estimation

We present a novel algorithm for shape parameter estimation under unknown pose given the

2D coordinates of a sparse set of N ≪ p feature points. In order to obtain a linear solution, we

decompose the problem into two steps which can be iterated and interleaved: 1. estimation

of a camera projection matrix using known 3D-2D correspondences, and 2. estimation of 3D

shape parameters using a known camera projection matrix. We initialise by using the mean

shape to compute an initial estimate of the camera projection matrix, C ∈ R
3×4. With this

to hand, shape parameters can be recovered using only matrix multiplications. By using the

recovered shape to re-estimate the camera matrix, we can iterate the process which typically

converges in only 3 iterations. A good solution is still achieved with only one pass of our

method.

3.1 Estimating the Camera Projection Matrix

We represent the 2D locations of feature points in the image, xi ∈ R
3, and corresponding

3D locations of the feature points within the model, Xi ∈ R
4, as homogeneous coordinates.

To estimate the camera projection matrix, we require normalised versions: x̃i = Txi and

X̃i = UXi, where T ∈ R
3×4 and U ∈ R

4×4 are similarity transforms which translate the

centroid of the image/model points to the origin and scale them such that the RMS distance

from the origin is
√

2 for the image points and
√

3 for the model points.

We assume an affine camera and compute the normalised projection matrix, C̃ ∈ R
3×4,

using the Gold Standard Algorithm [4]. Given N ≥ 4 model to image point correspondences

Xi ↔ xi, we determine the maximum likelihood estimate of C̃ which minimises: ∑i ‖x̃i −
C̃X̃i‖2, subject to the affine constraint C̃3 = [0 0 0 1]. Each point correspondence contributes

to the following 2N ×8 system of equations:










X̃T
1 0T

0T X̃T
1

...
...

X̃T
N 0T

0T X̃T
N










[
C̃T

1

C̃T
2

]

=










x̃1,1

x̃1,2
...

x̃N,1

x̃N,2










. (2)

We solve this system using least squares and obtain the camera matrix by performing the

following de-normalization step: C = T−1C̃U.

3.2 A Probabilistic Approach

We recover the 3D shape parameters using a probabilistic approach which follows that of

Blanz et al. [2]. However, our derivation is more complex as we allow different 2D variances,

σ2
2D,i, for each feature point. We discuss how these variances are computed in the next

section. Our aim is to find the most likely shape vector cs given an observation of N 2D

features points in homogeneous coordinates: y = [x1 y1 1 . . . xN yN 1]T and taking into

account the model prior. From Bayes’ rule we can state: P(cs|y) = ν ·P(y|cs) · p(cs), where

ν = (
∫

P(y|ćs) · p(ćs)dćs)
−1 is a constant factor. The coefficients are normally distributed

with zero mean and unit variance, i.e. cs ∼N (0,IN), so the probability of observing a given

cs is: p(cs) = νc · e−
1
2 ‖cs‖2

, where νc = (2π)−m′/2. The probability of observing the data y
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for a given cs is simply:

P(y|cs) =
3N

∏
i=1

νN · e
− 1

2σ2
2D,i

[ymodel2D,i−yi]
2

. (3)

Here, ymodel2D,i are the homogeneous coordinates of the 3D feature points projected to 2D,

defined as follows. We construct the matrix Ŝ ∈ R
3N×m−1 by subselecting the rows of the

eigenvector matrix S associated with the N feature points. We further modify this matrix by

inserting a row of zeros after every third row of S, giving the matrix Ŝh ∈R
4N×m−1. In other

words, the directions in 3D along which a vertex is perturbed according to an eigenvector are

written in homogeneous coordinates. We now form the block diagonal matrix P ∈ R
3N×4N

in which the camera matrix is placed on the diagonal:

P =






C

. . .

C




 (4)

Finally, we can define the 2D points obtained by projecting the 3D model points given by cs

to 2D: ymodel2D,i = Pi · (Ŝhdiag(σ2
s )cs + v̄), where Pi is the ith row of P.

Substituting into Bayes’ rules, we arrive at our conditional probability:

P(cs|y) = ν ·ν l
N ·νc · e

−∑
3N
i=1

[ymodel2D,i−yi ]
2

2σ2
2D,i · e− 1

2 ‖cs‖2

, (5)

which can be maximised by minimising the exponent:

E =−2 · logP(cs|y) =
3N

∑
i=1

[ymodel2D,i − yi]
2

σ2
2D,i

+‖cs‖2 + const. (6)

This is very similar to a Tikhonov Regularization using a Gaussian kernel. However, as

opposed to Blanz et al. [2], we measure the variances for each individual feature point and

therefore do not need a weight factor which relates the prior to the data as the relationship

between them is determined empirically. ‖cs‖2 corresponds to a regularisation term which

measures the complexity of the functional and penalises ‘complicated solutions’. In terms of

the statistical model, this means that solutions closer to the mean are preferred.

3.3 Modelling Feature Point Variance

We model two sources of variance which can be used to explain the difference between

observed and modelled feature point positions in the image. By having an explicit model of

this variance, we negate the need for an ad hoc regularisation weight parameter. The first

source of variance is the generalisation error of the morphable model. This describes how

feature points deviate from their true position in 3D when the optimal model parameters are

used to describe a face. The second source of variance is the 2D pixel noise, this is related

to the accuracy with which the feature points can be marked up in 2D. The total variance of

a feature point is the sum of the 3D variance projected to 2D and the 2D variance.

Given an out-of-sample face mesh vi (i.e. a face that was not used to train the statistical

model), we project onto the model to obtain the closest (in a least squares sense) possible ap-

proximation: v′i = SST (vi −v)+v. The vector of squared errors is given by: ei = (vi −v′i)
2
.
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We define êi as the vector formed by subselecting the elements of ei which correspond to

the N sparse feature points. From a sample of k such out-of-sample faces, we can now com-

pute the variance associated the coordinates of the feature points: σ2
3D, j =

1
k ∑

k
i=1 êi, j. This

gives us an empirical means to predict how a feature point is likely to vary from its true

position due to generalisation errors. The units of σ3D, j are mm. In order to predict how

this results in variation in the image plane, we must project these variances to 2D, in units

of pixels. The 3D variance of the ith feature point in homogeneous coordinates is given by:

[σ2
3D,3i−2 σ2

3D,3i−1 σ2
3D,3i 1]T . We define C−T ∈ R

3×4 as the camera projection matrix with-

out translational components. This is required because the variances are with respect to the

feature point position and do not need globally translating. Our final 2D variances are given

by the sum of the projected 2D variances and a 2D pixel error, η2, which models error in

feature point markup:





σ2
2D,3i−2

σ2
2D,3i−1

σ2
2D,3i



= C−T







σ2
3D,3i−2

σ2
3D,3i−1

σ2
3D,3i

1






+





η2

η2

0



 . (7)

We use a value of η2 = 3 in our experiments.

3.4 Minimizing the Error Functional

In this section we describe how the error functional in (6) can be minimized in a single step.

To do so, we differentiate the functional, set to zero and solve for cs. Therefore the constant

factor in the equation is not relevant and the functional takes the following form:

E =
3N

∑
i=1

[ymodel2D,i − yi]
2

σ2
2D,i

+‖cs‖2. (8)

Substituting the statistical model into (8), applying the second binominal theorem and rewrit-

ing yields:

E =
3N

∑
i=1

[Pi · Ŝha+Pi · v̄]2 −2[Pi · Ŝha+Pi · v̄)]yi + y2
i

σ2
2D,i

+‖cs‖2. (9)

For clarity, we introduce two constants: Ri = PiŜh and ki = 2Pi · v̄. Expanding according to

the first binominal theorem we obtain:

E =
3N

∑
i=1

(Ria)
2 + kn(Ria)+(Pi · v̄)2 −2yiRia+ kiyi + y2

i

σ2
2D,i

+‖cs‖2. (10)

We would like to minimise the error so we differentiate with respect to a and set the derivative

to zero:

0 = ▽E =
3N

∑
i=1

2RT
i Ria+ kiR

T
i −2yiR

T
i

σ2
2D,i

+2cs (11)

Since we wish to solve the system of equations for the normally distributed coefficients cs

instead of a, we multiply the vector Rn by the shape eigenvalues, Qi = Ridiag(σ2
s,i), and

obtain:
3N

∑
i=1

2QT
i Qics

σ2
2D,i

+2cs =
3N

∑
i=1

2yiQ
T
i

σ2
2D,i

−
3N

∑
i=1

kiQ
T
i

σ2
2D,i

. (12)
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For simplicity we set:

T1 =
3N

∑
i=1

2QT
i Qi

σ2
2D,i

and T2 =
3N

∑
i=1

2yiQ
T
i

σ2
2D,i

−
3N

∑
i=1

kiQ
T
i

σ2
2D,i

(13)

and obtain the following equation: T1cs + 2cs = T2. This can be solved by applying a

Cholesky Decomposition to T1 and decomposing the result further with a Singular Value

Decomposition:

MT Mcs +2cs = T2, where : T1 = MT M (14)

VW2VT cs +2cs = T2, where : M = UWVT (15)

diag(wi +2)VT cs = VT T2 (16)

cs = [diag(wi +2)VT ]−1VT T2. (17)

Hence, using only a sequence of matrix multiplications, we are able to recover the maximum

likelihood estimate of cs given the location of projected 2D feature points and the projection

matrix, allowing for the variances of each feature point to differ.

4 Linear Texture Recovery from Photometric Invariants

Our statistical surface texture model captures variations in diffuse albedo. This forms one

parameter of a number of possible parametric reflectance models (e.g. Phong) which in

turn determines the appearance of a face [1]. This is the approach used in analysis-by-

synthesis model fitting. We take a different approach. By making some assumptions about

the surface reflectance and illumination, we are able to arrive at a photometric invariant

which can be measured directly from the image and used to fit the texture model in an

illumination-insensitive manner. Moreover, the resulting solution is linear in terms of the

observed image intensities and can therefore be executed efficiently.

We make the assumption that surface reflectance is diffuse only and that illumination is

provided by any combination of directional and ambient white sources:

I{r,g,b} = ρ{r,g,b}

∫

ΩN

Vω L(ω)(N ·ω)dω, (18)

where ΩN is the hemisphere about the surface normal N, L(ω) is the incident radiance from

direction ω and Vω is the visibility function, equal to 1 if direction ω is unoccluded, 0

otherwise. The important observation is that ratios between pairs of colour channels are

functions of only the ratio of albedos, hence we can relate ratios of texture model values

directly to image intensity ratios:

Tr(i)b+ ūr(i)

Tb(i)b+ ūb(i)
=

Ir(i)

Ib(i)
and

Tg(i)b+ ūg(i)

Tb(i)b+ ūb(i)
=

Ig(i)

Ib(i)
. (19)

where Tr(i) and ūr(i) represent the eigenvector and mean value for a corresponding observa-

tion Ir(i) (in this case for the red channel). Image intensities are measured by sampling the

image at the position of all visible (i.e. unoccluded) vertices in the face mesh. See Figure (1)

for an example.
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Figure 1: Mapping a 2D image onto the projected 3D shape model. The shape is recon-

structed using 59 feature points.

Equation (19) can be rewritten as follows:

(Ib(i)Tx(i)− Ix(i)Tb(i))b = Ix(i)ūb(i)− Ib(i)ūx(i), (20)

where the index x is substituted for r or g respectively. This gives us a linear system of

equations of the following form:










Ib(1)Tr(1)− Ir(1)Tb(1)

Ib(1)Tg(1)− Ig(1)Tb(1)
...

Ib(k)Tr(k)− Ir(k)Tb(k)

Ib(k)Tg(k)− Ig(k)Tb(k)










︸ ︷︷ ︸

A










b1

...

bm−1










︸ ︷︷ ︸

b

=










Ir(1)ūb(1)− Ib(1)ūr(1)

Ig(1)ūb(1)− Ib(1)ūg(1)
...

Ir(k)ūb(k)− Ib(k)ūr(k)

Ig(k)ūb(k)− Ib(k)ūg(k)










︸ ︷︷ ︸

h

, (21)

with two equations per observed pixel value and can be solved using least-squares: b =
(AT A)−1AT h. A minimum of k = m/2 image-model correspondences is necessary to solve

the system for m model parameters. In practice, many thousands of visible pixels are used.

5 Experiments and Results

Our experiments are based on the Basel Face Model [7]. The model is accompanied by 10

out of sample faces. Each face is rendered in 9 poses and 3 lighting conditions per pose

giving 270 renderings in total. We use a subset of the Farkas feature points [3] to reconstruct

face shape. Depending on the pose, different feature points are visible. In a frontal view,

we use up to 66 feature points and in the close to profile views (-70,70) as less as 37 feature

points are visible. We use the 60 most significant eigenmodes to reconstruct the face. For

most of the renderings more modes are possible. But to be consistent, we choose the number

according to the least number of visible feature points. We compare our results against the

state-of-the-art analysis-by-synthesis result. To make the results comparable, we take only

the first 60 shape coefficients into account. We quantify the reconstruction error in terms of

the mean Euclidean error over all vertices in the mesh. We conducted our experiments on

the full set of 270 renderings. Figure (2) shows the mean error for the individual poses for

all 10 faces and 3 lighting conditions.

Comparing each of the individual renderings results in 191 lower errors for the analysis-

by-synthesis approach [7] and 79 lower errors for our method. Figure (3) shows a snippet
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Figure 2: Reconstruction errors for all faces and lighting conditions plotted over the rotation

angles (−70,−50,−30,−15,0,15,30,50,70).

Figure 3: Reconstruction errors for faces No. 4 in lighting condition 3 plotted over the

rotation angles (−70,−50,−30,−15).

Figure 4: Top row shows 2D renderings of face No. 4 in different rotation angles (−70◦ :

70◦). Second row shows the corresponding 3D shape reconstructions.

of face No. 4 in the pose angles (−70◦ : −15◦) and lighting condition 3. Figure (4) shows

shape reconstructions of a sample face in 9 different pose angles.

As with the shape, we conducted texture reconstruction experiments for the full set of

270 2D renderings. We measure the error to the ground truth texture in terms of root-mean-

square error. Based on that measure, the mean texture reconstruction error for our method

is 0.18 compared to 0.09 for the analysis-by-synthesis approach [7]. However, our use of

photometric invariants renders our result more stable. Figure (5) shows the difference be-

tween the highest error and the lowest texture error for all faces in the 9 pose angles. This

demonstrates the stability of our texture recovery under varying illumination.

In figure (6) we show the shape and texture reconstruction for face No. 7 in frontal pose

under the 3 different lighting conditions. Note the presence of cast shadows in the image

which do not effect our method. Also, these renderings include specular reflections which

are not modelled in our photometric invariant. Finally, in Figure (7) we demonstrate an

application of our method to adjusting the pose of a subject in an oil painting.
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Figure 5: The relative error between the individual faces for different pose angles.

Figure 6: Top row shows renderings of Face No. 7 in frontal pose and 3 different illumination

conditions. Second row shows the corresponding shape and texture reconstructions.

Figure 7: From left to right: subject in oil painting, reconstructed 3D shape in frontal view,

projected 3D shape with texture mapped on it, cropped and rotated version, oil painting with

adjusted pose.

6 Conclusion

We have presented a linear approach to face shape and texture estimation using a mor-

phable model. The accuracy of our approach is comparable to a state-of-the-art analysis-by-

synthesis algorithm, yet is orders of magnitude faster (less than a second using unoptimised

Matlab code versus several minutes [1]). In addition, our empirical model of generalisation

error was learnt using only 10 out-of-sample faces. Increasing this would likely improve
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results. Our experiments also showed that the number of feature points alone is not the sig-

nificant factor. On average, the shape reconstruction error is lower for close to profile views

compared to front views, even though nearly half as many feature points are visible. This

implies that the pose of a face effects the information content in a feature point observation.

Our texture estimation is based on photometric invariants and our experimental results show

the output is almost unaffected by changes in illumination. In future work, we will explore

using more complex invariants which are also robust to specular reflections.
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