
Geophys. J. R. astr. SOC. (1977) 49,443-458 

A linear approximation to the solution of a 
one-dimensional Stefan problem and its 
geophysical implications 

Jean Claude Mareschal Department of Physics, University of Toronto, 
Toronto, Ontario MSS 1A 7, Canada 

Anthony F . Gangi Geophysics Department, Texas A and M University, 
College Station, Texas 77843, USA 

Received 1976 September 28; in original form 1976 March 26 

Summary. The motion of a phase boundary in the Earth caused by tempera- 
ture and pressure excitations at the Earth’s surface is determined under a 
linear approximation. The solution is found as a sum of convolutions of 
pressure and temperature Green’s functions with the corresponding excita- 
tions. The Green’s functions are given under the form of Laplace transforms 
that can be inverted either by numerical evaluation of a branch cut integral 
or by inversion of a series expansion. This solution is a generalization of a 
solution previously derived by Gjevik. This latter solution is the first term in 
the series expansion. The relaxation times associated with the phase boun- 
dary motion are of the order of 105-107yr for the olivine-spinel phase 
transition and of 106-107yr for the basalt-eclogite transition. The linear 
approximation remains valid for long times only if the phase boundary 
moves slowly. 

1 Introduction 

Geophysical and geological observations show that vertical crustal movements take place in 
different regions of the Earth with various characteristic times (Wellman 1972; Artyushkov 
& Mescherikov 1969). Among the movements of this type, the post-glacial uplift is one of 
the most studied and best understood. It is generally accepted that the post-glacial uplift 
can be explained as the response of a viscoelastic Earth to the removal of a load (i.e. the 
melting of the Pleistocene glaciers), at the Earth’s surface (Haskell 1935, 1936; McConnell 
1965, 1968; Peltier 1974). In that case, the driving force of the vertical motion is gravity 
and a definite correlation should exist between gravity anomalies and vertical crustal 
motions. The more recent gravity data (Kaula 1972; Gaposhkin 1964) indicate that, as far as 
post-glacial rebound is concerned, there is a general correlation,between the direction of the 
Earth’s surface motion and the gravity anomaly. However, this is not true for other vertical 
crustal movements that are not directly related to the end of the Pleistocene glaciation, 
such as those observed today in the Russian platform or in the Eastern United States: in 
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this case, only two-thirds of the observed motions show the expected correlation with the 
gravity anomaly (Artyushkov & Mescherikov 1969). 

Very large vertical motions of the Earth’s crust are also evidenced by the thickness of 
sediment deposited in geosynclines. For instance, in the Gulf coast geosyncline (Ewing, 
Edgar & Antoine 1970), more than 20 000 m of sediment have been deposited at an almost 
constant shallow depth. The geological evidence indicates that similar depositions happened 
in other geosynclines (Rocky Mountains, Appalachian). The subsidence of low-density sedi- 
ments into a higher density substratum cannot be explained by isostatic adjustments alone 
(Jeffreys 1970, p. 418). Moreover, the sediments that have been deposited below sea level 
have subsequently been uplifted by several hundreds of metres. Rapid uplifts have also been 
observed within continents (Colorado Plateau or Hoggar plateau in Africa); the driving 
mechanism for these uplifts is not yet well understood. 

For these reasons, various authors have suggested that these vertical crustal movements 
are caused by the response of phase boundaries within the Earth to changes in pressure and 
temperature (Fermor 1914; Goldschmidt 1922; Holmes 1926; Lovering 1958; Kennedy 
1959). If density increases with depth, the effect of an increase in pressure is the conversion 
into the high-density phase of low-density materials and a subsidence of the Earth’s surface; 
an increase in temperature would have the opposite effect. If sediments are deposited at the 
Earth’s surface, both the temperature and the pressure in the Earth wdl be increased; the 
effect of the pressure increase is felt instantaneously at the phase boundary and subsidence 
will occur; the temperature perturbation wdl not reackthe phase boundary and produce an 
uplift before a very long time has elapsed. This theory will thus explain why the Earth’s 
surface subsides upon deposition of sediments and why the sediments are subsequently 
uplifted. This effect combined with isostatic adjustments could explain the amount of 
sediment deposition in geosynclines (Wetherill 1961). 

Among the phase transitions that have been suggested to be related to uplift and subsi- 
dence of the Earth’s surface, the most important is the basalt--eclogite transition that 
would occur at the depth of the Mohorovicic discontinuity (Lovering 1958; Kennedy 1959; 
Ito & Kennedy 1971). This transition is accompanied by two sharp increases in density 
(from 3.0 to 3.2 g/cm3and from 3.2 to 3.45 g/cm3, Ito & Kennedy 1970) and could therefore 
explain significant amount of uplift and subsidence. Geophysicists do not agree on the 
interpretation of the experimental data on the basal-eclogite transition; some (Ringwood & 
Green 1966) consider that these experimental data make unlikely the hypothesis of a phase 
change M-discontinuity while others (Kennedy & Ito 1972) claim that these data strongly 
support the hypothesis. The geophysical data on the structure of the M-discontinuity and 
the upper mantle does not provide an unambiguous answer to the questions about the nature 
of the Moho. The observation of seismic relfections from the Moho (Clowes, Kanasewich & 
Cumming 1968) would indicate that, at the Moho, there is a sharp seismic velocity and 
density change rather than the diffuse transition region that would be expected to accom- 
pany a phase change. On the other hand, the combined inversion of travel-time and free- 
oscillations data (Press 1971; Anderson & Hart 1976) indicate a high upper-mantle density 
that seems more compatible with an eclogite composition than with the peridotite composi- 
tion advocated by the opponents of the phase change hypothesis. Many other arguments 
have been given in favour or against the phase-change hypothesis (see Wyllie 1971, chapter 5, 
for a review). A compromise that has been suggested by Wyllie (1963) is that the oceanic 
Moho is not associated with the basalt-eclogite transition, but that the transition is present 
in tectonically active continental regions. It is the authors opinion that there is no sufficient 
evidence today to give a definite answer to the question of the nature of the Mohorovicic 
discontinuity; however, they feel that it is worthwhile to continue the investigations that 

J. C Mareschal and A. F. Gangi 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/49/2/443/586576 by guest on 20 August 2022



On a one-dimensional Stefan problem 44 5 

have been undertaken on some geophysical implications of the phase-change hypothesis 
even if the hypothesis remains controversial. 

If it is assumed that the composition of the upper mantle is not eclogite, but peridotite or 
pyrolite, other shallow phase changes will occur: they are the transformation of pyrolite 
from plagioclase to garnet and from garnet to spinel (Green & Ringwood 1967; Wyllie 1971, 
p, 119-121). If, following Wyllie’s (1963) compromise, the composition of the upper 
mantle is assumed to be peridotite under the oceans, these phase transitions would occur 
below the oceans, the former at a depth of 30 km and the latter of about 60km. If, in 
contradiction to the Moho phase-change hypothesis, the upper mantle has a peridotite 
composition everywhere, the latter phase change would also occur below the continents. 
Although the density contrast (of the order of 3 per cent) associated with these phase 
changes is much smaller than in the basalt-eclogite transition, these transitions may have 
important effects on the topography of the Earth’s surface and in particular they could be 
responsible for about 20 per cent of the midoceanic ridges elevation (Sclater 1972). 

The determination of the phase-boundary motion is called the problem of Stefan. This is 
a difficult problem to solve analytically because it is non-linear and special solutions have to 
be determined which cannot be superposed (Carslaw & Jaeger 1959, chapter XI; Rubinstein 
1971). Special solutions to the problem can be determined by numerical methods. This 
approach has been taken (restricting ourselves to the geophysical literature) by McDonald & 
Ness (1960), Van De Lindt (1967), Joyner (1967) and O’Connell & Wasserburg (1967). 
McDonald & Ness investigated the effect of a Mohorovicic discontinuity phase change on 
uplift and subsidence, but did not take into account isostatic adjustments. The effect of iso- 
stasy has been included in this model by Van De Lindt (1967) and Joyner (1967). These 
two models produced deposition of thick sediments in shallow water and in some cases a 
succession of cycles of erosion and sedimentation. 

Although the behaviour of the phase change can very accurately be determined by these 
numerical approximations, analytical approximations even if they are less accurate, have 
definite advantages: they demonstrate more clearly the physical phenomena involved and 
they allow an easy determination of the important physical parameters. 

Analytical approximations to the solution of Stefan-like problems have been used by 
O’Connell & Wasserburg (1967, 1972) in their study of the uplift and subsidence of sedi- 
mentary basins underlain by phase changes. A much simpler approach for obtaining 
analytical approximations has been taken by Gjevik (1972, 1973). In Gjevik’s model, the 
Earth’s surface is supposed to be at an infinite distance from the phase boundary which 
therefore is never affected by a near-surface temperature change. For deep phase changes 
(i.e. at a depth > 300 km): these thermal effects can indeed be neglected since they require a 
time of the order of the Earth‘s age to reach the phase boundary by conduction. But this is 
not the case for a shallower phase transition (i.e. in the lithosphere). The major purpose of 
this paper is thus to derive a generalization of Gjevik’s solution that would include the 
thermal effects. In the author’s opinion, this approximation is easier to derive and to handle 
than the three different approximations used by O’Connell & Wasserburg. The range of 
validity of the linear approximation used to derive the solution will be discussed more fully 
than in Gjevik’s and limits to the use of the solution d be set. Some geophysical applica- 
tions of these results and their implications will be sketched. 

2 Linear approximation to  the solution of a Stefan problem 

Let us consider a one-dimensional model of the Earth in which a phase transition occurs at a 
depth depending on the temperature and the pressure. Let p1 and p2 be the density, kl and 

2.1 S T A T E M E N T  O F  T H E  P R O B L E M  
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k2 the thermal conductivity and c, and c2 the heat capacity of the two phases. The phase 
boundary motion will be described in a system of coordinates fixed to the Earth's surface 
(x = 0 is the surface and x = x m ( t )  is the phase boundary). In that system of coordinates, the 
deepest phase moves with a velocity dy/d t  determined by the mass conservation condition 
which gives 

J. C Mareschal and A.  F. Gangi 

The temperature T, and the pressure P, for which the two phases are in equilibrium are 
related by the integrated Clausius-Clapeyron equation which is assumed to be linear. There- 
fore, we have at the interface 

T, = T, + yP, 
(y is the inverse slope of the Clausius-Clapeyron equation). If Po(t) is the pressure excitation 
applied on the Earth's surface, we have that 

(2) 

Tm = Tc + Y P o ( ~ )  + YgPlxrn ( t ) .  (3) 

When the phase boundary moves and material is transformed from one phase to another, 
heat is produced (or absorbed) proportionally to the amount of material undergoing the 
transformation. In order for heat conservation to hold, we must have that (Carslaw & Jaeger 
1959, p. 284) 

(L is the latent heat of transformation; Tl and T2 are the temperature in each phase; the 
condition (4) is referred to as the Stefan boundary condition.) 

The motion of the phase boundary will depend on how this extra heat is carried away; 
t h s  is determined by the solution of the heat equation 

with its boundary and initial conditions (XI and qz are the thermal diffusivity of the two 
phases). 

It w d  be assumed that no heat sources are present and that the system is initially in 
thermal equilibrium. The initial temperature distribution is thus 

T,(x , t=0)=131x (64 

Tz(x, t = 0) = PlXO+ Pz (x - xo) (6b) 

&xo= Tc + YgPlxo. (7) 

and the initial phase-boundary depth, xo,  is determined by 

The boundary conditions are: 

(i) The temperature at the surface x = 0 is specified 

7'1 ( X  = 0, t )  = To(t). 
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(ii) The temperature gradient at x = 00 remains constant 

8TZ 
ax lim - ( x , t ) = & .  

X‘m 
(9) 

(iii) At the interface between the two phases, the temperature is continuous and equal to 
the transition temperature T, given by equation (3). 
(iv) At the interface, the heat flow is discontinuous and obeys the Stefan boundary 
condition given by equation (4). 

boundary condition (8), which Gjevik replaced by the condition 
The major difference between this statement of the problem and Gjevik‘s (1972) is the 

lim Tl(x,  t )  = &x. 
X’--m 

GjeviB also replaced the boundary condition (11) by the condition that the temperature 
(instead of the gradient) remains constant at a fixed point, but it can be verified easily that 
both conditions would give the same results. 

2.2 M E T H O D  O F  S O L U T I O N  

The solution of this problem can be derived by the method of Gjevik (1972; Mareschal 
1975). As another derivation is given in the Appendix, we shall simply recall the major steps 
and the hypotheses that are necessary to obtain the solution. A new coordinate system, z ,  
fured to the phase boundary is introduced, as 

(10) 

Tz(z, t )  are replaced by the temperature perturbations 

Two hypotheses will be made in order to linearize the new set of partial differential 
equations and boundary conditions: 

(i) Because the coordinate system (fixed to the phase boundary) is moving with respect to 
the material, convection terms of the form (aO,/az)(dx,/dt) and (aO,/az)(dx,/dr) are 
introduced in the heat equatton. These quadratic terms will be assumed negligible by com- 
parison to the conduction terms yi”,(azOl/az2) and XZ(azOz/azz). By neglecting those 
terms, it is thus assumed that transport of heat away from the boundary is more rapid by 
conduction than by this ‘convection’. The range of validity of this approximation will be 
discussed more fully later. 
(ii) It will be assumed that the amplitude of the phase-boundary motion is smaller than the 
distance between the phase boundary and the free surface. x,( t )  - xo e x O  and therefore the 
boundary condition at the surface Ol(z = - xm( t ) ,  t )  = To(t) can be approximated by 

Since the system of equations and boundary conditions have been linearized, Laplace 
transform techniques (Doetsch 1963) can be used to determine its solution. The Laplace 
transform f(s) of the function f(t) is defined by 

e,(z = - x o ,  t)  = ~,( t ) .  
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The phase-boundary motion zm(t) defined by xm(t) - x o  has the following form in the 
transform variable 

J. C Mareschal and A .  F. Gangi 

[- Ypo(s) -t To(S)  exp (- d / ( T o S ) ) I  [kz/@% t ki/d% coth d(7oS)l 
L P i d s  (YgPi"0z) P i k z / p 2 f i t  ( y g p , - - i ) k i / ~ c o t h 4 ( 7 o s )  (13) z&) = 

where we have defined r0 = x;/ XI. 
The form of the solution shows that the motion of the phase boundary is the convolu- 

tion (in time) of the pressure or temperature excitation with a Green's function. Before 
determining the time dependent motion of the phase boundary, the transform can be 
simplified by assuming that: 

( i )  The thermal properties of the two phases are the same: kl = k2 = k ,  cf l  = YZ = ,%and 
therefore pi = P2 = 0. 
(ii) In equation (13), p1 = pz = p and therefore, B2pl = D1pz = pp. This assumption may not 
be very good for phase changes at  Moho depth where the transition temperature and the geo- 
thermal gradient are probably close: in that case, the inverse Laplace transforms will be 
slightly more complex, but the same type of analysis could be applied. The assumptions 
introduced at this stage are not as critical as the linearizing assumptions made earlier, since 
they do not alter the general form of the result. Under these assumptions zm(s) reduces to 

This solution differs from Gjevik's solution in two aspects; it  includes the effect of the 
surface temperature To(s) exp [-d(7$)] and the effect of the image of the phase boundary 
with respect to the surface z = - xo (term d(7s) exp [- 2d(r0s)] in the denominator). In 
the limit 70 +. m, the equation (14) is identical to Gjevik's solution. 

3 Inversion of the Laplace transform 

3.1 D E T E R M I N A T I O N  O F  T H E  G R E E N ' S  F U N C T I Q N  F O R  A P R E S S U R E  
P E R T U R B A T I O N  

The Green's function (i.e. the phase boundary motion perturbation caused by a pressure 
Po(t) = Po&(t/7) can be determined by two different methods. 

The inversion integral for the Laplace transform is given by 

Zm(f)=  - 
2 rri 

zm(s) exp ( s t )  ds.  

As the function z,(s) has no poles on the branch Re (4s) > 0 the contour of integration can 
be deformed and the integral (16) can be replaced by an integral along the branch cut of 
ds, as foliows 

exp ( - x i )  (1 - cos 2 ~ ( T ~ x ) )  dx 
z,(t) = - s," 1 - 24(7X) S i n  2 d(70X) 2 T X  (1 - COS 2 t/7oX) 
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where 

zo = - YPol(7gP - 0). 
The determination of the solution by the numerical integration of equation (17) will be 

particularly easy for large values of t. Furthermore, by application of Watson's lemma 
(Sirovich 1971, p. 65), the following asymptotic expansion of the solution can be 
determined 

0- 
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- 5 -  

-6 r  

where 

I -  

- 

lim o(t)-" t" 
t' - 
is bounded. 

The Green's function determined by numerical integration of equation (17) is plotted 
on Fig. 1. It can be observed on the figure that the closer the phase boundary is to the 
surface, the faster the equilibrium will be reached. This result, which can be inferred from 

\ e 2  
1 I I I 

-2  I 0 I 2 3 
Log t /T 

Figure 1. Pressure Green's function. Gjevik's solution corresponds to T,, = -, 

the asymptotic expansion (18), can be expected for intuitive reasons: the moving boundary 
is slowed down by the rising temperature; the closer the heat source (moving boundary) is to 
the isothermal surface, the smaller the increase in temperature and thus the effect on phase 
boundary motion. 

Instead of integrating numerically equation (17), we can expand in series the Laplace 
transform of the Green's function and invert the series term by term (Doetsch 1963, p. 118). 
This expansion is formally equivalent to the method of images (Carslaw & Jaeger 1959, 
p. 273). The series expansion of the Green's function is 

(19) 
exp (- 2 4w)) 

& + l  1 .  zm(s) - 1 

zo f i + l  k =  v 0 

The series converges uniformly and absolutely on any closed region of the branch Re (ds) > 0 
(the convergence is more rapid for large values of s, i.e. small values oft) .  Inverting the two 
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first terms of the series expansion, we obtain (Oberhettinger & Badii 1973, p. 229) 

J. C Mareschal and A. F. Gangi 

erfc x = 1 -erf x = 1 -- exp (- t2)dt 
;T [ 

The first term of the series expansion of the Laplace transform is the solution of Gjevik 
(1972) and if T ~ / T  is sufficiently large, it is not very different from the exact solution. Higher 
order terms can be understood as the contribution of the images of the heat source. For 
small t/rO, the nth order term goes to  zero as exp [- (2n ) ’~~ / t ]  and can be neglected. The 
comparison between the solution obtained by numerical integration of equation (1 7) and 
the term by term inversion of the series expansion shows that, for all cases of practical 
interest, the series expansion limited to  the first two terms provides accurate results 
(Mareschal 1975). 

3.2 D E T E R M I N A T I O N  O F  T H E  G R E E N ’ S  F U N C T I O N  F O R  A T E M P E R A T U R E  
P E R T U R B A T I O N  

The Green’s function for a temperature perturbation To(t) = To6 ( t / ~ )  can be evaluated by 
the same techniques. The branch cut integral for zm ( t )  

exp ( - x t )  sin ~ ( T ~ X )  dx 
z,(t) = - 

yields the following asymptotic development 

~ ~ o ~ ’ ~  -2 t /TXSh2t / (ToX)+27X(1 - C O S 2 d ( 7 0 X ) )  

(where zo = To/(YgP - 0)). 
The Green’s function, which was evaluated by numerical integration, has been plotted for 

different values of T ~ / T  on Fig. 2. This Green’s fuflction is no longer singular for t = 0; its 
maximum is located approximately at t = 0.2 70 and its amplitude decreases exponentiauy 
with increasing T ~ .  Note that this Green’s function is the convolution of exp (- T 0 / 4 f )  and 
the Green’s function for a pressure induced phase boundary motion. 

The series expansion of the transform can also be inverted term by term leading to 

z,(r) - 
__ -  d ( ~ / n  t )  exp (70/4 t )  -- exp (d(~o/~)  + t / 7 )  erfc 1d(70/4 t )  + d(t/7>1 
20 

- (2 + 2 r/r + 3 ~ ( T ~ / T ) )  exp (3 ~ ( T ~ / T )  + t / ~ )  erfc (3/zd(~~/t) + d( t /~ ) )  (24) 

+ ( d ( ~ / n t )  + 2d( t /m) )exp  ( - 9 ~ ~ / 4 t ) .  

In all cases of practical interest, the results obtained by limiting the series expansion to its 
first two terms are very close to the exact solution obtained by numerical integration of the 
branch cut integral. 
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I -  
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3.3 A P P L I C A T I O N S  

The techniques described in the preceding Section can be used to determine the phase 
boundary motions for different type of pressure or temperature excitations. In particular, 
the motions of the phase boundary following the application of step or ramp function 
pressure and temperature excitations are plotted in Figs 3,4,  5 and 6. Analytical expressions 
for the phase boundary motion can be obtained by inverting the first terms in the series 
expansion of the transform (Mareschal 1975). 

The difference between this solution and Gjevik’s can be seen directly on the figures 
where Gjevik’s solution corresponds to the case T~ = =. This difference appears non- 
negligible for values of T ~ / T  < 10. It can be seen that under the effect of the boundary condi- 
tion at the surface, the boundary reaches its equilibrium position more rapidly (indepen- 
dently of any temperature perturbation at the surface). The closer the phase boundary is to 
the surface, the faster is equilibrium reached. 

For a temperature perturbation, no motion would occur under Gjevik’s hypothesis.. In 
the solution developed here, the motion of the phase boundary is significant after a time of 
the order of ro/5. 

IO- 

8 -  

< .6- - + - 
E 

N 

0 I I I I I 
- 2  I 0 1 2 3 

Log (t/r) 

Figure 3. Phase boundary motion for a Heaviside function pressure excitation (normalized to the final 
equilibrium position zo). 
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Figure 4. Phase boundary motion for a Heaviside function temperature excitation (normalized t o  the 
final equilibrium position z o ) .  

,< = 2T 

01 I I I 1 
-2 I 0 I 2 3 

Log t / T  

Figure 5. Phase boundary motion for a linear increase in pressure. The motion at  time t is normalized t o  
the change in equilibrium position of the phase boundary between time 0 and f. 

Log t / T  

Figure 6. Phasc boundary motion for a linear increase in temperature. The motion at  time f is normalized 
to the change in equilibrium position between time 0 and t .  

The amplitude of the phase boundary motion can be determined either by application of 
the Tauberian theorems (Hladik 1969, p. 104) to the equation (14) or by simpler considera- 
tions. For a step pressure excitation of amplitude Po, the amplitude of phase boundary 
motion is given by -yPo/(ygp - 0) for a step temperature excitation To the amplitude of 
motion is To/(ygp - 0). A similar result was obtained by O’Connell & Wasserburg (1967) and 
Gjevik (1 972). 

The time constant T~ is the characteristic heat propagation time from the surface to the 
phase boundary and vice versa. Its order of magnitude (108yr) for phase transitions at a 
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On a one-dimensional Stefan problem 453 
depth of about 50km is comparable to the duration of a geosyncline and to the time for 
formation of a sedimentary basin. 

The time constant r can be considered as the relaxation constant associated with the 
phase boundary motion. It is the time necessary for the latent heat produced (or absorbed) 
at the phase boundary to be removed (or carred in) by conduction. The value of that time 
constant depends on the parameters of the phase transition considered and on the geo- 
thermal conditions that exist in the region of the Earth where the phase transition occurs. 
Since the latent heat L is related to the slope of the Clapeyron curve l/r by the Clausius- 
Clapeyron equation (Landau & Lifchitz 1967, p. 318) in the following manner 

(where T, is the transition temperature and Ap the density contrast between two phases) r 
can be expressed as 

This time constant is identical to Gjevik’s (1972). Within a factor 4/77 of difference between 
the definitions, it is also the same as O’Connell & Wasserburg’s (1972) time constant when 
the physical properties of the two phases are assumed equal. 

In Table I(a), the relaxation time r for the basalt-eclogite transition is given for different 
values of the thermal conductivity and of the difference between the geothermal and transi- 
tion temperature gradient; the actual value of these parameters is very uncertain and may 
vary greatly from one region to another. However, it can be observed that if all the para- 
meters are kept within the range allowed by the experimental data, it is not possible to 
obtain relaxation times smaller than 106yr. For the phase changes in the peridotite, the 
time constant would be about 10 times smaller because the smaller density contrast in the 
equation (26). The order of magnitude of that relaxation constant is in accordance not only 
with the time of formation of sedimentary basins, but also with the period of tilts and up- 

Table 1. (a) Value of the time constant T (in lo6 yr) for the gabbro cclogite transformation for different 
values of the thermal conductivity ( k  in mW/m/K) and the difference between the transition temperature 
and the geothermal gradient ygp ~ p i n  K/km. The values assumed for the other parameters are: y = 60 K /  
kbar, P,  = 3.0g/cm3, p l =  3.5g/cm3, &@= 0.01cm2/s, T, = 1OOOK. 

ygp - P  k 0.14 0.2 0.26 0.32 

1 285 140 83 5 5  
2 71 35 21 14 
4 18 8.7 5.2 3.9 
6 8 3.9 2.3 I .s 
8 4.5 2.2 1.3 0.8 

10 2.9 1.4 0.8 0.55 

(b) Value of the time constant 7 (in l o6  yr) for the olivine--spinel phase transition for different v a l u ~ s  ot 
the thermal conductivity ( k  in mW/m/K) and the Clausius-~ Clapeyron slope (y in K/kbar). The values 
assumed for the other parameters are: p = 0, P,  = 4 g/cm’, p 2  = 4.4g/cm3, ?F= 0.01 cm’/s. T, = 2000 K .  

7 k 0.2 0.4 0.08 

20 26 6.5 1.6 
30 5 1.3 0.31 
50 0.65 0.16 0.042 

100 0.042 0.01 0.003 
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lifts directly related to mountain building (Wellman 1972). It is much larger than the time 
constant associated with post-glacial rebound. 

Although our time constant is similar to  Gjevik's and the inclusion of thermal effects 
does not change the response of the olivine-spinel transition to  surface loading, it is worth- 
while rediscussing Gjevik's conclusion that the olivine-spinel transition could produce the 
post-glacial rebound. In Table l(b), the time constants corresponding t o  the olivine-spinel 
transition are given for different values of the slope of the Clausius-Clapeyron curve and the 
thermal conductivity. It appears that this time constant is very sensitive to  the value of the 
Clausius-Clapeyron slope. A value as small as 6000yr has been suggested by Gjevik who 
assumed a slope of the order of 100 K/kbar for the Clausius-Clapeyron curve. 

However, the experimental data show that the olivine-spinel and all solid-solid phase 
transitions in the mantle have slopes of the order of 30K/kbar (Ringwood 1972). In this 
case, it is impossible to obtain a relaxation time smaller than 500000yr.  One implication 
is that none of these phase transitions would affect significantly the post-glacial rebound. 
A similar conclusion has been reached by O'Connell (1976). However, it is correct that, as 
pointed out by Gjevik, there is a range of values for the parameters of the olivine-spinel 
transition which can produce the observed relaxation time for the post-glacial rebound. 

3.4 V A L I D I T Y  O F  T H E  L I N E A R  A P P R O X I M A T I O N  U S E D  IN T H I S  P A P E R  

The results presented so far have been obtained under several simplifying hypotheses. The 
neglect of the convection terms of the type (ae/az)(dx,/dt) in the partial differential 
equations in the most restrictive because the method of solution depends on it. 

For this approximation to be true, the condition 

niust be satisfied. Each one of these terms can be evaluated from the solution for the 
temperature fields obtained under the linear approximation (Mareschal 1975). 

For linearly increasing pressure Po(t) = I',tH(t) it can be verified that the condition always 
holds for short time (ix. f <T). For long time, the condition will hold only if 

In Table 2,  we give the time (in 106yr) at which the linear approximation does no longer 
apply when sedimentation at constant rate induces unotion of a Mohorovicic discontinuity 
phase change. The sedimentation rate and the difference between the geothermal and 

Table 2. Range of vatidity of the linear approximation (in 1 O6 yr) for a Mohorovicic discontinuity phase 
change moving under the ef'iect of sedimentation a t  constant rate. The sedimentation rate (in mm/yr) and 
the difference between the geothermal and transition temperature gradient (ygp - 0 in K/km) are varied. 
The thermal difiusivity.%' is assumed 0.01 cmZ/s, the  sediment density 2.5 g/cm', 7 60 K/kbar. 

Diff. in Sedimentation rate 1.5 1 0.3 0.1 0.03 
slope in mm/yr 

10 
8 
6 
4 
2 
1 

7. I 16 64 1600 14 400 
4.6 10.2 41 1024 9216 
2.56 5.76 23.04 576 5184 
1.14 2.56 10.24 256 2304 
0.28 0.64 2.56 64 5 76 
0.07 0.16 0.64 16 I44 
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transition temperature gradients are vaned and the other parameters are given their most 
likely value. It can be observed that the range of validity of the approximation is large only 
if either the amplitude of the phase boundary motion is small (i.e. (ygp - f l )  is large) or the 
rate of sedimentation is low. The practical effect of these limitations is to restrict the 
application of the approximation to motions of the phase boundary that are small. This 
evaluation of the importance of the non-linearities is in contradiction with Gjevik (1972) 
who assumed that the non-linear effects would always be negligible. 

4 Conclusions 
Despite its relatively restricted applicability, the linear approximation derived here is useful. 
For any phase transitions, the critical parameters and the conditions that produce a specific 
behaviour of the phase boundary can be determined.in a very general way. 

Whether or not such transitions actually occur in the Earth is a problem that we shall 
not try to answer here. However, the results derived earlier would call the following 
comments : 
( 1 )  As far as the post-glacial rebound is concerned, the relaxation time for phase boundary 
motion is two or three orders of magnitude larger than the relaxation time observed for 
post-glacial uplift. It can thus be concluded that the effect of even shallow phase transitions 
on post-glacial uplift is negligible and that the viscosity of the mantle determined from the 
post-glacial rebound data is likely to be accurate. 
(2) Because of the low viscosity of the upper mantle (McConnell 1968), the phase 
transitions in the mantle wd1 not be affected by changes in surface pressure. These phase 
transitions are too deep to  be affected by changes in surface temperature in a reasonably 
short time. Local undulations of these phase changes cannot be the consequence of changing 
surface pressure or temperature, but may be the effect of deep changes in geothermal regime 
or mineral composition. Note also that because of the low mantle viscosity, local motions of 
these phase boundaries would induce no motion of the Earth’s surface. 
( 3 )  The only phase changes that would be affected by changes in surface temperature and 
pressure should be present in the outer 100 km of the Earth. Although several phase transi- 
tions may occur in that region, the author’s opinion is that a phase change Mohorovicic 
discontinuity would be the most significant for two major reasons: (a) The relatively im- 
portant density contrast between basalt and eclogite (It0 & Kennedy 1971) would induce 
significant uplifts and subsidences. Combined with isostatic adjustments, these phase 
boundary motions could explain the continuous deposition of sediment in shallow water, 
(b) the characteristic theryal time for propagation of heat from the surface to that 
boundary is of the order of a geosyncline’s duration, i.e. l0’yr. This would explain the 
uplift of the Earth’s surface after a deposition cycle. Furthermore, the order of magnitude 
of the relaxation time for the basalt-eclogite phase transition correlates well with the 
characteristic time associated with orogeny (Wellman 1972). 

Although the basalt-eclogite transition still raises controversy among geophysicists, the 
results reported here indicate that the amplitude and the time constant of the motion of 
such a phase transition is in accordance with the geophysical and geological observations of 
Earth’s surface motions with long characteristic time. 
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Appendix 

A simpler but slightly less general derivation of the solution (14) can be obtained by thc 
integral equation method (Lightfoot 1930). Let us assume that a phase boundary is present 
at depth xm( t ) (xm(0 )  = x o )  and that as long as the heat equation is concerned, both phases 
have the same density, p ,  thermal diffusivity, 2, and thermal conductivity, k .  The initial 
temperature is given by T(x,  c = 0) = pX.  The temperature at the phase boundary must at 
any time be equal to the transition temperature given by equation (3). 

The initial temperature at the phase boundary is given by equation (7). Therefore, we 
must have 

T(x,, t )  - Oxm is the temperature perturbation O(x,, t )  at x = Xm(f ) .  This temperature 
perturbation has two components: O’(x, t) due to the boundary conditions at the surface 
which is given by (Carslaw & Jaeger 1959, p. 63) 

O”(x, t )  due to the moving heat source at the phase boundary. This component is given by 
(Carslaw & Jaeger 1959, p. 357) 

where the Green’s function is defined by 
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Introducing 8' and 0" in equation (Al) ,  we obtain the non-linear integral equation that must 
be solved for xm(t)  

J.  C Mareschal and A. F. Gangi 

This non-linear equation cannot be solved directly; it could be solved by iterations. However, 
a linear approximation to its solution can be obtained if it is assumed that the phase boun- 
dary motion is so small that x,(t) =xo  in the left-hand side of (A5) but X,(t) + 0. In that 
case, equation (A5) is replaced by a linear integral equation of the convolution type 

+ L / c ( y g p - P )  x J rd t ' nO( t ' )G(xo ,  t ; x o , r ' ) .  
0 

The solution given by equation (19) is obtained by Laplace transforming equation A6. 
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