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Abstract

In this paper we propose a new harmonic balance simu-
lation methodology based on a linear-centric modeling ap-
proach. A linear circuit representation of the nonlinear
devices and associated parasitics is used along with corre-
sponding time and frequency domain inputs to solve for the
nonlinear steady-state response via successive chord (SC) it-
erations. For our circuit examples this approach is shown to
be up to 60x more run-time efficient than traditional Newton-
Raphson (N-R) based iterative methods, while providing the
same level of accuracy. This SC-based approach converges
as reliably as the N-R approaches, including for circuit
problems which cause alternative relaxation-based harmon-
ic balance approaches to fail[1][2]. The efficacy of this lin-
ear-centric methodology further improves with increasing
model complexity, the inclusion of interconnect parasitics
and other analyses that are otherwise difficult with tradition-
al nonlinear models.

1 Introduction
As circuits increase in complexity and models of high-

frequency parasitics become more detailed, there is an ever-
increasing demand for more efficient steady-state circuit
response analyses in the analog and RF design community.
Harmonic balance methods provide a more efficient fre-
quency domain steady-state analysis than traditional time
domain transient analysis for such problems, particularly
when the circuit has widely spread time constants[1][2][13].
However, accuracy requirements and aliasing tolerances
require that strongly nonlinear circuits are simulated at a
large number of frequencies. Consequently, the problem
size can render harmonic methods to be impractical, partic-
ularly when the nonlinearities are severe.

Krylov-subspace iterative methods have been proposed
to solve large linear equations at each iteration to improve
the overall efficiency in harmonic balance methods
[11][13], and also for time domain shooting methods [12].
In [11] and [13] a preconditioning matrix is required to
achieve good convergence speed on the solutions of linear
†
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equations. However, simple low-cost block diagonal pre-
conditioners become ineffective when the circuits contain
severe nonlinearities and a more complicated adaptive pre-
conditioning scheme is needed [14].

In this paper we outline a methodology for significant
improvement in harmonic balance simulation efficiency via
a simple linear-centric modeling approach. Each nonlinear
element is modeled by a constant linear representation in
parallel with a time-varying current source. The successive
chord iterative method is then used to solve the harmonic
balance nonlinear system of equations that are formulated
by these linear-centric models. The successive chord itera-
tive method has been recently applied for time domain tran-
sistor-level timing analysis (TETA) in [3][4][5][6].

For the simplicity of terminology, we refer to our new
harmonic balance approach as SC balance. In contrast to
Newton-Raphson based method and the relaxation variants,
for which a nonlinear circuit is linearized at every iteration
step, the nonlinear circuit is linearized once, prior to the
start of the analysis, in SC balance. Newton-Raphson is
generally preferred to successive chords due to its theoreti-
cal quadratic convergence rate. However, such a conver-
gence rate is not always guaranteed in practice due to the
step-limiting or damping scheme that is generally employed
to ensure the stability.

Our simple linear-centric modeling approach facilitates
the use of successive chord method, which has a linear rate
of convergence. But while reaching the convergence can
require more iterations, the complexity of each iteration is
much smaller than that of N-R method. The improvement
of simulation efficiency is more pronounced for large cir-
cuits since the sparse structure of the problem can be further
exploited in the adopted SC method. Moreover, adding
interconnect parasitic models and other analyses such as
noise, are far more readily accommodated by this linear-
centric framework.

This paper is organized as follows. A brief review of
successive chord iterative method is given in Section 2. In
Section 3, we introduce the circuit models used in our
approach. The linear-centric harmonic balance approach
with comparison to traditional N-R approach is presented in
section 4. Experimental results with comparisons of various
iterative methods are presented in Section 5. Finally, con-



clusions are drawn and future research directions are dis-
cussed in Section 6.

2 The Basics of Successive Chord Method
Successive chord method is described as a variant of

classical Newton-Raphson iterative method in [7][8]. As an
example, a simple diode circuit shown in Fig. 1(a) is used to
compare the Newton-Raphson method and the successive
chord method in Fig. 1(b) and Fig. 1(c) respectively. In
Newton-Raphson iterations, nonlinear circuit elements are
linearized according to their tangents at each iteration step,
while they are linearized using a constant slope in succes-
sive chord iterations. These constant linearizations are
referred to as chords.

There are a few differences between these two methods
as applied to nonlinear circuit analyses that are worth noting
here. Firstly, successive chord method implicitly uses a con-
stant linear circuit model for each nonlinear element for all
iterations while Newton-Raphson employs a changing lin-
earized model for every nonlinear element from iteration to
iteration. Secondly, Newton-Raphson iterative method
achieves theoretical quadratic convergence rate while suc-
cessive chord method converges linearly. However, succes-
sive chord may outperform Newton-Raphson in terms of
overall runtime by iterating more steps but spending much
less time per step. Moreover, for highly nonlinear circuit
problems, damping is required for N-R iterations to con-
verge, and the rate of convergence is superlinear, but not
quadratic in practice.

3 Linear-Centric Modeling of Nonlinear
Circuit Elements

The successive chord iterative method implicitly uses a
constant linear circuit model for each nonlinear element. In
this section, circuit models of MOSFETs and nonlinear
capacitors are used to demonstrate our linear-centric

approach. Without loss of generality, this approach can be
applied to other nonlinear devices such as nonlinear induc-
tors. Note that we restrict our discussions to nonlinearities
which have an admittance representation such as voltage-
controlled nonlinear resistors. The linear-centric models for
an impedance representation are simply the dual form to the
aforementioned linear-centric models.

A typical small-signal low-frequency MOSFET model
that is commonly used to perform small-signal AC analysis
at an operating point is shown in Fig. 2(a). With the addition
of an extra current source this model is used in Newton-
Raphson to linearize MOSFETs at each iteration in a nonlin-
ear analysis. Importantly, the linear resistors and controlled
sources change with every N-R iteration.

The linearized large-signal MOSFET IDS model used in

our SC approach is shown in Fig. 2(b). Unlike the small-sig-
nal model, this model uses fixed values for transconduc-
tances and conductances for all biasing conditions. The only
difference is a varying current source is added such that IDS

of the MOSFET is equal to the value dictated by the device
model for every operating point. In this paper, we refer to
this varying current source in a linearized large-signal
model as a chord current source.

The linearized large-signal nonlinear capacitance
model employed in our linear-centric approach is shown in
Fig. 3. Each nonlinear capacitance is simply modeled by a
constant linear capacitance in parallel with a varying current
source. It should be noted that this model represents a fre-
quency domain perspective for harmonic balance analysis.
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Fig. 1: (a) simple diode circuit, (b) Newton-Raph-
son Method, and (c) successive chord method.
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Fig. 2: (a) linearized small-signal MOSFET IDS
model, and (b) linearized large-signal

MOSFET IDS model
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Fig. 3: linearized large-signal nonlinear
capacitance model.



A linear-centric treatment for time domain transient analysis
will result in a somewhat different companion model for
nonlinear capacitances[9].

Combining the above MOSFET model and the nonlin-
ear capacitance model, the complete linear-centric MOS-
FET model that is used in our prototype simulator is shown
in Fig. 4, where each nonlinear element is modeled by a lin-
earized element (chord) and a varying chord current source.
Some subtle differences exist when a charge conservation
gate capacitance model such as the one in [10] is used. In
this case, small-signal nonlinear gate capacitances become

non-reciprocal, f.g., . Under this situation,

capacitive parasitics cannot be simply modeled by two-ter-
minal capacitors in Fig. 4(a), and more general concept of
transcapacitances applies. An exact linear-centric approach
will generate a more complicated model than the one shown
in Fig. 4(b). However, the conceptually more intuitive
model in Fig. 4(b) can be used even for charge conservation
capacitance models since the exact circuit responses will
still be reached upon convergence.

4 Linear-Centric Harmonic Balance
4.1 Newton-Raphson Method

To solve the steady-state response of a circuit, har-
monic balance performs MNA analysis in frequency
domain. If we denote the number circuit unknowns as ,

then nonlinear system equations of dimension of x

on a truncated set of frequencies { , ,..., } can be

expressed as [2]:

, (1)

where, in terms of Fourier coefficients, , , , and

(all ) are vectors of system unknowns, currents of

nonlinear resistors, nodal charges(fluxes), and input excita-

tions, respectively. is the admittance matrix
composed of linear circuit element. It is worth noting that (1)
is usually more efficiently formulated in terms of real parts
and imaginary parts of Fourier coefficients as described in

[2]. is the frequency differentiation operator
used to convert nonlinear capacitor charges to the corre-
sponding currents:

, (2)

where, is a block-diagonal matrix of dimension of
x representing the differentiation operator at frequen-

cy . The linearizations of nonlinear resistors and capaci-
tors at sampled time points can be represented by following
two block-diagonal matrices, respectively:

, (3)

. (4)

When Newton-Raphson is used to solve (1), the Jacobian is
in the form [11][13]:

, (5)

where, and are the discrete Fourier transform and the

inverse discrete Fourier transform matrices, respectively.
Notice that matrices and are usually sparse, but the sec-
ond and third terms in (5) are dense, especially for highly
nonlinear circuits. The dense Jacobian matrix of Newton-
Raphson method makes the direct solution of the linear sys-
tem via Gaussian Elimination at each iteration impractical
for large circuits. Krylov-subspace based iterative method
has been proposed to solve large the linear system at each
Newton-Raphson iteration [11][13]; however, to ensure
proper converge rate of linear system solutions, a precondi-
tioning matrix is usually required. When large nonlinearities
are encountered, the simple low-cost preconditioner ob-
tained via discarding off-diagonal blocks in (5) is no longer
effective[14].

4.2 SC Balance
In our linear-centric modeling approach to harmonic

balance method, we employ the linearized large-signal mod-
els described in Section 3. For a circuit such as the one
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shown in Fig. 5(a), that includes nonlinear devices such as
MOSFETs and nonlinear capacitors, we replace each non-
linear device by its linearized large-signal model. In gen-
eral, such a linearized model is composed of linear R’s, L’s
C’s and controlled sources (chords) plus a varying chord
current source. By combining the chords of nonlinear ele-
ments with other linear elements in the circuit into a col-
lapsed invariant linear circuit, we reach the overall circuit
model used in our linear-centric approach, as shown in Fig.
5(b).

As one can expect, such a circuit representation appears
most intuitive for “almost linear” circuits. For these well-
behaved circuits, the chords of nonlinear elements can be
simply chosen according to their operating point small-sig-
nal parameters, such as small-signal conductances,
transconductances and small-signal capacitances etc. In this
case, a chord current source would readily represent the
nonlinear distortion caused by the corresponding nonlinear
element. Importantly, chords need not necessarily be chosen
according to dc operating point small-signal values. In prac-
tice they are chosen specifically to ensure convergence for
strongly nonlinear circuits -- more on this later.

From a circuit simulation perspective, the adoption of
the circuit model in Fig. 5(b) is equivalent to simulating the
nonlinear circuit using successive chord iterations in har-
monic balance. To see this connection more clearly, we
apply the constant linearized large-signal model for each
nonlinear element at every sampled time points, then equa-
tions (3) and (4) become

(6)

and

, (7)

respectively. In (6) and (7), and are the time-invariant

linearizations of nonlinear resistors and capacitors com-
prised of chords, respectively. Substituting (6) and (7) into
(5), we obtain

. (8)

Recognizing that in (8) is a constant matrix, we apply

the following successive chord iterations to solve for system
unknowns

, (9)

or

(10)

In (10), represents the constant linearized circuit, and

the second term is simply the DFT of the sum of chord cur-
rents of nonlinear resistors and capacitors. Based upon (5),
(8) and (10), our linear-centric approach presents the follow-
ing important advantages:

• To construct the Jacobian matrix in (5), one needs to
evaluate not only the currents (charges) of nonlinear
resistors (capacitors), but also the derivatives of cur-
rents (charges) w.r.t. terminal voltages on which they
depend at each sampled time point. This also requires
the continuity of the derivatives to ensure the stability
of N-R iterations. This limitation demands the use of
smoothing functions wherever there is a discontinuity
of these derivatives. However, a constant Jacobian
matrix as in (8) is used for all iterations in our linear-
centric approach such that there is no need to evaluate
any derivative. Only the currents (charges) themselves
need to be evaluated. Hence, our approach allows the
use of lookup table based device models, in which sen-
sitivities are not directly required [3][4][5][6]. In the
detailed device model implemented in our prototyped
simulator, N-R method needs to evaluate 17 derivatives
for a MOSFET and its nonlinear capacitive parasitics at
each sampled time point. Then, 17 DFTs are required to
transform these 17 derivatives into frequency domain.
Saving in the model evaluation using our linear-centric
approach would be more significant as more compli-
cated device models are used.

• While (5) is usually dense for circuits with large non-
linearities, (8) is still sparse. The Jacobian matrices of
two methods for a double-balanced mixer are shown in
Fig. 6. Fig. 6(a) has 132,624 non-zero entries compared
to 5,086 non-zeros in Fig. 6(b). The sparsity of constant
Jacobian matrix in (8) can be exploited to solve large
nonlinear circuits efficiently. Prior to the start of the iter-
ation loop, (8) can be prefactorized via LU factorization
and stored sparsely. Thereby a new solution can be
solved very efficiently though simple forward and back-
ward substitutions using the constant sparse LU factor-
ization at each iteration. The overall procedure is

Linear Circuit Linear Circuit
(b)(a)

Fig. 5: (a) a circuit containing nonlinear devices,
and (b) overall circuit representation used in the

linear-centric approach.
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equivalent to pre-solve a linear circuit, then update the
circuit response by changing the excitements to the lin-
ear circuit at each iteration step. Finding responses to
new excitements only requires the re-evaluation of the
chord currents for the nonlinear elements. Moreover,
due to the fact there is no frequency translation in (8),
the linear system solution at each SC balance iteration
can be also solved individually for each frequency. In
this case, a total of smaller linear circuits are solved,

each of which is of dimension of x .

• As shown in Fig. 5(b), we model a nonlinear circuit by
a constant linear circuit plus chord current sources. The
linear circuit consists of linear circuit elements and the
chords of nonlinear devices. Interconnect model order
reduction techniques [15][16] can be extended to handle
controlled sources such that a reduced linear circuit can
be used in the successive chord iterations. We expect
this model order reduction will further increase the sim-
ulation efficiency of our linear-centric approach.

When a circuit operates almost linearly, the chords of
all nonlinear elements can be simply chosen as their small-
signal operating point values. The convergence and good
speed can be guaranteed easily. In [5][6], to ensure the con-
vergence of successive chord iterations for possible large
ranges of operating points, large sensitivities of the drain
source current of a MOSFET w.r.t. terminal voltages are
chosen as the chord values for the MOSFET. For example,

is smaller in the saturation region compared to its value

in the linear region. Therefore, the chord for should be

determined according to the value in the linear region. For a
more detailed discussion on the convergency property of
successive chord method, please refer to [5][7].

In general, choosing large sensitivities leads to a slower
update in the solution per step while it helps to prevent
divergence of the iterations. In SC balance, we employ
essentially the same approach. In addition to considering the
impact of the nonlinear IDS characteristics of MOSFETs, we

also include the contributions of nonlinear parasitic capaci-
tances to the Jacobian matrix. Our experiments have dem-
onstrated that neglecting nonlinear capacitances in (8) can
easily lead to divergence, especially for high-speed circuits.
The chord for a junction capacitance is chosen as the small-
signal capacitance value under zero-biased condition

because it is the largest sensitivity of the junction charge.
Similarly, the chord values for and (the fixed over-

lap capacitances are considered separately) are approxi-
mated by capacitance values in the linear or saturation
region considering certain channel charge partitioning
parameters used in the gate capacitance model. The largest
sensitivity regarding to the nonlinear component of can

be estimated by the gate capacitance in the accumulation
region.

5 Experimental Results
In this section we compare our implementations of

three iterative methods, N-R, block Gauss-Jacobi-New-
ton(GJN) relaxation and SC on several benchmark circuits.
Block Gauss-Jacobi-Newton is a relaxation method of N-R.
It is equivalent to neglecting frequency translations in the
Jacobian of N-R method by discarding all the off diagonal
blocks [2]. It can speed up the factorization of Jacobian
matrix, however, it might lead to divergence when large
nonlinearities are encountered. We compare these three
methods on three double-balanced mixers. To make block
GJN converge, circuit nonlinearities are limited by using
small signal amplitudes for local oscillators. A level three
MOSFET model is used for all cases.

The results are summarized in Table 1. The second col-
umn shows the problem size, and the columns that follow
are number of iterations for convergence, and CPU time in
seconds for the three methods. As shown in the table, SC
method runtime is superior in all cases, and even outper-
forms block Guass-Jacobi-Newton relaxation considerably.

In Table 2, more strongly nonlinear circuits are consid-
ered: switching single-balanced mixers, switching double-
balanced mixers and switching double-balanced mixers
driven by an LNA. For the circuits in Table 2, block Gauss-
Jacobi-Newton fails to converge. Therefore, we only com-
pare N-R method and SC method. As seen from the results
in this table, our approach has significant speedups over N-
R method, and we expect the improvement of simulation
efficiency to be even greater for larger problems.

Table 2: Comparison on strongly nonlinear circuits

M

(a) (b)
Fig. 6: (a) Jacobian of N-R, and (b) Jacobian of SC.
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Circuit Eqns It-NR
Ctime-

NR It-GJN
Ctime-
GJN It-SC

Ctime-
SC

dbmixer-A 668 8 252.4 8 19.8 10 6.1
dbmixer-B 1200 8 845.9 11 49.7 13 14.1
dbmixer-C 1542 9 1,584 12 71.4 10 14.0

Table 1: Comparison on weakly nonlinear circuits

Circuit Eqns It-NR It-SC Ctime-NR Ctime-SC Speedup
sbmixer-A 1041 12 247 675 136.7 4.9
sbmixer-B 1905 10 386 2,066 379.8 5.4
sbmixer-C 2449 10 386 3,545 489.9 7.2
dbmixer-A 1238 13 102 1,423 113.2 12.6
dbmixer-B 1618 169 356 30,802 503.3 61.2

LNA+dbmixer-A 1891 8 79 3,227 129.2 25.0
LNA+dbmixer-B 3051 16 221 30,464 621.8 49.0
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6 Conclusions and Future Directions
In this paper we have presented a novel and efficient

harmonic balance approach for the steady-state solutions of
analog circuits. The proposed linear-centric modeling
approach has several advantages. First, it allows much sim-
pler device model evaluations and time-to-frequency
domain transforms than traditional N-R based approaches.
More importantly, it represents a nonlinear circuit by a con-
stant linearized circuit driven by circuit inputs and varying
chord current sources of nonlinear elements. Thereby, suc-
cessive chord method is adopted to efficiently solve the
steady-state response of the nonlinear circuit via iterative
solutions of the constant linear circuit. The sparsity of the
linear circuit is exploited to handle large problem size effec-
tively.

Our future research directions include more theoretical
study on the convergence of SC balance. Moreover, due to
the linear-centric device models, the use of model order
reduction techniques for the overall linearized circuit can
potentially improve the simulation efficiency further.
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