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Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such
models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavail-
able. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization
problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean,
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examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can
be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear
decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are
in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in
practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advanta-
geous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with
complete recourse.
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1. Introduction
The study of stochastic programming dates back to Beale
(1955) and Dantzig (1955). In a typical two-stage stochas-
tic program, decisions are made in the first stage in the
face of uncertainty. Once the uncertainties are realized, the
optimal second-stage decisions or recourse decisions are
carried out. Such “stochastic programs” attempt to integrate
optimization with stochastic modelling that could poten-
tially solve a large class of important practical problems,
ranging from engineering control to supply chain manage-
ment; see, e.g. Ruszczynski and Shapiro (2003) and Birge
and Louveaux (1997). Another class of stochastic opti-
mization problems deals with chance constraints, which
dates back to Charns and Cooper (1959), and is the topic
of a series of recent papers (Calafiore and Campi 2003,
2004, 2006; Chen et al. 2007; de Farias and Van Roy
2004; Erdoğan and Iyengar 2004, 2007; Henrion 2007;
Lagoa et al. 2005). Despite the immense modeling poten-
tial, stochastic programs, especially multistage problems,
are notoriously difficult to solve to optimality (see Shapiro

and Nemirovski 2005, Dyer and Stougie 2006). Quite often,
finding a feasible solution is already a hard problem. It
is therefore important to develop a tractable and scalable
methodology that could reasonably approximate stochastic
programs.
One issue with stochastic optimization problems is the

assumption of full distributional knowledge in each and
every of the uncertain data. Because such information
may rarely be available in practice, it has rekindled recent
interests in robust optimization as an alternative perspec-
tive of data uncertainty (Ben-Tal and Nemirovski 1998,
1999, 2000; Ben-Tal et al. 2004; Bertsimas and Sim
2003, 2004a, b, 2006; El-Ghaoui 1997; El-Ghaoui et al.
1998; Goldfarb and Iyengar 2003; Soyster 1973). Ben-
Tal et al. (2004) propose an adjustable robust counter-
part to handle dynamic decision making under uncer-
tainty, where the uncertainties addressed are nonstochastic.
A different approach is suggested by Chen et al. (2007)
for chance-constrained stochastic programs, which assumes
only limited distributional information such as known mean,
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support, and some deviation measures of the random data. In
both approaches, linear decision rules are the key enabling
mechanism that permits scalability to multistage models.
Interesting applications of such models include designing
supplier-retailer flexible commitments contracts (Ben-Tal et
al. 2005), network design under uncertainty (Atamturk and
Zhang 2007), crashing projects with uncertain activity times
(Chen et al. 2007), and analyzing distribution systems with
transhipment (Chou et al. 2005).
Even though linear decision rules allow us to derive

tractable formulations in a variety of applications, they
may lead to infeasible instances even for problems with
complete recourse. This fact motivates us to refine linear
decision rules and develop a framework to approximate
multistage stochastic optimization via the refined decision
rules. Specifically, we propose two approaches to improve
linear decision rules.
The first approach is called deflected linear deci-

sion rules. This new class of decisions rules is suitable
for stochastic optimization problems with semicomplete
recourse variables, a relaxation of complete recourse. The
idea is to solve the stochastic programming model by ignor-
ing certain constraints, while appropriately penalizing the
constraint violations in the objective function. Using linear
decision rules and certain approximation of the new objec-
tive function (with the penalty term), the model is turned
into a second-order cone (SOC) program, which could be
solved efficiently both in theory and in practice. The result-
ing linear decision implies a feasible decision rule for the
original problem. Compared to using linear decision rules,
such a deflected linear decision rule performs better in the
sense that it provides a tighter approximation of the original
objective function.
The second approach is called segregated linear decision

rules, which are suitable for stochastic optimization prob-
lems with general recourse. The idea here is to introduce a
decision rule that is a piecewise-linear function of the real-
izations of the primitive uncertainties. A segregated linear
decision rule can be formulated in such a way that it can
be combined with the first approach to generate a segre-
gated deflected linear decision rule that can be proven to
have better performance than both linear and deflected lin-
ear decision rules. One attractive aspect of our proposal is
the scalability to multistage stochastic programs.
The structure of this paper is as follows. In §2, we intro-

duce a general stochastic optimization model. Section 3
discusses several decision rules to approximate recourse
decisions. In §4, we provide preliminary computational
results. Finally, §5 concludes this paper.

Notations. We denote a random variable, x̃, with the
tilde sign. Boldface lower-case letters such as x represent
vectors and the corresponding upper-case letters such as
A denote matrices. In addition, x+ =max�x�0� and x− =
max�−x�0�. The same operations can be used on vectors
such as y+ and z− in which corresponding operations are
performed componentwise.

2. A Stochastic Programming Model
A classical two-stage stochastic program with fixed re-
course can be formulated as follows (see, e.g., Ruszczynski
and Shapiro 2003):

min c′x+E�Q�x� z̃��
s.t. Ax= b�

x� 0�

(1)

where

Q�x� z�=min f ′w

s.t. T�z�x+Ww= h�z��

wi � 0 ∀ i ∈ I ⊆ �1� � � � � n2�� (2)

and c, f , and b are known vectors in �n1 , �n2 , and �m1 ,
respectively. In this formulation, z̃ ∈ �N is the vector
of primitive uncertainties that consolidates all underlying
uncertainties in the stochastic model, and E is used to repre-
sent the expectation associated with the random variables z̃.
We assume the following affine data dependency for T�z̃�
and h�z̃�:

T�z̃�=T0+
N∑
k=1

Tkz̃k� h�z̃�= h0+
N∑
k=1

hkz̃k�

with T0�T1� � � � �TN ∈ �m2×n1 and h0�h1� � � � �hN ∈ �m2 .
Matrices A and W are known matrices in �m1×n1 and
�m2×n2 , respectively. The stochastic model represents a
sequence of events. Here vectors x and w are the first-stage
and the second-stage decision variables, respectively. The
first-stage decision, x, has to be made before the actual
value of z̃ is realized; after applying the decision x and after
the uncertainty is realized, the second-stage decision (a.k.a.
recourse decision), w, can be made. For a given �x� z�, the
second-stage cost Q�x� z� is set to be +� if the feasible
set of (2) is empty, and −� if problem (2) is unbounded
from below. It can be shown that (see, e.g., Ruszczynski
and Shapiro 2003) under very general conditions, problem
(1) is equivalent to

ZSTOC =min c′x+E�f ′w�z̃��
s.t. Ax= b�

T�z̃�x+Ww�z̃�= h�z̃��

wi�z̃�� 0 ∀ i ∈ I�
x� 0�

w�z̃� ∈�� (3)

where � is a space of mappings from �N to �n2 that
are measurable with respect to the probability space on
which the random vector z̃ is defined. The functional w�·�
is the vector of the second-stage, or recourse, variables in
response to the realization of z̃.
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There are several important special cases of recourses
in the context of stochastic programming. In most prob-
lems, we assume that the matrix W is not subject to uncer-
tainty. This is commonly referred to as problems with fixed
recourse. The stochastic program (1) is said to have rela-
tively complete recourse if for any x ∈ �x� Ax= b�x� 0�,
Q�x� z̃� < +� with probability one. In problems with
relatively complete recourse, the second-stage problem is
almost surely feasible for any choice of feasible first-stage
decision vector, x. It is generally not easy to identify
conditions of relatively complete recourse (see Birge and
Louveaux 1997). An important class of relatively complete
recourse is known as complete recourse, which is defined
on the matrix W such that for any t, there exists wi � 0,
i ∈ I , satisfying Ww= t. Hence, the definition of complete
recourse depends only on the structure of the matrix W,
which makes it easier to verify. Moreover, many stochas-
tic programming problems have complete recourse. A spe-
cial case of complete recourse is simple recourse, where
W= �I�−I�.
Model (3) represents a rather general fixed recourse

framework characterized in the classical stochastic opti-
mization formulation. We note that it is widely accepted
that a two-stage stochastic optimization problem with rel-
atively complete recourse can be reasonably well approxi-
mated by random sampling approaches. In the absence of
relatively complete recourse, however, the solution obtained
from sampling approximations may not be meaningful.
Even if the original problem is infeasible, the objective
function value obtained from a sampling approximation
could be finite. This motivates us to consider solving
stochastic programming problems using decision rules,
which has the potential to address more general recourse
problems and multiperiod models.
In the rest of this paper, we do not assume knowledge of

full distributional information of the primitive uncertainties.
Rather, we assume that the primitive uncertainties �z̃j�j=1�N
are zero mean random variables with covariance � and
support z̃ ∈� = �−z� z̄�, where some components of z and
z̄ could be infinite, reflecting unbounded supports.

3. Approximation via Decision Rules
Under the assumption that the stochastic parameters
are independently distributed, Dyer and Stougie (2006)
show that two-stage stochastic programming problems are
#P-hard. Under the same assumption, they show that certain
multistage stochastic programming problems are PSPACE-
hard. Due to the astronomical number of possible scenar-
ios, Monte Carlo sampling methods have been an important
approximate solution approach to stochastic optimization
problems. Despite the wide adoption of this approach, its
performance has only been recently studied in theory, for
example, by Shapiro and Nemirovski (2005). They con-
cluded that the number of samples required to approxi-
mate multistage stochastic programs to reasonable accuracy
grows exponentially with the number of stages.

Another caveat with stochastic optimization models is
the need to assume exact distributions for all the uncertain
parameters to conduct random sampling. However, exact
distributions may not be available in practice. In view of
the hardness results, we propose a tractable approxima-
tion for model (3) by restricting the recourse decisions to
specified decision rules. Ben-Tal et al. (2005) use linear
decision rules for adjustable robust counterpart, and Chen
et al. (2007) use linear decision rules and report promis-
ing computational results for chance-constrained stochas-
tic programs. In this section, we introduce the notion of
semicomplete recourse variables and propose more general
decision rules that can tackle problems with semicomplete
recourse. Specifically, in the following three subsections,
we first go over linear decision rules and point out their lim-
itations. Then, we introduce deflected linear decision rules
and segregated linear decision rules, which extend linear
decision rules. Finally, in the last subsection, we present
the extension of our approach to multistage stochastic pro-
gramming problems.

3.1. Linear Decision Rules

Using linear decision rules, we restrict recourse variables,
say w�z̃�, to be affinely dependent on the primitive uncer-
tainties. Of course, only in very rare occasions, linear deci-
sion rules are optimal. Indeed, the only motivation for
linear decision rules is its tractability. As Shapiro and
Nemirovski (2005, p. 142) state:

The only reason for restricting ourselves with affine (linear)
decision rules stems from the desire to end up with a com-
putationally tractable problem. We do not pretend that affine
decision rules approximate well the optimal ones—whether
it is so or not, it depends on the problem, and we usually
have no possibility to understand how good in this respect a
particular problem we should solve is. The rationale behind
restricting to affine decision rules is the belief that in actual
applications it is better to pose a modest and achievable goal
rather than an ambitious goal which we do not know how
to achieve.

We denote � to be the space of linear functions. For
example, w�·� ∈ � ⊆ � implies that there exists a set of
vectors w0� � � � �wN such that

w�z̃�=w0+
N∑
k=1

wkz̃k�

We can approximate the stochastic model (3) as follows:

ZLDR =min c′x+ f ′w0

s.t. Ax= b�

Tkx+Wwk = hk ∀k ∈ �0� � � � �N ��
wi�z�� 0 ∀ z ∈� � ∀ i ∈ I�
x� 0�

w�·� ∈�� (4)
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Because any feasible solution of model (4) is also feasible
in (3), and the objectives coincide, we have ZSTOC � ZLDR.
With � = �−z� z̄�, the semi-infinite constraint

wi�z�� 0 ∀ z ∈�

is equivalent to

w0i �
N∑
j=1
�zjsj + z̄j tj �

for some s� t � 0 satisfying sj − tj = w
j
i , j = 1� � � � �N .

Hence, model (4) is essentially a linear optimization
problem.
Even though linear decision rules have been successfully

used in a variety of applications (see, for example, Ben-Tal
et al. 2005, Chen et al. 2007) they may perform poorly for
some problem instances. As an illustration, suppose that
the support of z̃ is � = �−����. Then, the following
nonnegativity constraints

w�z̃�=w0+
N∑
k=1

wkz̃k � 0

imply that

wk = 0 ∀k ∈ �1� � � � �N ��
and the decision rule is reduced to w�z̃�= w0, and hence
independent of the primitive uncertainties. This may lead
to an infeasible instance even in the case of complete
recourse. For example, consider the following stochastic
optimization model that determines E��b�z̃���:
min�E�w1�z̃�+w2�z̃��� w1�z̃�−w2�z̃�

= b�z̃��w1�z̃�� 0�w2�z̃�� 0�� (5)

which is one with simple recourse. Suppose that z̃ has infi-
nite support. We must have w1�z̃� = w01 and w2�z̃� = w02,
and hence, it would be impossible to satisfy the equality
constraint.
Our goal in the next subsections is to improve upon

linear decision rules for variables with the semicom-
plete recourse property. As we shall see, the condition of
semicomplete recourse implies that even if there is a con-
straint violation due to w�z̃�, we can still steer back the
solution toward feasibility by paying a finite price.

3.2. Deflected Linear Decision Rule

To improve upon the linear decision rule, we first explore
the structure of the recourse matrix W by considering the
following linear optimization problem:

f̄i =min f ′p

s.t. Wp= 0�
pi = 1�
pj � 0� j ∈ I� (6)

for each i ∈ I . If the corresponding optimization problem
is infeasible, we have f̄i =�. For convenience, we define
the following sets:

I1 � �f̄i <�� i ∈ I�� I2 � I\I1�
Whenever f̄i is finite, we denote p̄

i as the corresponding
optimal solution. Moreover, if the original problem (3) is
bounded from below, we have that f̄i � 0.
We now propose a new notion of semicomplete recourse.

Definition 1. Collect all the columns i ∈ I1 of the re-
course matrix W to formulate a matrix Ws . We call Ws a
semicomplete recourse matrix.

We first show the relationship between semicomplete
recourse and complete recourse.

Proposition 1. A matrix W that satisfies the condition of
complete recourse is a semicomplete recourse matrix, i.e.,
I1 = I .

Proof. Under complete recourse, it suffices to show that
there exists a vector r with ri � 1 for all i ∈ I , such that
Wr = 0. By definition of complete recourse, for any vec-
tor v with vi � 1 for all i ∈ I , we can find a vector s with
si � 0 for all i ∈ I such that Ws = −Wv. Clearly, ri =
si + vi � 1, i ∈ I , and Wr= 0. �

Consider any decision rule r�z̃� satisfying

T�z̃�x+Wr�z̃�= h�z̃��

ri�z̃�� 0� i ∈ I2�
(7)

and not necessarily nonnegative for the semicomplete
recourse variables, rj�z̃�� j ∈ I1. We derive the following
decision rule from r�z̃�:

w�z̃�= r�z̃�+∑
i∈I1
�ri�z̃�

−�p̄i� (8)

where for a given scalar v, v− = max�0�−v�. It can be
easily verified that

wi�z̃�� 0 ∀ i ∈ I�
Ww�z̃�=Wr�z̃��

Therefore, for any given first-stage decision x, as long as
there exists a second-stage decision rule r�z̃� satisfying
(7), we can find a feasible decision rule (referred to as a
deflected decision rule), w�z̃�. We note that the feasibility
of model (7) depends on the solution in the first stage x.
For the case of complete recourse, we can obtain stronger

results.

Proposition 2. If W is a complete recourse matrix, we
have I2 =∅ and that for any x, there exists a linear decision
rule r�·� ∈� such that

T�z̃�x+Wr�z̃�= h�z̃��
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Proof. Let

r�z̃�= r0+
N∑
k=1

rkz̃k�

By the assumption of complete recourse, there exist
r0� r1� � � � � rN such that

Tkx+Wrk = hk ∀k ∈ �0� � � � �N ��
This implies the desired result. �

Remark. The above result implies that any stochastic
programming problem with complete recourse is feasible
with respect to deflected linear decision rules. The read-
ers may ask why we introduce the notion of “semicom-
plete recourse,” under which the feasibility of deflected
linear decisions is not guaranteed. The reason is that
semicomplete recourse is easy to verify and deflected lin-
ear decision rules may still be feasible without complete
recourse. Therefore, one can try deflected linear deci-
sion rules as long as the problem contains semicomplete
recourse submatrix.

From (8), we have

f ′w�z̃�= f ′r�z̃�+∑
i∈I1

f̄iri�z̃�
−�

Therefore, using the deflected linear decision rule w�·�
based on the linear decision rule r�·�, we can approximate
problem (3) as

ZDLDR =min c′x+ f ′r0+∑
i∈I1

f̄i E�ri�z̃�
−�

s.t. Ax= b�

Tkx+Wrk = hk ∀k ∈ �0� � � � �N ��
rj�z̃�� 0 ∀ j ∈ I2�
x� 0�

r�·� ∈�� (9)

Note that in formulating and solving the above model, we
do not directly need p̄i defined in (6). In fact, what we
really need is just f̄i, i ∈ I .
Because any feasible solution �x�w�z̃�� to model (9), in

which w�z̃�= r�z̃�+∑i∈I1�ri�z̃��
−p̄i, is feasible in (3), and

the objectives coincide, we have ZSTOC �ZDLDR. Moreover,
given any feasible solution, (x�w�z̃�), of problem (4), we
observe that

E�f̄iwi�z̃�
−�= 0 ∀ i ∈ I1�

Hence, by letting r�z̃�=w�z̃�, we obtain a feasible solution
of model (9) with the same objective. Therefore, ZSTOC �
ZDLDR �ZLDR.
Unfortunately, model (9) is still hard to solve because of

the nonlinear term E�f̄iwi�z̃�
−� in the objective function. In

the sequel, we approximate (9) via techniques from robust
optimization so that the resulting model is in the form of
SOC programming, which can be solved efficiently both in
theory and in practice.

3.2.1. Bound on the Objective Function. Given a
random variable r̃ with mean � and standard deviation  ,
the following tight bound on E�r̃−� is well known:

E�r̃−�� 1
2

(−�+√�2+ 2
)

(10)

(see Scarf 1958, for example). Therefore, suppose that
y�z̃�= y0+ y′z̃ ∈� with y= �y1� � � � � yN �. Then, we have

E�y�z̃�−�� 1
2

(
−y0+

√
y20 +��1/2y�22

)
�

where � is the covariance matrix of z̃. The bound does not
take into account the distributional support, which could
degrade the quality of the approximation. For example, if
y�z̃� � 0, it follows trivially that E�y�z̃�−� = 0. Likewise,
if y�z̃�� 0, we have E�y�z̃�−�=−y0. Under these circum-
stances, the bound would be weak. Hence, we propose the
following tighter bound that resolves these issues while still
preserving the benefits of being SOC representable.

Theorem 1. Let z̃ ∈�N be a vector of zero mean random
variables with covariance matrix � and support in � =
�−z� z̄�.
(a) E��y0+ y′z̃�−�� h�y0�y�, where

h�y0�y�

� min
s� t�u�v�0

{
1
2

(
−y0+ �s+u�′z̄+ �t+ v�′ z

+
√
�−y0+�s−u�′ z̄+�t−v�′ z�2+��1/2�−y−s+t+u−v��22

)}
�

(11)

(b) Moreover,

h�y0�y��
1
2

(
−y0+

√
y20 +��1/2y�22

)
�

(c) Suppose that y�z� � 0 ∀ z ∈ � . Then, E��y0 +
y′z̃�−� = h�y0�y� = −y0. Likewise, if y�z� � 0 ∀ z ∈ � ,
then E��y0+ y′z̃�−�= h�y0�y�= 0.
Proof. (a) Because −z� z̃� z̄, we observe that

�z̄− z̃�′s�0� �z+ z̃�′t�0� �z̄− z̃�′u�0� �z+ z̃�′v�0

for all s� t�u�v� 0. Therefore,

E��y0+ y′z̃�−�

� E
(
�y0+ y′z̃− �z+ z̃�′t− �z̄− z̃�′s�−

)
= E(�y0− �−y+ t− s�′z̃− z′t− z̄′s�−

)
= E(−y0+ �−y+ t− s�′z̃+ z′t

+ z̄′s+ �y0− �−y+ t− s�′z̃− z′t− z̄′s�+
)

(12)

=E(−y0+ z′t+ z̄′s+�y0−�−y+t−s�′z̃− z′t− z̄′s�+
)

� E
(−y0+ z′t+ z̄′s+ �y0− �−y+ t− s�′z̃− z′t− z̄′s

+ �z+ z̃�′v+ �z̄− z̃�′u�+
)
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= E(−y0+ z′t+ z̄′s+ �y0− �−y+ t− s+u− v�′z̃

− z′�t− v�− z̄′�s−u��+
)

= z′v+ z̄′u+E(�y0− �−y+ t− s+u− v�′z̃

− z′�t− v�− z̄′�s−u��−
)

(13)

� z′v+ z̄′u+ 1
2

(
−y0+ z′�t− v�+ z̄′�s−u��

+
√
�−y0+ z′�t−v�+ z̄′�s−u��2+��1/2�−y+t−s+u−v��22

)
(14)

= 1
2

(
−y0+ z′�t+ v�+ z̄′�s+u��

+
√
�−y0+ z′�t−v�+ z̄′�s−u��2+��1/2�−y+t−s+u−v��22

)
�

where the equalities of (12) and (13) follow from the fact
that x= x+ − x−. Inequality (14) is due to the bound (10).
(b) Note that with s� t�u�v= 0, we have

1
2

(
−y0+ �s+u�′z̄+ �t+ v�′ z

+
√
�−y0+�s−u�′z̄+�t−v�′ z�2+��1/2�−y−s+t+u−v��22

)
= 1

2

(
−y0+

√
y20 +��1/2y�22

)
�

Therefore,

h�y0�y��
1
2

(
−y0+

√
y20 +��1/2y�22

)
�

(c) Suppose that y0+ y′z� 0 ∀ z ∈� .
Then, let s = t = 0, uk = �yk�

+, vk = �−yk�+ for k = 1�
� � � �N , and

z∗k =
{
z̄k if yk > 0�

−zk otherwise�

Because z∗ ∈� , we have y0+ y′z∗ � 0. Furthermore, it is
easy to verify that

y= u− v and y0+u′z̄+ v′ z= y0+ y′z∗ � 0�

We have

1
2

(
−y0+ �s+u�′z̄+ �t+ v�′ z

+
√
�−y0+�s−u�′ z̄+�t−v�′ z�2+��1/2�−y−s+t+u−v��22

)
=−y0�

Hence,

−y0 = E��y0+ y′z̃�−�� h�y0�y��−y0�
Similarly, if y0+ y′z� 0 ∀ z ∈� , then let v= u= 0, sk =
�−yk�+, tk = �yk�

+ for k= 1� � � � �N , and

z∗k =
{
z̄k if yk < 0�
−zk otherwise�

Because z∗ ∈� , we have y0+ y′z∗ � 0. Furthermore, it is
easy to verify that

y= t− s and y0− s′z̄− t′ z= y0+ y′z∗ � 0�

Hence, we have

1
2

(
−y0+ �s+u�′z̄+ �t+ v�′ z

+
√
�−y0+�s−u�′z̄+�t−v�′ z�2+��1/2�−y−s+t+u−v��22

)
= 1

2 �−y0+ s′z̄+ t′ z+ �−y0+ s′z̄+ t′ z��= 0�

Therefore, 0= E��y0+ y′z̃�−�� h�y0�y�� 0. �

3.2.2. Second-Order Cone Approximation with a De-
flected Linear Decision Rule. Summarizing the discus-
sions in previous subsections, we propose the following
approximation for problem (3):

�ZDLDR =min c′x+ f ′r0+∑
i∈I1

f̄igi

s.t. Ax= b�

Tkx+Wrk = hk ∀k ∈ �0� � � � �N ��
rj�z�� 0 ∀ z ∈� � ∀ j ∈ I2�
gi � h�r0i � �r

1
i � � � � � r

N
i �� ∀ i ∈ I1�

x� 0�

r�·� ∈�� (15)

More explicitly, we have the following SOC optimization
problem:

�ZDLDR=min c′x+f ′r0+∑
i∈I1
f̄igi

s.t. Ax=b�

Tkx+Wrk=hk ∀k∈�0�����N ��
r0j � tj ′z̄+sj ′ z ∀j ∈ I2�
tj−sj=rj ∀j ∈ I2�
tj �sj�0 ∀j ∈ I2�
2gi+r0i −�si+ui�′z̄−�ti+vi�′ z

�
(
�−r0i +�si−ui�′z̄+�ti−vi�′ z�2

+��1/2�−ri−si+ti+ui−vi��22
)1/2
∀i∈ I1�

si�ti�ui�vi�0 ∀i∈ I1�
x�0� (16)

where ri = �r1i � � � � � r
N
i �. Furthermore, we can show that

the deflected linear decision rule improves the linear deci-
sion rule.
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Theorem 2. The deflected linear decision rule gives an
objective value that is at least as good as the linear deci-
sion rule, that is, �ZDLDR �ZLDR.

Proof. Given any feasible solution, (x�w�z̃�), of prob-
lem (4), we observe that for all i ∈ I ,

wi�z�� 0 ∀ z ∈� �

Hence, from Theorem 1(c), we have

h�w0i � �w
1
i � � � � �w

N
i ��= 0�

Therefore, by letting r�z̃� = w�z̃�, we obtain a feasible
solution of model (15) that yields the same objective as
problem (4). Hence, �ZDLDR �ZLDR. �

Next, we provide a simple illustration of the modeling
steps.

A Newsvendor Example

We can model the classical newsvendor problem as a
stochastic programming problem (see, for example, Birge
and Louveaux 1997). A single retailer faces random
demand. The retailer places an order to an outside sup-
plier before knowing the actual demand. Per unit ordering
cost is c and the selling price to the customers is p > c.
Let the demand, d�z̃�= �+ z̃, in which z̃ has zero mean,
standard deviation  , and unknown support. Such model-
ing ambiguity was first studied by Scarf (1958). For sim-
plicity of exposition, we assume that unsatisfied demand is
lost and leftover inventory has zero salvage value. Finally,
we assume that the retailer’s objective is to maximize the
expected profit (or minimize the expected negative profit).
Let x denote the ordering quantity and d̃ denote the ran-
dom demand. The stochastic optimization formulation of
the newsvendor model is as follows:

min cx+pE�w�z̃��

s.t. w�z̃��−x�
w�z̃��−d�z̃��
x� 0�

w�·� ∈��

or equivalently,

min cx+pE�w3�z̃��

s.t. x+w3�z̃�−w1�z̃�= 0�
w3�z̃�−w2�z̃�=−d�z̃��
w1�z̃��w2�z̃�� 0�

x� 0�
w1�·��w2�·��w3�·� ∈��

where −w3�z̃� is the amount of demand satisfied from
the inventory, w1�z̃� is the inventory left, and w2�z̃� is

the unsatisfied demand. It is obvious that the associated
recourse matrix

W=
[−1 0 1

0 −1 1

]

satisfies semicomplete recourse and that f̄1 = f̄2 = p.
Using the approach of model (15), we solve the following
problem:

min cx+p�w03 + g1+ g2�

s.t. x+w03 − r01 = 0�
w13 − r11 = 0�
w03 − r02 =−��
w13 − r12 =−1�
2g1 �−r01 +

√
�r01 �

2+ � r11 �
2�

2g2 �−r02 +
√
�r02 �

2+ � r12 �
2�

x� 0�

We will also show that the solution is identical to the
famous result of Scarf (1958). After simplification, we have

min cx+ 1
2p
(
�−x−��+

√
�x+w03�

2+ � w13�
2

+
√
��+w03�

2+ � �w13 + 1��2
)

s.t. x� 0�

By the triangle inequality, we have√
�x+w03�

2+ � w13�
2+

√
��+w03�

2+ � �w13 + 1��2

�
√
�x−��2+ 2�

and the bound is achieved with w03 = −� and w13 = −1.
Therefore, we end up with

min cx+ 1
2p��−x−��+√�x−��2+ 2�

s.t. x� 0�

which yields the same min-max solution of the newsvendor
problem studied by Scarf (1958).

3.3. Segregated Linear Decision Rule

One drawback on deflected linear decision rules is that it
only works with semicomplete recourse decisions. In this
section, we provide another improvement to the linear deci-
sion rules that applies to general recourse problems.
We first define the segregated primitive uncertainties by

dissecting each primitive uncertainty into its positive and
negative components as follows:

z̃1j � z̃+j − ẑj �

z̃2j �−z̃−j + ẑj �
(17)
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where ẑj = E�z̃+j �. Because the primitive uncertainties have
zero means, we have

E�z̃+j �= E�z̃−j ��
and hence, E�z̃1j �= E�z̃2j �= 0. We denote � as the space of
segregated linear decision functions. That is, w�·� ∈� ⊆�
implies that there exists a set of vectors w0, w11� � � � �w1N

and w21� � � � �w2N such that

w�z̃1� z̃2�=w0+
N∑
j=1
�w1j z̃1j +w2j z̃2j ��

When w1j = w2j , the decision rule w�z̃1� z̃2� is a linear
function of z̃. Therefore, � ⊆� . Essentially, the segregated
linear decision rule is a combination of linear decision rules
on each of the segregated primitive uncertainties.
As we have pointed out, when the supports of z̃j are

unbounded both above and below, the linear decision rules
may be infeasible, or the feasible linear decision rule is
trivial (a constant function). The next result indicates that
in certain cases, segregated linear decision rules overcome
the drawback of linear decision rules.

Proposition 3. If for a given x, the following system

T�z�x+Ww�z�= h�z��

w�z�� 0�
(18)

has a feasible solution w�z� for all z ∈�N , then there exists
a segregated linear decision rule which is feasible for sys-
tem (18).

Proof. First, for any feasible decision rule, because

Ww�z�= h0−T0x+
N∑
j=1
�hj −Tjx�zj�

there exists w0 =w�0�� 0 such that Ww0 = h0−T0x.
Next, we focus on segregated linear decision rules of the

following form: w�z�=w0+∑N
j=1�u

jz+j +vjz−j �. Note that
w�z� � 0 for all z ∈ �N iff uj �vj � 0. We now show by
contradiction that there exist uj �vj � 0 such that

Wuj =−Wvj = hj −Tjx�

If there does not exist uj � 0 such that Wuj = hj − Tjx,
then from linear program strong duality theory, there exists
a y such that W′y� 0 and �hj −Tjx�′y> 0. Note that for
any realization of z= tej , where ej is a unit vector at the
jth row, there exists �w�t�� 0 such that

W
�w�t�
t

= hj −Tjx+ 1
t
�h0−T0x��

However, although there exists a y such that W′y� 0 and
�hj −Tjx�′y> 0, we also have

�hj −Tjx�′y= y′W
�w�t�
t

− 1
t
y′�h0−T0x�

= lim
t→�y

′W
�w�t�
t

� 0�

which is a contradiction. Hence, there exists uj � 0 such
that Wuj = hj − Tjx. Similarly, there exists vj � 0 such
that Wvj =−�hj −Tjx�. Thus, the segregated linear deci-
sion rule

w�z�=w0+
N∑
j=1
�ujz+j + vjz−j �

=w0+
N∑
j=1
�uj + vj �ẑj +

N∑
j=1
�ujz1j − vjz2j �

is a feasible solution for system (18). �

Model of Segregated Primitive Uncertainty, U2. We
assume that the mean and mutual covariance of �z̃+� z̃−� are
known. Equivalently, the segregated primitive uncertainties
�z̃1� z̃2� are zero mean random variables, with covariance
�� and support z̃1 ∈� 1 = �−ẑ� z̄− ẑ� and z̃2 ∈� 2 = �−z+
ẑ� ẑ�, where ẑ= E�z̃+�.
Because z̃ = z̃1 + z̃2, we can express the data depen-

dency in terms of the segregated primitive uncertainties as
follows:

T�z̃1� z̃1�=T0+
N∑
k=1

Tk�z̃1k + z̃2k��

h�z̃1� z̃1�= h0+
N∑
k=1

hk�z̃1k + z̃2k��

Hence, using the segregated linear decision rule, we can
approximate the stochastic model (3) as follows:

ZSLDR =min c′x+ f ′w0

s.t. Ax= b�

Tkx+Ww1k = hk ∀k ∈ �0� � � � �N ��
Tkx+Ww2k = hk ∀k ∈ �0� � � � �N ��
wi�z

1� z2�� 0
∀ �z1� z2� ∈� 1×� 2� ∀ i ∈ I�

x� 0�

w�·� ∈� � (19)

Theorem 3. The segregated linear decision rule gives an
objective value that is at least as good as the linear deci-
sion rule, that is, ZSLDR �ZLDR.

Proof. Let x and wk, k = 1� � � � �N , be feasible to prob-
lem (4). We will show that

w1k =w2k =wk� k= 1� � � � �N �
are feasible in problem (19). It is trivial to see that the
affine constraints in problem (19) are satisfied. To show
feasibility in the robust counterpart, it suffices to show that
if y0�y are feasible in

y0+ y′z� 0 ∀ z ∈� � (20)
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then they are also feasible in

y0+ y′�z1+ z2�� 0 ∀ z1 ∈� 1� z2 ∈� 2� (21)

Indeed, feasibility in the robust counterpart (20) implies

y0+ y′�z1+ z2�� 0 ∀ z1+ z2 ∈� �

However, for all z1 ∈� 1 and z2 ∈� 2, we have z1 + z2 ∈
� . Hence, y0�y are also feasible in the robust counter-
part (20). �

3.3.1. Segregated Deflected Linear Decision Rule.
Although segregated linear decision rules perform better
than linear decision rules, they are not necessarily better
than deflected linear decision rules. Hence, in the spirit that
deflected linear decision rules improve upon linear decision
rules, we define the segregated deflected linear decision rule
as follows:

w�z̃1� z̃2�= r�z̃1� z̃2�+∑
i∈I1
�ri�z̃

1� z̃2�−�pi� (22)

in which w�·� ∈� .
In the same manner as we have derived earlier, we need

to bound E��ri�z̃
1� z̃2�−�, i ∈ I1. Following Theorem 1, and

under the model of segregated primitive uncertainty U2, we
have

E��y0+ y1
′
z̃1+ y2

′
z̃2�−�� ĥ�y0�y

1�y2��

where

ĥ�y0�y
1�y2�

� min
s1�t1�u1�v1�s2�t2�u2�v2�0

{
1
2

(
−y0+�s1+u1�′�z̄− ẑ�+�t1+v1�′ẑ

+ �s2+u2�′ẑ+ �t2+ v2�′�z− ẑ�

+
{
�−y0+�s1−u1�′�z̄− ẑ�+�t1−v1�′ẑ+�s2−u2�′�ẑ�

+ �t2− v2�′�z− ẑ��2

+
∥∥∥∥��1/2

(−y1− s1+ t1+u1− v1

−y2− s2+ t2+u2− v2

)∥∥∥∥2
2

}1/2)}
� (23)

Finally, we propose the following approximation for prob-
lem (3) using the segregated deflected linear decision rule:

�ZSDLDR =min c′x+ f ′r0+∑
i∈I1

f̄igi

s.t. Ax= b�

Tkx+Wr1k = hk ∀k ∈ �0� � � � �N ��
Tkx+Wr2k = hk ∀k ∈ �0� � � � �N ��
rj�z

1� z2�� 0

∀ �z1� z1� ∈� 1×� 2� ∀ j ∈ I2�
gi � ĥ�r0i � �r

11
i � � � � � r

1N
i ��

�r21i � � � � � r
2N
i �� ∀ i ∈ I1�

x� 0�

r�·� ∈� � (24)

Theorem 4. The segregated deflected linear decision rule
gives an objective value that is at least as good as the
deflected linear decision rule, that is, �ZSDLDR � �ZDLDR.
Proof. Let x, g, and rk, k= 0� � � � �N , be feasible to prob-
lem (15). We will show that

r1k = r2k = rk� k= 0� � � � �N �
are also feasible in problem (24). We have addressed the
feasibility of the affine constraint and the robust counter-
parts in the proof of Theorem 3. We need to show that

gi � ĥ�r0i � �r
1
i � � � � � r

N
i �� �r

1
i � � � � � r

N
i �� ∀ i ∈ I1�

It suffices to show that

ĥ�y0�y�y�� h�y0�y��

Let s� t�u�v be the optimal solution in the optimization of
problem (11). Indeed,

ĥ�y0�y�y�

� 1
2

(
−y0+ �s+u�′�z̄− ẑ�+ �t+ v�′ẑ+ �s+u�′ẑ

+�t+v�′�z− ẑ�+
{
�−y0+�s−u�′�z̄− ẑ�+�t−v�′ẑ

+ �s−u�′�ẑ�+ �t− v�′�z− ẑ��2

+
∥∥∥∥∥��1/2

(−y− s+ t+u− v

−y− s+ t+u− v

)∥∥∥∥∥
2

2

}1/2)

= 1
2

(
−y0+ �s+u�′z̄+ �t+ v�′ z

+
{
�−y0+ �s−u�′z̄+ �t− v�′ z�2

+E���−y− s+ t+u− v�′�z̃1+ z̃2︸ ︷︷ ︸
=z̃

��2�
}1/2)

= h�y0�y�� �

Note that we can essentially iterate the above process and
partition the segregated primitive uncertainties to improve
the decision rules at the expense of increased computational
complexity.

3.4. Multiperiod Modeling

Our approach can be easily extended to deal with
multiperiod stochastic programming problems as the
following:

min c′x+E
( T∑
t=1

f ′twt��̃t��

)
s.t. Ax= b�

x� 0�

Tt��̃t�x+
t∑

+=1
Wt+w+ ��̃+ �= bt��̃t��

t = 1�2� � � � � T �
wti��̃t�� 0� t = 1�2� � � � � T � i ∈ It� (25)
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where �̃t = �z̃1� ��� z̃t�, the underlying uncertainties, z̃1 ∈
�N1� � � � � z̃T ∈ �NT , unfold progressively from the first
period to the last period, and z̃t is the vector of primitive
uncertainties that is only realized at the tth period. We also
assume that Tt��̃t� and bt��̃t� are affine in �̃t .
It is easy to apply linear decision to obtain an upper

bound to the multiperiod stochastic optimization problem.
To improve upon the solution using the deflected linear
decision rule, similar to problem (6), we can define for all
t = 1� � � � � T , i ∈ It ,

f̄ ti =min
T∑
+=t

f ′+p
ti
+

s.t.
k∑
+=t

Wk+p
ti
+ = 0 ∀k= t� � � � � T �

ptiti = 1�
pti+j � 0 ∀ + = t� � � � � T � j ∈ I+ � (26)

where pti+j represents the jth component of the vector p
ti
+ .

Likewise, we define

I 1t � �f̄ ti <�� i ∈ It�� I 2t � It\I 1t �
and �p̄tit � � � � � p̄

ti
T � represents the corresponding optimal

solution for any t and i ∈ I 1t . Similar to the two-stage
model, the deflected linear decision rule can be defined as
follows:

rt��̃t�= r0t +
t∑

+=1

N+∑
j=1

rj+z
j
+ �

wt��̃t�= rt��̃t�+
t∑

k=1

∑
i∈I1k
�rki��̃k��

−p̄tik �

Observe that the above decision rule fulfills the nonantici-
pativity requirement. Essentially, we end up with a formu-
lation for the multiperiod model similar to the one for the
two-period model we have presented.

Remark 1. Note that the number of possible scenarios in
problem (25) is exponential in the number of time peri-
ods T . As a result, the number of decision variables is also
exponential in T . (Note that even when T = 2, the possi-
ble scenarios in (25) could be huge, or even infinite. We
have discussed this for the two-stage model. Here we focus
on the dependency of the problem size on T only.) How-
ever, under the deflected or segregated linear decision rules,
problem (25) is reduced to an optimization problem whose
decisions variables are x and rj+ , j = 0�1� � � � �N+ , and + =
1� � � � � T . It is clear that the size of this reduced optimiza-
tion problem is polynomial in T , i.e., it does not explode
exponentially with the number of periods. Note that in
this reduced optimization problem, the size of the scenar-
ios plays a role only in computing the objective value.
However, as in the two-stage model, the expectation in the
objective function will be approximated by a deterministic
function of (polynomially many) decision variables.

Remark 2. Because we approximate a problem of expo-
nential size by one of much smaller size, it is reasonable

to question the quality of our approximation. As mentioned
earlier, quoted from Shapiro and Nemirovski (2005), we
do not claim that our approximation will work well for all
multiperiod models. Our decision rules provide tractable
approximations to an intractable problem. It may provide
reasonably high-quality solutions as well to certain classes
of problems (some evidence can be found in Ben-Tal
et al. 2004, 2005, where simple linear decision rules are
applied to a class of inventory models). Further, our deci-
sion rules can be viewed as a first-order approximation of
the expected future costs, so that we can determine the first
stage or the “here-and-now” decision. In practice, we do
not use the decision rule as the responding actions in the
subsequent stages. Instead, we adopt the rolling horizon
approach, that is, we resolve the subsequent stages upon
realizations of uncertainties at earlier stages.

4. Computational Experiment
In this section, we illustrate our approach in a prelimi-
nary computational experiment. We demonstrate that for
a two-stage stochastic optimization problem, our proposed
framework achieves a performance in objective values simi-
lar to what the Monte Carlo approach does. Yet, what is dif-
ferent is that the size of our model increases polynomially
with the number of stages in the model, while the sample
sizes in the Monte Carlo approach may increase exponen-
tially (see, e.g., Shapiro and Nemirovski 2005, Dyer and
Stougie 2006). Therefore, we believe our proposed model
is promising in addressing large-scale multiperiod stochas-
tic optimization models.
In our experiment, we consider a project management

example with several activities. Project management prob-
lems can be represented by a directed graph. Each node on
the graph represents an event marking the completion of a
particular subset of activities. We denote the set of directed
arcs on the graph as �. Hence, an arc �i� j� ∈� is an activ-
ity that connects event i to event j . By convention, we use
node 1 as the start event and the last node n as the end
event.
Each activity has a random duration t̃ij . The comple-

tion of activities must adhere to precedent constraints.
For example, activity e1 precedes activity e2 if activity e1
must be completed before activity e2. In our computational
experiments, we assume that the random duration t̃ij is
independent of the durations of other activities. In addi-
tion, t̃ij also depends on the additional amount of resource,
xij ∈ �0�1�, committed on the activity as follows:
t̃ij = bij + aij�1− xij�z̃ij � (27)

where z̃ij ∈ �−zij � z̄ij �, �i� j� ∈ �, are independent random
variables with zero mean and standard deviation  ij .
Let cij denote the cost of using each unit of resource

for the activity on the arc �i� j�. Our goal is to minimize
the expected completion time of the project subject to the
constraint that the total resource available is no more than
a budget C.
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A stochastic programming model that addresses the
above project management problem is as follows:

min E�yn�z̃��

s�t� c′x�C�

yj�z̃�− yi�z̃�−wij�z̃�= bij + aij�1− xij�z̃ij

∀ �i� j� ∈��

y1�z̃�= 0�
wij�z̃�� 0 ∀ �i� j� ∈��

0� x� 1�

x ∈�����

w�·��y�·� ∈�� (28)

where yj�z̃� represents the earliest completion time of
event j and wij�z̃� is the slack variable. In the optimization
formulation, the first inequality is the budget constraint,
and the first equality together with the second inequality
models the precedent constraints.
To check semicomplete recourse and model the deflected

linear decision rules, we first take a look at the following
problem:

f̄kl =min yn

s�t� yj − yi −wij = 0 ∀ �i� j� ∈��

y1 = 0�
wkl = 1�
w� 0�

for each �k� l� ∈ �. Here, f̄kl corresponds to the longest
duration path from node 1 to node n in a network where
one of the arcs �k� l� has a duration of one unit of time,
while the rest of the arcs have zero durations. Clearly,
f̄kl = 1 for all �k� l� ∈�.

4.1. Comparison Between the Deflected Linear
Decision Rule and the Sampling Approach

In this subsection, we compare the deflected linear decision
rule model with the sampling-based stochastic program-
ming solution approach. The sampling-based stochastic
programming formulation is as follows:

Z1�K�=min
1
K

K∑
k=1

ykn

s�t� c′x�C�

ykj − yki � bij + aij�1− xij�z
k
ij

∀ �i� j� ∈�� k ∈ �1� � � � �K��
yk1 = 0� k ∈ �1� � � � �K��
0� x� 1�

x ∈�����

yk ∈�n ∀k ∈ �1� � � � �K�� (29)

where zkij , k= 1� � � � �K, are independent samples of z̃ij , and
ykj is the earliest completion time of event j for scenario k,
similar to the meaning of yj in model (28).
For the deflected linear decision rule approach, we adopt

the framework of (16) as follows:

Z2 =min y0n +
∑
e∈�

ge

s�t� c′x�C�

y0j − y0i − r0�i� j� = bij ∀ �i� j� ∈��

y
�i� j�
j − y

�i� j�
i − r

�i� j�

�i� j� = aij�1− xij� ∀ �i� j� ∈��

yej − yei − re�i� j� = 0 ∀ e� �i� j� ∈�� e �= �i� j��

ye1 = 0 ∀ e ∈��

2ge + r0e − �se +ue�′z̄− �te + ve�′ z�

�
(
�−r0e + �se −ue�′z̄+ �te − ve�′ z�2

+��1/2�−re − se + te +ue − ve��22
)1/2

∀ e ∈��

se� te�ue�ve � 0 ∀ e ∈��

0� x� 1�

re� se� te�ue�ve ∈���� ∀ e ∈��

y0 ∈�n�x� r0 ∈����� (30)

where yej is the coefficient of z̃e in the deflected linear deci-
sion rule for yj�z̃� in model (28), and r

e
�i� j� is the coeffi-

cient of z̃e in the deflected linear decision rule for the slack
variable wij�z̃� in (28). Note that y

e and re are the corre-
sponding vectors of yej and r

e
�i� j�. Vectors y

0 and r0 are the
constant terms in the corresponding deflected linear deci-
sion rules. In the SOC constraints, we also introduced the
vector notation re = �r�i� j�e � �i� j� ∈��.
For our computational experiment, we create a fictitious

project with the activity network in the form of H by a W
grid (see Figure 1). There are a total of H×W nodes, with
the first node at the left bottom corner and the last node
at the right upper corner. Each arc on the graph proceeds

Figure 1. Project management “grid” with height
H = 4 and width W = 6.



Chen, Sim, Sun, and Zhang: A Linear Decision-Based Approximation Approach to Stochastic Programming
Operations Research 56(2), pp. 344–357, © 2008 INFORMS 355

either toward the right node or the upper node. We assume
that the durations of the activities are independent and iden-
tical random variables. In particular, for every arc �i� j�,

P�z̃ij = z�=



2 if z= 1

22
�

�1−2� if z=− 1
2�1−2�

�

The parameter 2 controls the variance of the durations
of the activities, which increases to � as 2 decreases to
zero. We set bij = 3� aij = 3 for all �i� j� ∈ � and c = 1.
The project grid is fixed to H = 4 by W = 6. We compare
the performances of models (29) and (30) in Table 1. In the
table, Z1�K� and Z2 are the optimal objective values of
model (29) using K samples, and model (30), respectively.
We then use Monte Carlo simulation with 100,000 samples
to estimate the actual objective function values achieved
by the first-stage solutions derived from models (29) and
(30). The corresponding estimated objective function val-
ues are recorded in columns �Z1�K� and �Z2. The computa-
tion experiment is conducted on an 800 MHz Labtop with
1G RAM using CPLEX version 9.1.
From Table 1, we can see how the performance of

stochastic optimization of model (29) changes as we change
the sample sizes. We observe that the optimal objective
value of model (29) underestimates the expected com-
pletion time derived from the solutions of model (29),
which is due to the artifact of the sampling approxima-
tion of stochastic optimization. When the parameter 2
becomes very small, the variances of the primitive uncer-
tainties z̃ij increase dramatically, and the gap between Z1
and �Z1 increases significantly. On the other hand, under
the same circumstances, model (30) provides very con-
sistent bounds of the expected completion times and sig-
nificantly outperforms the sampling method using 1,000
samples. When the variances of z̃ij are moderate, the sam-
pling approach with 1,000 samples slightly outperforms our

Table 1. Objective values of models (30) and (29) for K = 50, 100, and 500.
C 2 Z2 Z1�1000� Z1�500� Z1�100� Z1�50� C 2 �Z2 �Z1�1�000� �Z1�500� �Z1�100� �Z1�50�
8 0�0001 58.50 13.50 13.50 12.00 12.00 8 0�0001 59.06 69.60 70.50 70.36 70.36
8 0�001 58.53 34.50 33.00 15.00 13.49 8 0�001 58.22 59.58 59.65 65.72 68.99
8 0�005 58.67 52.60 48.50 49.33 17.97 8 0�005 56.83 58.39 58.99 59.53 63.95
8 0�01 58.83 55.60 49.06 46.51 26.96 8 0�01 55.59 58.32 57.53 58.27 59.64
8 0�1 54.34 42.54 43.54 39.30 41.39 8 0�1 43.95 42.99 43.74 44.68 44.75
8 0�2 48.73 38.29 38.50 36.47 38.24 8 0�2 38.98 38.55 38.75 39.42 40.25
8 0�3 45.30 36.27 36.31 35.38 36.54 8 0�3 37.09 36.50 36.52 36.94 37.39
8 0�4 41.90 35.11 35.14 34.24 35.08 8 0�4 35.97 35.40 35.45 35.92 36.07
19 0�0001 44.25 13.50 13.50 12.00 12.00 19 0�0001 43.90 69.60 70.50 70.36 70.36
19 0�001 44.27 22.49 19.50 14.99 13.49 19 0�001 44.01 47.84 55.41 65.72 68.99
19 0�005 44.35 39.03 34.75 20.99 17.97 19 0�005 43.59 45.96 45.79 48.73 63.95
19 0�01 44.45 41.42 36.38 29.92 20.97 19 0�01 43.31 45.99 44.65 45.21 58.46
19 0�1 42.67 35.73 36.25 32.85 33.43 19 0�1 37.15 36.10 36.67 37.65 39.33
19 0�2 39.32 33.01 32.99 31.42 32.60 19 0�2 33.38 33.13 33.26 34.02 34.74
19 0�3 36.26 31.59 31.59 30.87 31.65 19 0�3 33.75 31.76 31.81 32.28 32.97
19 0�4 33.38 30.88 30.82 30.14 30.86 19 0�4 31.84 31.06 31.07 31.46 31.85

approach. Given the approximation nature of our approach,
the quality of the solutions generated by model (30) is
encouraging.

4.2. Comparison of Various Decision Rules Under
Ambiguous Probability Distributions

In this subsection, we consider the case that the probability
distributions of the random variables are not fully specified.
Instead, we assume that all random variables z̃js are inde-
pendently distributed, each of which has a mean of zero,
a standard deviation of

 �z̃j�=
1

2
√
2�1−2�

�

and a support in

�zj � z̄j �=
[
− 1�2
2�1−2�

�
1�2
22

]
�

Furthermore, we also assume that

ẑj = E�z̃+j �= 1/2�  �z̃+j �=
1
2

√
1−2

2
� and

 �z̃−j �=
1
2

√
2

1−2
�

Let

z̃1j = z̃+j −E�z̃+j � and z̃2j =−z̃−j +E�z̃+j ��
We can determine the covariance of (z̃1j , z̃

2
j ) as follows:

��=
[
 2�z̃+j � E�z̃+j �

2

E�z̃+j �
2  2�z̃−j �

]
�

Based on the above specifications, we adopt the deter-
ministic optimization formulations (4), (16), (19), and (24)
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Table 2. Objective values of approximation models
based on linear, deflected linear, segregated
linear, and segregated deflected linear decision
rules.

C 2 ZLDR �ZDLDR ZSLDR �ZSDLDR
8 0.1 70 55�832 66�667 54.344
8 0.2 61�406 49�082 60�75 48.734
8 0.3 53�143 45�947 53�143 45.295
8 0.4 46�5 43�834 46�5 41.898
19 0.1 50�938 43�712 50�167 42.668
19 0.2 44�813 39�508 44�813 39.321
19 0.3 38�714 37�556 38�714 36.259
19 0.4 35�25 35�25 35�25 33.375

to model the stochastic project management problem by
using linear, deflected linear, segregated linear, and seg-
regated deflected linear decision rules, respectively. Each
model provides an upper bound to the original stochastic
optimization problem.
Similar to the computational study conducted in the pre-

vious subsection, we model the project as a grid presented
in Figure 1.
Table 2 presents the objective function values according

to the different decision rules. It is clear from the table
that more sophisticated decision rules do improve upon the
rather primitive linear decision rule.

5. Conclusions
Although we only solve the stochastic optimization model
approximately, we feel that the key advantage of our
approach is the scalability to multistage models without
suffering from the “curse of dimensionality” experienced
by most dynamic stochastic programs.
We see various advantages in formulating a stochas-

tic optimization problem as a standard mathematical pro-
gramming model such as an SOC program. It enables us
to exploit specific structures for computational efficiency
suited for large-scale implementations. Moreover, the deci-
sion rule approaches blend well with recent development
in robust optimization in approximating chance-constraint
problems, such as those by Chen et al. (2007), Bertsimas
and Sim (2004a), and Ben-Tal and Nemirovski (2000).
Hence, it is also possible to extend the model to consider
multistage stochastic optimization problems with chance
constraints.
When the distributions of the uncertainties are precisely

known, we do not claim that our approach is superior to and
can replace the sampling method. Instead, we believe that
both approaches (our approach and the sampling method)
are valuable in certain domains. For example, the prelim-
inary computational study presented in this paper demon-
strates that our approach may outperform the sampling
method when the variances of the primitive uncertainties
are huge. In other occasions, the sampling method may
outperform our approach. In summary, the contribution of

this paper is to provide a viable alternative to the sampling
approach for solving stochastic programming problems.
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