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Abstract We present a linear numerical scheme for a model of epitaxial thin film growth

without slope selection. The PDE, which is a nonlinear, fourth-order parabolic equation,

is the L2 gradient flow of the energy
∫

�
(− 1

2
ln(1 + |∇φ|2) + ǫ2

2
|�φ(x)|2)dx. The idea of

convex-concave decomposition of the energy functional is applied, which results in a nu-

merical scheme that is unconditionally energy stable, i.e., energy dissipative. The particular

decomposition used here places the nonlinear term in the concave part of the energy, in

contrast to a previous convexity splitting scheme. As a result, the numerical scheme is fully

linear at each time step and unconditionally solvable. Collocation Fourier spectral differen-

tiation is used in the spatial discretization, and the unconditional energy stability is estab-

lished in the fully discrete setting using a detailed energy estimate. We present numerical

simulation results for a sequence of ǫ values ranging from 0.02 to 0.1. In particular, the long

time simulations show the − log(t) decay law for the energy and the t1/2 growth law for

the surface roughness, in agreement with theoretical analysis and experimental/numerical

observations in earlier works.
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1 Introduction

In this article we consider an efficient numerical scheme for a continuum (2 + 1)-

dimensional model of epitaxial thin film growth. (See the review [2] for the recent history

of such models of thin film growth.) The equation is the gradient flow associated with the

following energy functional

E(φ) :=

∫

�

(

−
1

2
ln(1 + |∇φ|2) +

ǫ2

2
|�φ|2

)

dx, (1)

where � = [0,Lx] × [0,Ly], φ : � → R is a periodic height function, and ǫ is a constant.

We note that the first term, a non-quadratic term, represents the Ehrlich-Schwoebel effect,

according to which adatoms (absorbed atoms) must overcome a higher energy barrier to

stick to a step from an upper rather than from a lower terrace [1, 9, 10, 13]. This results in an

uphill atom current in the dynamics and the steepening of mounds in the film. The second

term, the quadratic term, represents the isotropic surface diffusion effect [10, 12]. We write

EES(φ) :=

∫

�

F ES(∇φ)dx, F ES(y) := −
1

2
ln(1 + |y|2), (2)

where y ∈ R
2 and |y| =

√

y2
1 + y2

2 . Hence, E(φ) = EES(φ) + ǫ2

2
‖�φ‖2 where ‖ · ‖ denotes

the L2 norm (rms).

The use of the Ehrlich-Schwoebel term (2) appears to have originated in the work [6].

Note that F ES : R
2 → R is bounded above by 0 and unbounded below. In fact F ES → −∞

as |y| → ∞. Furthermore, F ES has no relative minima, which implies that there are no en-

ergetically favored values for |∇φ|. Physically this means that there is no slope selection

mechanism in the dynamics, at least from an energetic point of view, that could set a pre-

ferred slope of the height function φ. See the relevant discussions in [7, 8, 10, 11].

The chemical potential is defined to be the variational derivative of the energy (1), i.e.,

μ := δφE = ∇ ·

(

∇φ

1 + |∇φ|2

)

+ ǫ2�2φ. (3)

Here we consider the gradient flow of the form

∂tφ = −μ = −∇ ·

(

∇φ

1 + |∇φ|2

)

− ǫ2�2φ, (4)

where the boundary conditions for the height function φ are taken to be periodic in both

spatial directions. We refer to (4) as the no-slope-selection equation, for reasons that will be

apparent. Equation (4) may be rewritten in the form

∂tφ = ∇ ·

(

|∇φ|2

1 + |∇φ|2
∇φ

)

− �φ − ǫ2�2φ. (5)

In the small-slope regime, where |∇φ|2 ≪ 1, (5) may be replaced by

∂tφ = ∇ · (|∇φ|2∇φ) − �φ − ǫ2�2φ, (6)

which we refer to as the slope-selection equation [7, 8, 10, 12]. Solutions to (6), unlike those

of (4), exhibit pyramidal structures, where the faces of the pyramids have slopes |∇φ| ≈ 1.

Solutions to the no-slope-selection equation (4), on the other hand, exhibit mound-like struc-

tures, the slopes of which (on an infinite domain) may grow unbounded [10, 15]. Note that

solutions of (6) and (4) have up-down symmetry, in an average sense. In other words, there

is no way to distinguish a hill from a valley.
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Typically one is interested in the how properties associated with the solutions to (4) and

(6) scale with time, where ǫ is assumed small. The physically interesting quantities that may

be obtained from the solutions of these equations are the surface roughness, defined as

w(t) =

√

1

|�|

∫

�

∣

∣φ(x, t) − φ̄(t)
∣

∣

2
dx, with φ̄(t) =

1

|�|

∫

�

φ(x, t)dx, (7)

the characteristic pyramid/mound size, denoted λ(t), and the energy. For the slope-selection

equation (6) numerical simulations and rigorous (as well as non-rigorous) scaling argu-

ments have demonstrated that w ∼ O(t1/3), λ(t) ∼ O(t1/3), and E ∼ O(t−1/3). Like-

wise, for the no-slope-selection equation (4), one obtains w ∼ O(t1/2), λ(t) ∼ O(t1/4),

and E ∼ O(− ln(t)). (See [10, 11] and references therein.) Observe that for the no-slope-

selection equation (4), the average mound height (measured by the roughness) grows faster

then the mound width (measured by λ), which is expected because there is no preferred

slope of the height function φ. Also, note that in the rigorous setting, for example [7, 8, 11],

one can only (at best) obtain lower bounds for the energy dissipation and, conversely, upper

bounds for the roughness growth. However, the rates quoted as the upper or lower bounds

are typically observed for the averaged values of the quantities of interest.

Practically speaking, predicting these scaling laws numerically is quite challenging, since

they require very long simulation times. Moreover, these laws are expected to break down

the closer one gets to the saturation time, which for the no-slope-selection equation (4) scales

like O(ǫ−2). (See Figs. 2, 4, and 5 and the related discussion in Sect. 4. Also, see Fig. 1

of [11].) But the solution behavior is ill-understood, computationally and rigorously, near

the saturation time. To adequately capture the full range of coarsening behaviors, numerical

simulations for the coarsening process require short- and long-time accuracy and stability, in

addition to high spatial accuracy for small values of ǫ. In this paper, we build on our previous

work [15] by introducing an efficient linear, unconditionally stable, unconditionally solvable

scheme for approximating solutions to the no-slope-selection equation (4). The scheme is

based on a convexity splitting of the energy (1) into a purely convex part and a purely

concave part.

The introduction of convexity splitting schemes is generally attributed to Eyre [3]. To

numerically solve the Cahn-Hilliard and Allen-Cahn equations, Eyre proposed to decom-

pose the Cahn-Hilliard energy, ECH(φ) = 1
4
‖φ‖4

L4 − 1
2
‖φ‖2

L2 + ǫ2

2
‖∇φ‖2

L2 , into a convex

part and a concave part. In the convexity splitting scheme, one treats the terms of the vari-

ational derivative implicitly or explicitly according to whether the terms correspond to the

convex or concave parts of the energy, respectively. For the canonical decomposition of the

Cahn-Hilliard energy above, one obtains the convexity splitting approximation

μk+1 = (φk+1)3 − φk − ǫ2�φk+1, (8)

where, at the time continuous level, μ = δφECH is the chemical potential relative to the en-

ergy. Eyre’s convex-splitting scheme is first-order accurate in time, unconditionally uniquely

solvable, and unconditionally energy stable in the sense that the energy is monotonically

non-increasing in (discrete) time, regardless of the time step size. Such unconditionally sta-

ble schemes are highly desirable with regard to long time numerical simulation, especially

for coarsening processes that require increasingly larger time step sizes for efficient compu-

tation.

We extended Eyre’s convexity splitting idea in [15] to deal with terms in the chemical

potential that are nonlinear in the gradients of φ. In particular, we applied the convexity
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splitting methodology to develop schemes for both the slope-selection (6) and no-slope-

selection (4) equations. In [15], our scheme for the latter equation was

φn+1
1 − φn

1

k
= −μk+1 = ∇ ·

(

∇φn+1
1 |∇φn+1

1 |2

1 + |∇φn+1
1 |2

)

− �φn
1 − ǫ2�2φn+1

1 . (9)

This is based on the energy splitting

E(φ) =

∫

�

(

1

2
(|∇φ|2 − ln(1 + |∇φ|2)) +

ǫ2

2
|�φ(x)|2

)

dx −

∫

�

1

2
|∇φ|2 dx, (10)

where it may be observed that the part associated with the first integral is convex, and the

part associated with the second is concave. The primary drawback of the method (9) is

that it is nonlinear. However, it may be observed that solving this scheme is equivalent to

minimizing a strictly convex, coercive functional. This is a general feature of convexity

splitting schemes [5, 14, 15]. In [15] we used a nonlinear conjugate gradient method to

solve (9). This was a natural choice because of the convex nature of the problem at the

implicit time level.

Other schemes have been developed for the no-slope-selection equation (4). (There are

relatively more works devoted to the slope-selection equation (6). See, for example, [15,

16].) Li and Liu developed a spectral method in [10]. See also the computational results

in [6]. However, besides our own work in [15], to our knowledge no one has analyzed any

scheme for the no-slope-selection equation (4).

The main contribution of this manuscript is an alternate convex-concave decomposition

of the energy (1) associated with the epitaxy thin film model without slope selection. It is

observed that the nonlinear term ln(1 + |∇φ|2) is bounded by |∇φ|2 in functional norms.

Thus, instead of placing the nonlinear term in the convex part, we may—by appropriately

adding and subtracting the term 1
2
‖∇φ‖2 in the energy—place the nonlinear part in the

concave portion of the energy. As a result, the nonlinear term is treated explicitly in the

convex splitting scheme; the scheme then becomes purely linear! More importantly, the

linear operator involved in the scheme, which is positive and has constant coefficients, can

be efficiently inverted by FFT or other existing fast linear solvers. This gives rise to a scheme

that is vastly more efficient than the nonlinear counterpart (9) developed in [15]. In addition,

this purely linear scheme also preserves the unconditional energy stability that was enjoyed

by the nonlinear scheme, due to its convex splitting nature.

We will show that this energy dissipation property is valid for both the semi-discrete

scheme (time discrete, space continuous) and the fully discrete scheme. In this paper, we

use collocation Fourier spectral differentiation to effect spatial discretization. Another ob-

servation of the energy stability is that it can be derived by using an energy estimate other

than the general convexity analysis we provided in [15]. Therefore, we could apply inte-

gration by parts in the collocation Fourier spectral differentiation and carry out the energy

estimate at the discrete level. That in turn leads to unconditional stability with respect to the

discrete energy.

The rest of the manuscript is organized as follows. In Sect. 2 we recall the energy stability

result for general convex splitting schemes, present the alternate convex-concave decompo-

sition of the energy (1), and formulate the corresponding purely linear numerical scheme.

We show that the unconditional energy stability of the scheme may be derived by using ei-

ther the general analysis from [15], or more directly using an energy estimate. In Sect. 3 we

present the fully discrete scheme, where Fourier spectral differentiation is utilized in space.

The energy stability will be established at the fully discrete level, based on integration by

parts in Fourier space. In Sect. 4 we present some numerical simulation results. We offer our

concluding remarks in Sect. 5.
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2 The Numerical Scheme

2.1 Energy Stability of Convex Splitting Schemes

The natural function space for our problem is the subspace of H 2(�) whose functions are

periodic and have zero average, which we denote by H̊ 2
per(�). To begin, we consider a

general energy functional of the form

E(φ) = EES(φ) +
ǫ2

2
‖�φ‖2, (11)

for all φ ∈ H̊ 2
per(�), where

EES(φ) =

∫

�

F ES(∇φ)dx, (12)

and F ES : R
2 → R is twice differentiable. We suppose that this F ES can be decomposed

(non-uniquely) into convex and concave terms—respectively, contractive and expansive

terms in the language of Eyre [3]—in the sense that

F ES(y) = F ES
c (y) − F ES

e (y), (13)

where D2
yF

ES
c , D2

yF
ES
e ≥ 0. Subordinate to this decomposition of the energy density F we

define the Ehrlich-Schwoebel-type energies

EES
c (φ) :=

∫

�

F ES
c (∇xφ)dx, EES

e (φ) :=

∫

�

F ES
e (∇xφ)dx, (14)

so that EES(φ) = EES
c (φ) − EES

e (φ). The associated gradient flow is given by

∂tφ = −δφEES
c + δφEES

e − ǫ2�2φ, (15)

where δφ is the variational derivative with respect to φ. The corresponding convex splitting

numerical scheme for the gradient flow (15) with time step size k > 0 can be written as

φn+1 − φn

k
= −δφEES

c (φn+1) + δφEES
e (φn) − ǫ2�2φn+1

= ∇x · ∇yF
ES
c (∇xφ

n+1) − ∇x · ∇yF
ES
e (∇xφ

n) − ǫ2�2φn+1. (16)

Notice that this scheme in not uniquely defined, since the convex-concave splitting is not

unique in general. This subtle fact will lead to the key observation of this article.

The following result guarantees the unconditional energy stability and convergence for

the convex splitting scheme (16). Related results can also be found in [14].

Theorem 1 (Theorem 1 [15]) Assume that the energy functional (11) is twice functional

differentiable on H̊ 2
per(�), and F ES(y), ∇yF

ES(y) grow at most polynomially in y. Then the

scheme given by (16) for the gradient system (15) satisfying the convexity splitting (13) is

well-posed, with the solution given by the unique minimizer of the following modified energy

functional:

Escheme(φ) :=
ǫ2

2
‖�φ‖2 + EES

c (φ) +
1

2k
‖φ‖2 −

∫

�

(

δφEES
e (φn) +

1

k
φn

)

φ dx. (17)

Moreover, the energy is a non-increasing function of time, i.e., we have

Escheme(φ
n+1) ≤ Escheme(φ

n) −
1

k
‖φn+1 − φn‖2 −

ǫ2

2
‖�(φn+1 − φn)‖2, ∀k > 0. (18)
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And, the solution to the scheme (16) converges to the solution of the thin film epitaxy model

(15) at vanishing time step size (k → 0) on any finite time interval.

As we have already mentioned, for the thin film model (4), we previously [15] proposed

a convexity splitting of the form EES(φ) = EES
c (φ) − EES

e (φ), where

EES
c (φ) =

∫

�

1

2
{|∇φ|2 − ln(1 + |∇φ|2)}dx, EES

e (φ) =

∫

�

1

2
|∇φ|2 dx. (19)

The convex splitting scheme for the no-slope-selection equation (4) subordinate to this split-

ting is then given in (9). The energy stability of (9) is a corollary of Theorem 1.

2.2 A Linear Convex Splitting Scheme

The main contribution of this article is an alternate convexity splitting of the Ehrlich-

Schwoebel energy EES for the thin film model without slope selection. Specifically, consider

the splitting EES(φ) = EES
c (φ) − EES

e (φ), where

EES
c (φ) =

∫

�

1

2
|∇φ|2 dx, EES

e (φ) =

∫

�

1

2
{|∇φ|2 + ln(1 + |∇φ|2)}dx. (20)

The convexity of EES
c is obvious, and the convexity of EES

e comes from the convexity of the

following function

G(y) =
1

2
{|y|2 + ln(1 + |y|2)}. (21)

The corresponding convex splitting numerical scheme is given by

φn+1 − φn

k
= �φn+1 − ∇ ·

(

∇φn

1 + |∇φn|2

)

− �φn − ǫ2�2φn+1. (22)

Of course, the proposed scheme (22) is purely linear due to the explicit treatment of the

nonlinear term. It can be reformulated as
(

1

k
I − � + ǫ2�2

)

φn+1 = f n :=
φn

k
− ∇ ·

(

∇φn

1 + |∇φn|2

)

− �φn. (23)

Even without Theorem 1, it may observed that the scheme is unconditionally uniquely solv-

able. In fact, a simple calculation reveals that all the eigenvalues of the operator on the left

hand side of (23) are positive. The main advantage of (22), over any other nonlinear scheme,

is that spectral and fast elliptic solvers are directly applicable. This fact shows the impor-

tance of the alternate energy decomposition (20), where the nonlinear part of the energy can

be transferred to the concave (expansive) part of the energy. And, according to the anal-

ysis in [14, 15], the concave part of the energy should always be treated explicitly in the

numerical scheme.

2.3 Energy Stability via a Direct Proof

Because our linear scheme (22) is derived from a convexity splitting, namely, (20), the un-

conditional energy stability (18) and finite time convergence are guaranteed by Theorem 1.

However, in the following we show the energy stability directly, without appealing to prior

results.

Lemma 1 Numerical solutions of (22) satisfy the energy dissipation inequality (18). In

other words, (22) is an energy stable scheme.
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Proof Taking L2 inner product of (22) with φn+1 − φn yields

−
1

k
‖φn+1 − φn‖2 =

(

φn+1 − φn,∇ ·

(

∇φn

1 + |∇φn|2

))

+ (φn+1 − φn,�φn)

− (φn+1 − φn,�φn+1) + ǫ2(φn+1 − φn,�2φn+1). (24)

For the linear terms, integration by parts can be applied and the following equalities are

standard:

(φn+1 − φn,�φn − �φn+1) = ‖∇(φn+1 − φn)‖2, (25)

(φn+1 − φn,�2φn+1) =
1

2

(

‖�φn+1‖2 − ‖�φn‖2
)

+
1

2
‖�(φn+1 − φn)‖2. (26)

For the nonlinear term, we also start with an integration by parts:

I :=

(

φn+1 − φn,∇ ·

(

∇φn

1 + |∇φn|2

))

= −

(

∇φn+1 − ∇φn,
∇φn

1 + |∇φn|2

)

. (27)

A careful calculation shows that

− ln(1 + |∇φn+1|2) + ln(1 + |∇φn|2) = ln

(

1 + |∇φn|2

1 + |∇φn+1|2

)

= ln

(

1 +
|∇φn|2 − |∇φn+1|2

1 + |∇φn+1|2

)

≤
|∇φn|2 − |∇φn+1|2

1 + |∇φn+1|2
, (28)

where the last step follows from the inequality

ln(1 + r) ≤ r, ∀r > −1. (29)

Note that inequality (28) is a point-wise estimate, and it implies that

EES(φn+1) − EES(φn) =

∫

�

(

−
1

2
ln(1 + |∇φn+1|2) +

1

2
ln(1 + |∇φn|2)

)

dx

≤
1

2

∫

�

|∇φn|2 − |∇φn+1|2

1 + |∇φn+1|2
dx

=

∫

�

− 1
2
(∇φn+1 + ∇φn) · (∇φn+1 − ∇φn)

1 + |∇φn+1|2
dx. (30)

The combination of (27) and (30) indicates that

I −
[

EES(φn+1) − EES(φn)
]

≥

∫

�

(

−(∇φn+1 − ∇φn) · ∇φn

1 + |∇φn|2
+

1
2
(∇φn+1 + ∇φn) · (∇φn+1 − ∇φn)

1 + |∇φn+1|2

)

dx. (31)

Meanwhile, a careful calculation reveals the following point-wise estimate:

−(∇φn+1 − ∇φn) · ∇φn

1 + |∇φn|2
+

1
2
(∇φn+1 + ∇φn) · (∇φn+1 − ∇φn)

1 + |∇φn+1|2

=
−(∇φn+1 − ∇φn) · ∇φn

1 + |∇φn|2
+

(∇φn+1 − ∇φn) · ∇φn

1 + |∇φn+1|2
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−
(∇φn+1 − ∇φn) · ∇φn

1 + |∇φn+1|2
+

1
2
(∇φn+1 + ∇φn) · (∇φn+1 − ∇φn)

1 + |∇φn+1|2

= −(∇φn+1 − ∇φn) · ∇φn ·
|∇φn+1|2 − |∇φn|2

(1 + |∇φn|2)(1 + |∇φn+1|2)
+

1
2
|∇φn+1 − ∇φn|2

1 + |∇φn+1|2

≥ −(∇φn+1 − ∇φn) · ∇φn ·
|∇φn+1|2 − |∇φn|2

(1 + |∇φn|2)(1 + |∇φn+1|2)

= −(∇φn+1 − ∇φn) · ∇φn ·
(∇φn+1 + ∇φn) · (∇φn+1 − ∇φn)

(1 + |∇φn|2)(1 + |∇φn+1|2)

= −|∇φn+1 − ∇φn|2 ·
∇φn · (∇φn+1 + ∇φn)

(1 + |∇φn|2)(1 + |∇φn+1|2)

≥ −|∇φn+1 − ∇φn|2, (32)

in which the last step comes from the fact that

(

1 + |∇φn|2
)(

1 + |∇φn+1|2
)

= 1 + |∇φn|2 + |∇φn+1|2 + |∇φn|2 · |∇φn+1|2

≥ |∇φn|2 + ∇φn · ∇φn+1.

Its substitution into (31) gives

I −
[

ENS(φn+1) − EES(φn)
]

≥ −
∥

∥∇(φn+1 − φn)
∥

∥

2
. (33)

Finally, combining (24)–(26) and (33) results in

EES(φn+1) − EES(φn) +
ǫ2

2

(

‖�φn+1‖2 − ‖�φn‖2
)

≤ −
ǫ2

2

∥

∥�(φn+1 − φn)
∥

∥

2
−

1

k
‖φn+1 − φn‖2, (34)

which is equivalent to (18) since E(φ) = EES(φ) + ǫ2

2
‖�φ‖2. �

3 Fully Discrete Linear Scheme

3.1 Definition and Unique Solvability

Since the boundary conditions are periodic and the differential operator in (23) is linear with

constant coefficients, we use collocation Fourier spectral differentiation to effect spatial dis-

cretization. Assume that Lx = Nx · hx and Ly = Ny · hy , for some mesh sizes hx , hy > 0

and some positive integers Nx and Ny . For simplicity of presentation, we use a square do-

main, i.e., Lx = Ly = L, and a uniform mesh size hx = hy = h, Nx = Ny = N is taken.

All the variables are evaluated at the regular numerical grid (xi, yj ), with xi = ih, yj = jh,

0 ≤ i, j ≤ N .

For a periodic function f over the given 2D numerical grid, assume its discrete Fourier

expansion is given by

fi,j =

[N/2]
∑

k,l=−[N/2]

f̂k,l exp

(

2kπ ixi

L

)

exp

(

2lπ iyj

L

)

. (35)

Then the Fourier spectral approximations to the first and second order partial derivatives are

given by
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(DNxf )i,j =

[N/2]
∑

k,l=−[N/2]

(

2kπ i

L

)

f̂k,l exp

(

2kπ ixi

L

)

exp

(

2lπ iyj

L

)

, (36)

(DNyf )i,j =

[N/2]
∑

k,l=−[N/2]

(

2lπ i

L

)

f̂k,l exp

(

2lπ ixi

L

)

exp

(

2lπ iyj

L

)

, (37)

(D
2
Nxf )i,j =

[N/2]
∑

k,l=−[N/2]

(

−
4π2k2

L2

)

f̂k,l exp

(

2kπ ixi

L

)

exp

(

2lπ iyj

L

)

, (38)

(D
2
Nyf )i,j =

[N/2]
∑

k,l=−[N/2]

(

−
4π2l2

L2

)

f̂k,l exp

(

2kπ ixi

L

)

exp

(

2lπ iyj

L

)

. (39)

The discrete Laplacian, gradient and divergence operators become

�Nf = D
2
Nxf + D

2
Nyf, ∇Nf =

(

DNxf

DNyf

)

,

∇N ·

(

f1

f2

)

= DNxf1 + DNyf2,

(40)

at the point-wise level. The fully discrete scheme is formulated as

φn+1 − φn

k
= −∇N ·

(

∇Nφn

1 + |∇Nφn|2

)

− �Nφn + �Nφn+1 − ǫ2�2
Nφn+1. (41)

It is straightforward to show that the fully discrete scheme (41) is unconditionally

uniquely solvable. To see this consider a reformulation of (41) similar to (23):
(

1

k
I − �N + ǫ2�2

N

)

φn+1 = f n :=
φn

k
− ∇N ·

(

∇Nφn

1 + |∇Nφn|2

)

− �Nφn. (42)

Now, for each eigenfunction exp(
2kπ ixi

L
) exp(

2lπ iyj

L
), −[N

2
] ≤ k, l ≤ [N

2
], the corresponding

eigenvalue for the operator on the left hand side of (42) is precisely

λk,l :=
1

k
− (λk + λl) + ǫ2(λk + λl)

2, (43)

where

λk = −
4π2k2

L2
, λl = −

4π2l2

L2
. (44)

Consequently, λk,l > 0, which implies the unique unconditional solvability of the fully dis-

crete scheme (41). Naturally, the FFT can be very efficiently utilized to obtain numerical

solutions.

Remark 1 There are a couple of subtle details that we wish to point out. First, note that we

are using collocation-type Fourier spectral differentiation, rather than Galerkin-type spectral

differentiation. It is well-known that the discrete Fourier expansion (35) may contain alias-

ing errors, while the spectral accuracy is preserved as long as the exact solution is smooth

enough. Also note that in the fully discrete scheme (41), the gradient is computed in Fourier

space by using formulas (36)–(39), and the quotient of the terms ∇Nφ and 1+|∇Nφ|2 in the

nonlinear gradient term is then obtained in point-wise physical space. That greatly simplifies

the computational effort required in the numerical simulations.
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Our approach is very different from the Galerkin approach, wherein the nonlinear gradi-

ent term has to be expanded in all wave lengths. There is no simple formula to compute these

coefficients, even if it is treated explicitly. In addition, in spite of aliasing errors appearing

in the collocation spectral method, we are able to establish unconditional energy stability of

the scheme at the fully discrete level, as we demonstrate in the next subsection.

3.2 Fully Discrete Energy Stability

Here we will define a fully discrete analogue of the energy (1) and will subsequently prove

that a discrete version of the energy dissipation inequality (18) holds, regardless of the time

step size k and independent of the spatial resolution N . To begin, given any periodic grid

functions f and g (over the 2D numerical grid described above), the discrete approximations

to the L2 norm and inner product are given as

‖f ‖2 =
√

〈f,f 〉, with 〈f,g〉 = h2

N−1
∑

i=0

N−1
∑

j=0

fi,jgi,j . (45)

The discrete L2 inner product can also be viewed in Fourier space with the help of a discrete

version of Parseval’s equality. In particular,

〈f,g〉 = L2

[N/2]
∑

k,l=−[N/2]

f̂k,l ĝk,l = L2

[N/2]
∑

k,l=−[N/2]

ĝk,l f̂k,l, (46)

where f̂k,l , ĝk,l are the Fourier coefficients of the grid functions f and g in expansions such

as is given in (35). Detailed calculations show that the following discrete integration by parts

formulae are valid:
〈

f,∇N ·

(

g1

g2

)〉

= −

〈

∇Nf,

(

g1

g2

)〉

, (47)

〈f,�Ng〉 = −〈∇Nf,∇Ng〉, 〈f,�2
Ng〉 = 〈�Nf,�Ng〉. (48)

We now define the fully discrete energy via

EN (φ) = EES
N (φ) +

ǫ2

2
‖�Nφ‖2

2,

EES
N (φ) = h2

N−1
∑

i=0

N−1
∑

j=0

(

−
1

2
ln(1 + |∇Nφ|2)i,j

)

.

(49)

The following proposition is the main theoretical result for the fully discrete scheme (41).

Proposition 1 Numerical solutions of the scheme (41) satisfy

EN (φn+1) ≤ EN (φn) −
1

k
‖φn+1 − φn‖2

2 −
ǫ2

2

∥

∥�N (φn+1 − φn)
∥

∥

2

2
, ∀k > 0. (50)

In other words, (41) is a discrete-energy stable scheme.

Proof All of the calculations and estimates in (24)–(34) can be extended for the fully dis-

crete scheme (41), with the discrete operators defined in (40) replacing their continuous

counter parts, and the formulae in (47) and (48) replacing integration by parts. In particular,
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note that the point-wise estimates (28) and (32) remain valid in the fully discrete case. As a

result, one obtains

EES
N (φn+1) − EES

N (φn) +
ǫ2

2

(

‖�Nφn+1‖2
2 − ‖�Nφn‖2

2

)

≤ −
ǫ2

2

∥

∥�N (φn+1 − φn)
∥

∥

2

2
−

1

k
‖φn+1 − φn‖2

2, (51)

which is equivalent to (50). �

Remark 2 We point out that the unconditional energy stability of the fully discrete scheme

can also be verified using a convexity argument, just as in the space-continuous case. For the

pure Galerkin approximation, the only major modification needed is to view the “energy” as

defined on the finite dimensional Galerkin space, compute the variational derivatives within

the same Galerkin projected space, and view the fully discrete scheme as time discretization

of a gradient flow on the finite dimensional Galerkin projected space.

For collocation spectral approach we have taken in (41), the convexity argument still

works with the discrete derivatives and norms defined as above, and the integral is replaced

by a finite sum, just as in the definition of the discrete inner product in the physical space.

4 Numerical Simulation Results

Now we show some numerical simulation results using the proposed linear splitting scheme

(41) for the no-slope-selection equation (4), with a sequence of physical parameters ǫ =

0.1 : −0.01 : 0.02. For the domain we take L = Lx = Ly = 12.8 and h = L/N , where h

is the uniform spatial step size. Our numerical experiments have shown that the resolution

N = 384 for ǫ = 0.1 : −0.01 : 0.05 and N = 512 for ǫ = 0.04 : −0.01 : 0.02 is adequate

to resolve the small structures in the solution. (See the discussion below.) For the temporal

step size k, we use k = 0.001 on the time interval [0,400], k = 0.01 on the time interval

[400,6000], k = 0.04 on the time interval [6000,105] and k = 0.08 for t > 105 if needed.

Figure 1 presents time snapshots of the film height φ with ǫ = 0.02. Significant coarsening in

the system is evident. At early times many small hills (red) and valleys (blue) are present. At

the final time, t = 300000, a one-hill-one-valley structure emerges, and further coarsening

is not possible.

The long time characteristics of the solution, especially the energy decay rate and surface

roughness growth rate, are of interest to physicists and engineers. Recall that, at the space-

discrete level, the energy is defined via (49). The space-continuous surface roughness is

defined in (7), and an analogous fully discrete version is also available. At the PDE level,

the lower bound for the energy decay rate is of the order of − ln(t), and the upper bound

for the standard deviation growth rate is of the order of t1/2, as established for the no-

slope-selection equation (4) in Li and Liu’s work [11]. Our numerical simulation results

support these bounds. Figures 2 and 3 present the semi-log plots for the energy versus time

and log-log plots for the roughness versus time, respectively, with the chosen sequence of

physical parameters ǫ = 0.02 : 0.01 : 0.1. The detailed scaling “exponents” obtained using

least squares fits of the computed data up to time t = 400 are provided in Table 1. A clear

observation of the − ln(t) and t1/2 scaling laws can be made, with different coefficients

dependent upon ǫ.

To confirm the robustness of the simulation results, we performed some numerical exper-

iments testing the sensitivity of the computations to the initial random data and the numerical
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Fig. 1 (Color online) Snapshots of the computed height function φ at the indicated times for the parameters
L = 12.8, ǫ = 0.02. Note that the color scale changes with time. The hills (red) at early times are not as high
as time at later times, and similarly with the valley (blue). To see how the average height/depth changes with
time, see Fig. 3

Table 1 Fitting parameters for the least squares lines in Figs. 2 and 3. Specifically, the energy decay lines in
Fig. 2 have the form me ln(t) + be , and the roughness lines in Fig. 3 have the form br t

mr . Least squares fits
were computed using the physical data up to time t = 400. This was to avoid the later-time effects associated
to the periodic boundary conditions

ǫ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

me −39.62 −38.84 −39.39 −38.21 −38.02 −38.67 −38.66 −39.80 −37.37

be −154.24 −125.17 −98.50 −83.66 −74.27 −58.72 −47.06 −37.70 −36.67

mr 0.52 0.52 0.51 0.52 0.55 0.55 0.55 0.57 0.56

br 0.38 0.38 0.37 0.36 0.34 0.34 0.33 0.32 0.31

resolution. For instance, using the parameter ǫ = 0.02, a simulation with the higher spatial

resolution N = 768 and the smaller time step k = 0.000625 was undertaken up to t = 400.

Qualitative and quantitative comparisons between the base-line and high-level resolutions

confirmed that the energy dissipation and surface roughness growth rates were nearly iden-

tical.

Now we recall that a lower bound for the energy (1), assuming � = (0,L) × (0,L), has

been derived in our earlier article [15]. In particular, based on the following estimate

F(y) = −
1

2
ln

(

1 + |y|2
)

≥ −
1

2

(

α|y|2 − ln(α) + α − 1
)

, ∀α ≤ 1, (52)
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Fig. 2 (Color online) Semi-log plots of the temporal evolution the energy, for a sequence of ǫ values. The
energy decreases like − ln(t) until saturation. The dotted lines correspond to the minimum energy reached
by the numerical simulation. The red lines represent the energy plot obtained by the simulations, while the
straight lines are obtained by least squares approximations to the energy data. The least squares fit is only
taken for the linear part of the calculated data, only up to about time t = 400. Parameters for the fitted lines,
which have the form me ln(t) + be , can be found in Table 1

and the elliptic regularity estimate in 2-D

‖�φ‖2 ≥ 4
π2

L2
‖∇φ‖2, ∀φ ∈ H 2

per(�), (53)

with the choice of α = 4ǫ2π2

L2 , we obtain a lower bound for the energy of the form1

E(φ) ≥
L2

2

(

ln

(

4ǫ2π2

L2

)

−
4ǫ2π2

L2
+ 1

)

=: γ. (54)

Obviously, since the energy is bounded below it cannot keep decreasing at the rate − ln(t).

This fact manifests itself in the calculated data as the rate of decrease of the energy, for

example, begins to wildly deviate from the predicted − ln(t) curve. Sometimes the rate of

decrease increases, and sometimes it slows as the systems “feels” the periodic boundary

conditions. Interestedly, regardless of this later-time deviation from the accepted rates, the

time at which the system saturates (i.e., the time when the energy abruptly and essentially

stops decreasing) is roughly that predicted by extending the blue lines in Fig. 2 to the pre-

dicted minimum energy (54). See the discussion below. As can be seen from the results

1We have here corrected a slight error in the bound presented in [15].
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Fig. 3 (Color online) The log-log plot of the standard deviation (or roughness) of φ, denoted w(t), for a

sequence of ǫ values. For the no slope selection model, w(t) grows like t1/2. The red lines represent the plot
obtained by the numerical simulations, while the straight lines are linear least squares approximations to the

t1/2 growth. The least squares fit is only taken for the linear part of the calculated data, only up to about time
t = 400. In particular, the parameters for the (blue) fitting lines, which have the form br t

mr , can be found in
Table 1

of the numerical simulations, although such a bound is not sharp, the calculated minimum

energies for different ǫ match those predicted by the formula to within 3% accuracy. See

Fig. 4.

The dependence of the saturation time on the physical parameter ǫ can be formally pre-

dicted using the technique described above (i.e., by extending the − ln(t) line to the min-

imum energy γ ). This type of formal argument suggests an intuitive O(ǫ−2) law for the

saturation time scale, owing to the specific dependence of γ on ǫ. We now explore this sat-

uration time dependence in our numerical simulation results. For each ǫ, the corresponding

energy plot indicates an approximate − ln(t) law, with appropriate coefficients given in Ta-

ble 1. We define the numerical saturation time as that time when the blue line in Fig. 2 meets

the lowest calculated energy for the simulation. This lowest energy is reported in Fig. 4 for

each value of ǫ. The deviation from γ is only about 3%. This lowest energy always corre-

sponded to a state that features a one-up-one down hill and valley configuration, as in Fig. 1

for t = 300000.

Figure 5 gives the plot of the numerical saturation time versus ǫ. The star lines represent

the values obtained by the numerical simulations, while the circle lines give the least square

approximation to these numerical data. This approximation gives a slope of −2.04, which

is almost a perfect match with the O(ǫ−2) scaling law. We note that not many works have



560 J Sci Comput (2012) 52:546–562

Fig. 4 (Color online) Minimum
energy versus ǫ. The star points

represent the calculated
minimum energy at saturation.
The circles indicate values of the
energy lower bound from (54)

Fig. 5 Log-log plot of saturation
time versus ǫ. The star points

represent the values obtained by
the numerical simulation, and the
line with circles represent the
least squares approximation to
these data. The slope of the
fitting line is −2.04

explored the saturation, in part, we believe, because these data are costly to obtain. As we

have pointed out, convexity splitting schemes are well suited to these types of calculations,

because of their unconditional stability properties.

5 Summary and Remarks

We have presented an unconditionally stable, unconditionally solvable, and convergent lin-

ear scheme for a model for thin film epitaxy without slope selection, i.e., the non-slope-

selection equation (4). The unconditional stability and solvability and the convergence fol-

low directly from our theory on convex splitting schemes for a certain class of epitaxial

growth models [15]. The current scheme is fully linear in the sense that only a linear sym-

metric (bi-harmonic type) problem is solved at each time step. The unconditional stability

and solvability of the fully discrete scheme derived using collocation-type Fourier spectral

differentiation was also demonstrated. The new scheme was then implemented utilizing FFT.

The physical scaling laws relevant for this model, in particular, the energy decay rate, the

surface roughness growth rate, and saturation time were recovered and verified numerically.
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The work here demonstrates an important subtlety regarding the non-uniqueness of the

convex splitting method. In particular, although all of the (true) convexity splitting scheme

enjoy unconditional stability, some splitting choices can be much more advantageous than

others. Here by a different choice of splitting we obtained a linear scheme, that is much

more efficient than the nonlinear scheme we proposed earlier [15].

We should point out that the technique applied here is not completely general. In other

words, it is not always possible to derive a linear convex splitting scheme for genetic energy

functionals. For example, one cannot derive a linear convex splitting scheme for gradient

flows involving the standard quartic energy density g(u) = 1
4
u4 − 1

2
u2, because there is no

splitting parameter A > 0 that guarantees ge(u) := A
2
u2 − 1

4
u4 is globally convex. On the

other hand, the technique will find greater applicability than the specific model considered

here. To see this, consider the point-wise, double-well energy density g(u) = 1
2
u2 − ln(1 +

x2), which has relative minima at u = ±1. This has the convex splitting g = gc − ge , where

gc(u) = ( 1
2

+ A)u2 and ge(u) = (Au2 + ln(1 + x2)). The last term is convex if A ≥ 1
8
. Of

course, here we are taking advantage of the fact that polynomials will dominate logarithms

for large numbers, as we did in the present thin film context (cf. the discussion before (21)).

Furthermore, this technique can be used to handle nonlocal terms in the energy, such as

those that come into play in the nonlocal Cahn-Hilliard equation [4]. For instance, consider

the nonlocal energy

G(u) =
1

4

∫

�

∫

�

J (x − y)
(

u(x) − u(y)
)2

dy dx,

where J is even, positive, and periodic on the rectangular domain �, and u ∈ L2(�).

This energy is already convex. Taking Gc ≡ G and Ge ≡ 0 one obtains a linear—though

nonlocal—convolution operator in the implicit part of the chemical potential. It is possible

to avoid this situation by pushing the convolution to the explicit term, rather than the im-

plicit. Specifically, it is straightforward to show that there is a convex splitting G = Gc −Ge

of the form [4]

Gc(u) = ‖J‖1‖u‖2
2,

Ge(u) = ‖J‖1‖u‖2
2 −

1

4

∫

�

∫

�

J (x − y)(u(x) − u(y))2 dy dx.

Here the convolution goes to the explicit part of the chemical potential and therefore does

not need to be inverted.
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