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ABSTRACT respect to the SSIM index and VIF should guarantee the de-
sired level of visual quality. The optimization processan

We use a perceptual distortion metric - the structural simil .. . o
. ) . ) : trivial however, since the form of these metrics is more com-
ity (SSIM) index, to derive a new linear estimator for estima .

licated than that of MSE.

ing zero-mean Gaussian sources distorted by additive whif2 . L :
Several important problems such as estimation for image

Gaussian noise (AWGN). We use this estimator in an ima o . ; . g
( ) g%lenmsmg, rate-distortion analysis, and joint sourcarctel

denoising application and compare its performance with th%odin of images can now be solved with respect to these
traditional linear least squared error (LLSE) estimatot- A 9 9 P

though images denoised using the SSIM-optimized estimatdlo " metrics. _In_ this Paper, we propose the f|r§t-ever linear
) : . estimator optimized with respect to the SSIM index. The

have a lower peak signal-to-noise ratio (PSNR) compared t(c:)hoice of the SSIM index as the distortion metric is mainl

their LLSE couterparts, the SSIM-optimized estimator diea y

outperforms the LLSE estimator in terms of the visual gyalit due to its strquth asa pergeptual dlstortlpn memc’"“@"
. : ness, amenability to analysis, and ease of implementafien.
of the denoised images.

derive an optimal linear estimator with respect to the SSIM

index for the simple but important case of estimating zero-
1. INTRODUCTION mean Gaussian sources that have been distorted by an AWGN

channel. The SSIM index defined for the space domain is

For many years, mean squared error (MSE) has been the mMeged in this analysis. The SSIM-optimized estimator is then
popular metric used in the design of image processing algqised to denoise natural images, also distorted by ANGN. The
rithms ranging from quantization to image denoising to im-genoiser has been implemented in the space domain in or-

age quality assessment. This has been the case even thoughdt to be consistent with the flavor of the SSIM index used
has been shown that MSE optimized algorithms do not neqp, the estimator design. We compare the performance of the

essarily produce images with the highest visual qualitye Th ss|Mm-optimal denoiser with the ubiquitous LLSE denoiser

popularity of MSE can be attributed to two main reasons gnd demonstrate the gain in visual quality offered by the pro
amenability to analysis and a lack of competitive perceptug,psed method.

distortion metrics. Recent advances in full-referencegiena
quality assessment have resulted in the emergence of two pow
erful perceptual distortion metrics called the SSIM Indgk [

c():r .Wa}ng-lf/(l);ikzlndexér?qshtge VI'(SIU"’(‘J Information Fidelity We briefly discuss the SSIM visual quality metric to help set
riterion (VIF) [2], or Sheikh-Bovik Index. up the estimation problem. The most general form of the met-

The SSIM index computes the quality of a distorted im-yic ot js used to measure the structural similarity betwee
age by comparing the correlations in luminance, contrast, a two signal vectorsc andy is

structure, locally, between the reference and distortexdjaa

and averaging these quantities over the entire image. VIF SSIM(x,y) = [Z(X’y)]a[c(xy)]ﬂ[s(x,y)p_ (1)
measures image quality as the mutual information between

the reference image and the distorted image. The design dhe termi(x,y) = jg‘#ﬂa compares the luminance of
both these metrics is inspired by the functioning of the hu'the signalsc(x, y) :m 2040, +Cs
man visual system (HVS). Since most images are intended for ’ oz toy+C2
viewing by the human eye, using these metrics in designinghe signals, and(x,y) = a?;;fé measures the structural
image processing algorithms automatically takes intoaeto correlation of the signals. The quantitigs, 1, are the sam-
the properties of the HVS. Ideally, optimizing algorithmistw  ple means ok andy respectivelyp?2, o—g are the sample vari-

2. THE STRUCTURAL SIMILARITY INDEX

compares the contrast of




ances ofx andy respectively, and, is the sample cross-
covariance betweer andy. The constant€’;, Cy, C3 are
used to stabilize the metric for the case where the means and
variances become very small. The parameters0, 5 > 0,

and~y > 0, are used to adjust the relative importance of the
three components. We use the following simplified form of
the SSIM index in our work (with = 3 = v = 1, and ‘ ‘ ‘
C3 = Cs/2): | ————

2#7"# +Cl 2U:z +02 % 0
SSIM = Y Y . (2 ®
() (u%—l—u%—i—C’l 02+ 02+ Cy @ -05]
In image quality assessment, non-overlapping image blocks B 05 ‘; 0% !

from the reference and distorted image constitugndy re-

spectively. The average of the SSIM values across the imaqgg_ 1 Plot of end-to-end MSE and SSIM as a function of the

(also called mean .SSIM_or MSSIM) gives the' final ,qua“tylinear estimator for a zero-mean Gaussian source with = 1
measure. The design philosophy of the SSIM index is to ac:

. . sent over an AWGN channel with, = 0.9. The plot also shows
knowledge the fact that natural images are hlghly strudture the minimum MSE and maximum SSIM points.
and that the measure of structural correlation (between the
reference and the distorted image) is very important inddeci
ing the overall visual quality. Further, the SSIM index mea-SSIM estimator in (4). If the constant, = 0, (4) simplifies
sures quality locally and is able to capture local dissiriila to

ties better, unlike global quality measures such as MSE (and Xosim = QssimY = Izy, (5)
hence PSNR). Though (2) has a form that is more complicated Ty
than that of MSE, it remains analytically tractable. Thesae f 0

tures make the SSIM index attractive to work with. The estimator in (4) is also the optimal linear estimator

for the case where the meansXfandY are identical.
3. SSIM-OPTIMIZED LINEAR ESTIMATION For Gaussian sources, the LLSE estimator is also the min-

! . e . _ __imum MSE (MMSE) estimator. For the case of zero-mean
The first step in designing SSIM-optimized estimators is 9% aussian random variables. the LLSE estimator is
extend the defintion of the SSIM index to measure structural ’

similarity between realizations of random variables. To do
so, the same formulation as in (2) is used, but sample means,

variances, and cross-covariance are replaced by theig-stat _ _
tical equivalents. For zero-mean reference and distoited s The expressions for MSE and the SSIM index for the SSIM-

nals, the luminance term in (2) goes to unity and the strecturoptimal and LLSE estimators in (5) and (6) respectively are
term remains and the SSIM index becomes MSEysim = 202(1 — asaim),

204y + Cy

~ 0—2
Xiise = auseY = =Y. (6)
Ty

IM(X,)Y)= -2~ 22 3 MSEyse = 02(1 — ayse),
SSIM(X,Y) 21021 C; 3) SEjse = 05(1 — anse) @
SSIMssim = 2assim7
Based on (3) we can prove the following theorem. SSTMuse = [2au5e /(1 + ase)]-

Theorem 3.1. For a zero-mean Gaussian random variable
X ~ N(0,02) that is sent over an uncorrelated AMGN chan-
nel N ~ N(0,02), thelinear estimator X = f(Y) = aY +b

that maximizes (3) is given by

To elucidate the effect of the linear estimatet() on the
SSIM index and MSE, we ran the following experiment. The
signal and noise variane€ ando2 were chosen to be 1 and
0.81 respectively (this choice was made to highlight the dif

—Cho? + \/0204 1 40202(04 + Coo2 ferences betwegn the estimators). The valug whs varied
Xosim = il . 20y (73 1 Co ”)y, (4) from-1.0to 1.0 in steps of 0.01 and the estimalor= aY’
20307 was applied at the receiver. The end-to-end SSIM index and

MSE were measured as shown in Fig. 1. The figure also
shows the points where MSE is minimum and the SSIM in-
dex is maximum. It is clear that for this SNR, the values of
Proof : It is easy to show that for zero-mean random vari-that minimize MSE and maximize the SSIM index are quite
ables,b = 0. SubstitutingX with aY in (3) and maximiz- different. Eqns. (4), (5), and (6) suggest that for zerommea
ing the expression with respect doyields the optimal linear Gaussian sources, 8% — 0, agsim =~ \/Qise-

whereY = X + N, Y ~ N(0,(0) = 02 + 07)), isthe
observed random variable at the receiver.
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Fig. 2. SSIM and MSE plots for the optimal linear SSIM estimator Fig. 3. SSIM and PSNR plots for the optimal linear SSIM estimator
and LLSE estimator for a zero-mean unit variance Gaussian patch ahd LLSE estimator applied at the block-level to Img0099 from the
size 3% 32 that is sent over an AWGN channel whose variance isimages of Austin’ database.

varied from 0.01 to 1.

we subtracted the mean of each block before applying the es-

4. PERFORMANCE COMPARISON timator and then added the mean back. The SSIM-optimal es-
_ timator consistently outperforms the LLSE estimator imter
4.1. Gaussian Source of visual quality from block size 44 onward. The choice of

using an &8 block was made to highlight the gain in visual

A zero-mean, unit variance Gaussian patch of size 3 quality offered by the SSIM-optimal estimator.

was sent over an AWGN chann¥|, whose variance was var- Pixal-level denoising - Wi ‘ d pixel level denoi
ied from 0.01 to 1 in steps of 0.1. The SSIM-optimized and. IX€El-IeVEl denoising - YVe performed pixel level denois-

LLSE estimators were independently applied to the receivelf!d [0 compare the performance of the SSIM-optimal estima-

patchY’, and the end-to-end SSIM was measured for eac or to the benchmark Wiener filter. The main difference from
case Iéach point in the plots in Fig. 2 has been averaget e block-level denoising case was that we used the function

3 . . ® . .
over 10,000 iterations. We see from Fig. 2(a) that the SSIMWVener2available inMatlab™ to do the LLSE estimation. We

optimized estimator starts to perform better (with respect gsed the same neighborhood size to calcui@t&)r both es-
SSIM) as the signal-to-noise ratio decreases. This seems fgnators. : . .

suggest that the SSIM estimator should give perceptually su The standard Sfat of test Images |,nclud|ng Lena, E_‘aTbara’
perior images compared to the LLSE estimator as the noisecPPers. and the ‘images of Austin’ database consisting of

variance increases. Fig. 2(b) shows how the end-to-end Ms£20 grayscale, 512512, bitmap images, of the city of Austin

varies as the noise variance increases. As expected, the LL&/€re used in the experiment. The AWGN channel's SNR was

estimator outperforms the SSIM-optimized linear estimatoVared from 14 dB ¢ = 50) to 22 dB ¢ = 20). Ateach SNR,
with respect to MSE. the received image was denoised using both estimators, and

the PSNR and SSIM of the denoised images was calculated.
The PSNR and the SSIM index values at each SNR were av-
4.2. Natural Images eraged over 10 iterations. Fig. 3 shows the plot of PSNR and

. . th IM index ver hannel SNR for block-level denoisin
We compared the performance of the two estimators in spatltless dex versus channel S or block-level denoising

domain denoising of natural images distorted by an AWG or the sample image Img0099.

channel. Estimation was performed dilack level (since the

SSIM index performs block level comparison), and abl 5. RESULTS

level (to enable performance comparison with the Wiener fil-

ter). Spatial domain denoising was done since the flavor ofve see from Fig. 3 that the estimators behave as expected

SSIM used in Section 3 is defined for the same. We assumédr natural images too. The SSIM- optimized estimator gives

that the noise variance was known to the receiver at the bloakonsistently higher end-to-end SSIM index values compared

level and the pixel level for the respective cases. to the LLSE estimator, and vice-versa. Most importantly, we
Block-level denoising : In this case the image was di- see from Figs. 4(a) and 4(b), that the SSIM-optimized esti-

vided into non-overlapping blocks of sizex8 and the SSIM- mator gives images that have a higher visual quality. Farthe

optimal and LLSE estimators were calculated for each blockthis result also demonstrates that higher PSNR values do not

The source variance was approximated from the distorted imalways mean images with a higher perceptual quality. Com-

age variance and the noise varianceas- 0. — 0. The es-  paring (5) and (6) we see that the cost incurred (in termseof th

timators were calculated using expressions (4) and (6xeSin number of multiplication operations) in computing the SSIM

the optimal estimators were derived for the zero-mean caseptimized estimator is identical to the cost of computing th



(a) Block-level denoising (block sizex). (b) Pixel-level denoising.

Fig. 4. From left to right and top to bottom : Original, Noisy, LLSE, SSIM (cropped.28x 128 for easier comparison) . Left : Barbara
image. Noisy image PSNR = 20.2 dB € 25). PSNRjjse = 25.13 dB,PSNRgsim = 24.66 dB.SSIMjse = 0.70,SSIMgsim = 0.72. Right :
Img0099. Noisy image PSNR = 17.2 dB € 35). PSNRwicner = 21.22 dB,PSNRgsim = 20.32 dB.SSIMwiener = 0.64,SSIMsim = 0.67.

LLSE estimator. In other words, the gain in visual quality isdomain denoising. Furthermore, we believe that the use of

available at no additional computational cost! this metric is not limited to denoising applications, and ca
To validate the visual quality results, a subjective studybe used in other important applications such as quantizer de

was conducted [3]. The experiment for natural images yieldsign, and the design of joint source-channel coding systems

a pair of denoised images at each SNR, for every image in the
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