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ABSTRACT

We use a perceptual distortion metric - the structural similar-
ity (SSIM) index, to derive a new linear estimator for estimat-
ing zero-mean Gaussian sources distorted by additive white
Gaussian noise (AWGN). We use this estimator in an image
denoising application and compare its performance with the
traditional linear least squared error (LLSE) estimator. Al-
though images denoised using the SSIM-optimized estimator
have a lower peak signal-to-noise ratio (PSNR) compared to
their LLSE couterparts, the SSIM-optimized estimator clearly
outperforms the LLSE estimator in terms of the visual quality
of the denoised images.

1. INTRODUCTION

For many years, mean squared error (MSE) has been the most
popular metric used in the design of image processing algo-
rithms ranging from quantization to image denoising to im-
age quality assessment. This has been the case even though it
has been shown that MSE optimized algorithms do not nec-
essarily produce images with the highest visual quality. The
popularity of MSE can be attributed to two main reasons :
amenability to analysis and a lack of competitive perceptual
distortion metrics. Recent advances in full-reference image
quality assessment have resulted in the emergence of two pow-
erful perceptual distortion metrics called the SSIM Index [1],
or Wang-Bovik Index, and the Visual Information Fidelity
Criterion (VIF) [2], or Sheikh-Bovik Index.

The SSIM index computes the quality of a distorted im-
age by comparing the correlations in luminance, contrast, and
structure, locally, between the reference and distorted images
and averaging these quantities over the entire image. VIF
measures image quality as the mutual information between
the reference image and the distorted image. The design of
both these metrics is inspired by the functioning of the hu-
man visual system (HVS). Since most images are intended for
viewing by the human eye, using these metrics in designing
image processing algorithms automatically takes into account
the properties of the HVS. Ideally, optimizing algorithms with

respect to the SSIM index and VIF should guarantee the de-
sired level of visual quality. The optimization process is non-
trivial however, since the form of these metrics is more com-
plicated than that of MSE.

Several important problems such as estimation for image
denoising, rate-distortion analysis, and joint source-channel
coding of images can now be solved with respect to these
new metrics. In this paper, we propose the first-ever linear
estimator optimized with respect to the SSIM index. The
choice of the SSIM index as the distortion metric is mainly
due to its strength as a perceptual distortion metric, intuitive-
ness, amenability to analysis, and ease of implementation.We
derive an optimal linear estimator with respect to the SSIM
index for the simple but important case of estimating zero-
mean Gaussian sources that have been distorted by an AWGN
channel. The SSIM index defined for the space domain is
used in this analysis. The SSIM-optimized estimator is then
used to denoise natural images, also distorted by AWGN. The
denoiser has been implemented in the space domain in or-
der to be consistent with the flavor of the SSIM index used
in the estimator design. We compare the performance of the
SSIM-optimal denoiser with the ubiquitous LLSE denoiser
and demonstrate the gain in visual quality offered by the pro-
posed method.

2. THE STRUCTURAL SIMILARITY INDEX

We briefly discuss the SSIM visual quality metric to help set
up the estimation problem. The most general form of the met-
ric that is used to measure the structural similarity between
two signal vectorsx andy is

SSIM(x,y) = [l(x,y)]α[c(x,y)]β [s(x,y)]γ . (1)

The terml(x,y) =
2µxµy+C1
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ances ofx andy respectively, andσxy is the sample cross-
covariance betweenx andy. The constantsC1, C2, C3 are
used to stabilize the metric for the case where the means and
variances become very small. The parametersα > 0, β > 0,
andγ > 0, are used to adjust the relative importance of the
three components. We use the following simplified form of
the SSIM index in our work (withα = β = γ = 1, and
C3 = C2/2):
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)

. (2)

In image quality assessment, non-overlapping image blocks
from the reference and distorted image constitutex andy re-
spectively. The average of the SSIM values across the image
(also called mean SSIM or MSSIM) gives the final quality
measure. The design philosophy of the SSIM index is to ac-
knowledge the fact that natural images are highly structured,
and that the measure of structural correlation (between the
reference and the distorted image) is very important in decid-
ing the overall visual quality. Further, the SSIM index mea-
sures quality locally and is able to capture local dissimilari-
ties better, unlike global quality measures such as MSE (and
hence PSNR). Though (2) has a form that is more complicated
than that of MSE, it remains analytically tractable. These fea-
tures make the SSIM index attractive to work with.

3. SSIM-OPTIMIZED LINEAR ESTIMATION

The first step in designing SSIM-optimized estimators is to
extend the defintion of the SSIM index to measure structural
similarity between realizations of random variables. To do
so, the same formulation as in (2) is used, but sample means,
variances, and cross-covariance are replaced by their statis-
tical equivalents. For zero-mean reference and distorted sig-
nals, the luminance term in (2) goes to unity and the structure
term remains and the SSIM index becomes

SSIM(X,Y ) =
2σxy + C2

σ2
x + σ2

y + C2

. (3)

Based on (3) we can prove the following theorem.

Theorem 3.1. For a zero-mean Gaussian random variable
X ∼ N (0, σ2

x) that is sent over an uncorrelated AWGN chan-
nel N ∼ N (0, σ2

n), the linear estimator X̂ = f(Y ) = aY +b
that maximizes (3) is given by

X̂ssim =
−C2σ
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Y, (4)

where Y = X + N , Y ∼ N (0, (σ2
y = σ2

x + σ2
n)), is the

observed random variable at the receiver.

Proof : It is easy to show that for zero-mean random vari-
ables,b = 0. SubstitutingX̂ with aY in (3) and maximiz-
ing the expression with respect toa yields the optimal linear
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Fig. 1. Plot of end-to-end MSE and SSIM as a function of the
linear estimatora for a zero-mean Gaussian source withσx = 1

sent over an AWGN channel withσn = 0.9. The plot also shows
the minimum MSE and maximum SSIM points.

SSIM estimator in (4). If the constantC2 = 0, (4) simplifies
to

X̂ssim = assimY =
σx

σy

Y. (5)

The estimator in (4) is also the optimal linear estimator
for the case where the means ofX andY are identical.

For Gaussian sources, the LLSE estimator is also the min-
imum MSE (MMSE) estimator. For the case of zero-mean
Gaussian random variables, the LLSE estimator is

X̂llse = allseY =
σ2

x

σ2
y

Y. (6)

The expressions for MSE and the SSIM index for the SSIM-
optimal and LLSE estimators in (5) and (6) respectively are

MSEssim = 2σ2
x(1 − assim),

MSEllse = σ2
x(1 − allse),

SSIMssim = 2assim,

SSIMllse = [2allse/(1 + allse)].

(7)

To elucidate the effect of the linear estimator (aY ) on the
SSIM index and MSE, we ran the following experiment. The
signal and noise varianceσ2

x andσ2
n were chosen to be 1 and

0.81 respectively (this choice was made to highlight the dif-
ferences between the estimators). The value ofa was varied
from -1.0 to 1.0 in steps of 0.01 and the estimatorX̂ = aY
was applied at the receiver. The end-to-end SSIM index and
MSE were measured as shown in Fig. 1. The figure also
shows the points where MSE is minimum and the SSIM in-
dex is maximum. It is clear that for this SNR, the values ofa
that minimize MSE and maximize the SSIM index are quite
different. Eqns. (4), (5), and (6) suggest that for zero-mean
Gaussian sources, asC2 → 0, assim ≈ √

allse.
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Fig. 2. SSIM and MSE plots for the optimal linear SSIM estimator
and LLSE estimator for a zero-mean unit variance Gaussian patch of
size 32×32 that is sent over an AWGN channel whose variance is
varied from 0.01 to 1.

4. PERFORMANCE COMPARISON

4.1. Gaussian Source

A zero-mean, unit variance Gaussian patch of size 32×32
was sent over an AWGN channelN , whose variance was var-
ied from 0.01 to 1 in steps of 0.1. The SSIM-optimized and
LLSE estimators were independently applied to the received
patchY , and the end-to-end SSIM was measured for each
case. Each point in the plots in Fig. 2 has been averaged
over 10,000 iterations. We see from Fig. 2(a) that the SSIM-
optimized estimator starts to perform better (with respectto
SSIM) as the signal-to-noise ratio decreases. This seems to
suggest that the SSIM estimator should give perceptually su-
perior images compared to the LLSE estimator as the noise
variance increases. Fig. 2(b) shows how the end-to-end MSE
varies as the noise variance increases. As expected, the LLSE
estimator outperforms the SSIM-optimized linear estimator
with respect to MSE.

4.2. Natural Images

We compared the performance of the two estimators in spatial
domain denoising of natural images distorted by an AWGN
channel. Estimation was performed at ablock level (since the
SSIM index performs block level comparison), and at apixel
level (to enable performance comparison with the Wiener fil-
ter). Spatial domain denoising was done since the flavor of
SSIM used in Section 3 is defined for the same. We assumed
that the noise variance was known to the receiver at the block
level and the pixel level for the respective cases.

Block-level denoising : In this case the image was di-
vided into non-overlapping blocks of size 8×8 and the SSIM-
optimal and LLSE estimators were calculated for each block.
The source variance was approximated from the distorted im-
age variance and the noise variance asσ2

x ≈ σ2
y −σ2

n. The es-
timators were calculated using expressions (4) and (6). Since
the optimal estimators were derived for the zero-mean case,
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Fig. 3. SSIM and PSNR plots for the optimal linear SSIM estimator
and LLSE estimator applied at the block-level to Img0099 from the
‘Images of Austin’ database.

we subtracted the mean of each block before applying the es-
timator and then added the mean back. The SSIM-optimal es-
timator consistently outperforms the LLSE estimator in terms
of visual quality from block size 4×4 onward. The choice of
using an 8×8 block was made to highlight the gain in visual
quality offered by the SSIM-optimal estimator.

Pixel-level denoising : We performed pixel level denois-
ing to compare the performance of the SSIM-optimal estima-
tor to the benchmark Wiener filter. The main difference from
the block-level denoising case was that we used the function
wiener2 available inMatlabr to do the LLSE estimation. We
used the same neighborhood size to calculateσ2

y for both es-
timators.

The standard set of test images including Lena, Barbara,
Peppers, and the ‘Images of Austin’ database consisting of
200 grayscale, 512×512, bitmap images, of the city of Austin
were used in the experiment. The AWGN channel’s SNR was
varied from 14 dB (σ = 50) to 22 dB (σ = 20). At each SNR,
the received image was denoised using both estimators, and
the PSNR and SSIM of the denoised images was calculated.
The PSNR and the SSIM index values at each SNR were av-
eraged over 10 iterations. Fig. 3 shows the plot of PSNR and
the SSIM index versus channel SNR for block-level denoising
for the sample image Img0099.

5. RESULTS

We see from Fig. 3 that the estimators behave as expected
for natural images too. The SSIM- optimized estimator gives
consistently higher end-to-end SSIM index values compared
to the LLSE estimator, and vice-versa. Most importantly, we
see from Figs. 4(a) and 4(b), that the SSIM-optimized esti-
mator gives images that have a higher visual quality. Further,
this result also demonstrates that higher PSNR values do not
always mean images with a higher perceptual quality. Com-
paring (5) and (6) we see that the cost incurred (in terms of the
number of multiplication operations) in computing the SSIM-
optimized estimator is identical to the cost of computing the



(a) Block-level denoising (block size 8×8). (b) Pixel-level denoising.

Fig. 4. From left to right and top to bottom : Original, Noisy, LLSE, SSIM (croppedto 128×128 for easier comparison) . Left : Barbara
image. Noisy image PSNR = 20.2 dB (σ = 25). PSNRllse = 25.13 dB,PSNRssim = 24.66 dB.SSIMllse = 0.70,SSIMssim = 0.72. Right :
Img0099. Noisy image PSNR = 17.2 dB (σ = 35).PSNRwiener = 21.22 dB,PSNRssim = 20.32 dB.SSIMwiener = 0.64,SSIMssim = 0.67.

LLSE estimator. In other words, the gain in visual quality is
available at no additional computational cost!

To validate the visual quality results, a subjective study
was conducted [3]. The experiment for natural images yields
a pair of denoised images at each SNR, for every image in the
database, forming a set of 1400 pairs. For brevity, a subset
of 10 image pairs was randomly chosen from this set. These
image pairs were independently shown to six subjects, and
were asked to choose the image with the higher visual qual-
ity. On average, 85% of the images chosen by the subjects
were those denoised by the SSIM estimator. The worst case
of 50% occured only for one image, while the best case of
100% occured for 5 images.

6. CONCLUSIONS

We proposed the first-ever SSIM-optimized linear estimator
and demonstrated the improvement in visual quality that re-
sults from using the SSIM index in designing estimators for
denoising. This paper only considered the special case of a
zero-mean Gaussian source and an AWGN channel, but we
plan to extend this work to more sophisticated source and
channel models. Similar improvements can be expected in
state-of-the-art denoisers [4] by optimizing them for the SSIM
index instead of a least squared error metric. A flavor of the
SSIM index defined in the wavelet domain called the complex
wavelet SSIM (CWSSIM) [5] index can be used in wavelet

domain denoising. Furthermore, we believe that the use of
this metric is not limited to denoising applications, and can
be used in other important applications such as quantizer de-
sign, and the design of joint source-channel coding systems.

7. REFERENCES

[1] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Si-
moncelli, “Image quality assessment: From error visibility to
structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, Apr. 2004.

[2] Hamid R. Sheikh, Alan C. Bovik, and Gustavo de Veciana, “An
information fidelity criterion for image quality assessment using
natural scene statistics,”IEEE Transactions on Image Process-
ing, vol. 14, pp. 2117–2128, Dec. 2005.

[3] Sumohana S. Channappayya, “Subjective evaluation of images
denoised using SSIM-optimal linear estimators and LLSE esti-
mators,” http://www.ece.utexas.edu/˜sumohana/ssim.

[4] Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P.
Simoncelli, “Image denoising using scale mixtures of gaussians
in the wavelet domain,”IEEE Transactions on Image Process-
ing, vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[5] Zhou Wang and Eero P. Simoncelli, “Translation insensitive
image similarity in complex wavelet domain,” inIEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
2005, vol. 2, pp. 573–576.


