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Abstract We present a linear iteration algorithm to implement a second-order energy stable
numerical scheme for a model of epitaxial thin film growth without slope selection. The PDE,
which is a nonlinear, fourth-order parabolic equation, is the L2 gradient flow of the energy
∫
�

(
− 1

2 ln
(
1 + |∇φ|2) + ε2

2 |�φ(x)|2
)

dx. The energy stability is preserved by a careful

choice of the second-order temporal approximation for the nonlinear term, as reported in
recent work (Shen et al. in SIAM J Numer Anal 50:105–125, 2012). The resulting scheme
is highly nonlinear, and its implementation is non-trivial. In this paper, we propose a linear
iteration algorithm to solve the resulting nonlinear system. To accomplish this we introduce
an O(s2) (with s the time step size) artificial diffusion term, a Douglas-Dupont-type regular-
ization, that leads to a contraction mapping property. As a result, the highly nonlinear system
can be decomposed as an iteration of purely linear solvers, which can be very efficiently
implemented with the help of FFT in a collocation Fourier spectral setting. We present a care-
ful analysis showing convergence for the numerical scheme in a discrete L∞(0, T ; H1) ∩
L2(0, T ; H3) norm. Some numerical simulation results are presented to demonstrate the
efficiency of the linear iteration solver and the convergence of the scheme as a whole.

Keywords Epitaxial thin film growth · Slope selection · Energy stability · Linear iteration ·
Contraction mapping · Fourier collocation spectral

W. Chen
School of Mathematical Sciences, Fudan University, Shanghai 200433, China

C. Wang (B)
Department of Mathematics, University of Massachusetts Dartmouth, North Dartmouth,
MA 02747-2300, USA
e-mail: cwang1@umassd.edu

X. Wang
Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, USA

S. M. Wise
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA

123



J Sci Comput (2014) 59:574–601 575

1 Introduction

In this article we consider an efficient numerical implementation of a second order accurate
and energy stable scheme for an epitaxial thin film growth model. (See the review [4] for
the recent history of such models of thin film growth.) The equation is the gradient flow
associated with the following energy functional

E(φ):=
∫

�

(

−1

2
ln

(
1 + |∇φ|2) + ε2

2
|�φ|2

)

dx, (1)

where � = [0, Lx ] × [0, L y], φ : � → R is a periodic height function, and ε is a constant.
We note that the first term, which is clearly non-quadratic, represents the Ehrlich–Schwoebel
effect, according to which migrating adatoms must overcome a higher energy barrier to
stick to a step from an upper rather than from a lower terrace [3,11,12,18]. This results
in an uphill atom current in the dynamics and the steepening of mounds in the film. The
second term, which is quadratic, but of higher-order, represents the isotropic surface diffusion
effect [12,14]. For the Ehrlich–Schwoebel term we will use the notation

Ec,1(φ) =
∫

�

Fc,1(∇φ) dx, Fc,1(y) = −1

2
ln

(
1 + |y|2) , (2)

where y ∈ R
2 and |y| =

√
y2

1 + y2
2 . Hence, E(φ) = Ec,1(φ)+ ε2

2 ‖�φ‖2, where ‖·‖ denotes

the L2 norm. See, for example, [8]. Note that Fc,1 : R
2 → R is bounded above by 0 and

Fc,1 → −∞ as |y| → ∞. Since Fc,1 has no relative minima, there are no energetically
favored values for |∇φ|. This implies that there will be no mechanism in any energy-gradient
dynamics model that could select a preferred slope of the mounds. See the relevant discussions
in [9,10,12,13,22].

The chemical potential is defined to be the variational derivative of the energy (1), i.e.,

μ:=δφE = ∇ ·
( ∇φ

1 + |∇φ|2
)

+ ε2�2φ, (3)

assuming such boundary conditions as make the boundary integral vanish. Herein we consider
the L2 gradient flow:

∂tφ = −μ = −∇ ·
( ∇φ

1 + |∇φ|2
)

− ε2�2φ, (4)

where the boundary conditions for the height function φ are taken to be�-periodic. We refer
to (4) as the no-slope-selection equation, following most other references. Equation (4) may
be rewritten in the form

∂tφ = ∇ ·
( |∇φ|2

1 + |∇φ|2 ∇φ
)

−�φ − ε2�2φ. (5)

In the small-slope regime, where |∇φ|2 � 1, (5) may be replaced by

∂tφ = ∇ · (|∇φ|2∇φ) −�φ − ε2�2φ, (6)

which we refer to as the slope-selection equation [9,10,12,14]. Solutions to Eq. (6), unlike
those of Eq. (4), exhibit pyramidal structures, where the faces of the pyramids have slopes
|∇φ| ≈ 1. Solutions to the no-slope-selection equation (4), on the other hand, exhibit mound-
like structures, the slopes of which (on an infinite domain) may grow unbounded [12,22].
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Solutions of (6) and (4) have up-down symmetry in the sense that there is no way to dis-
tinguish a hill from a valley. This can be altered by adding adsorption/desorption or other
dynamics. Both the slope selection (6) and the no-slope selection (4) models are shown to
be well posed in [12].

Numerical simulations of the model (4) with high order accuracy and energy stability have
attracted a great deal of attention in recent years. In the paper of Li and Liu [12], a classical
second order accurate semi-implicit numerical scheme (implicit for the linear term, explicit
for the nonlinear term) is applied. The numerical results showed reasonable stability, though
the theoretical justification for such a scheme may not be easily available. Besides our own
work, there have been other efforts to devise and analyze schemes for the slope selection (6)
and no-slope selection (4) equations. Numerical schemes and analyses for the slope selection
equation (6) can be found in [2,16,17,23]. Recent numerical methods and analyses for the
model without slope selection (4) can be found in [2,15].

In [22], the authors studied an unconditionally energy stable scheme. The derivation of the
scheme is based on the idea of a convex splitting of the energy (1) into a purely convex part and
a purely concave part, motivated by Eyre’s earlier work [5]. But there are two shortcomings
of the scheme in [22]: it is only first order accurate (in time), and it is highly nonlinear, due
to the implicit treatment of the nonlinear term. In a more recent work [1], we introduced an
efficient linear, unconditionally stable, unconditionally solvable scheme for approximating
solutions to the no-slope-selection equation (4); also see the related discussion in [21]. The
key idea of this linear scheme is an alternate, and more advantageous, way of decomposing
the energy into convex and concave terms, so that the nonlinear part of the chemical potential
is placed in the concave part instead of the convex part. As a result, the implicit part of the
chemical potential is completely linear. And numerical efficiency is greatly improved (over
the scheme in [22]) due to the fact that the linear operator involved in the scheme, which is
positive elliptic with constant coefficients, can be efficiently inverted by FFT.

It should be noted that the linear scheme in [1] is only first-order accurate in time. Second-
order (in time) accurate and energy stable schemes are discussed and analyzed in detailed in
another recent paper [19], for both the slope selection (6) and no-slope-selection models (4).
These second order schemes come in two varieties, those that inherit the variational structure
of the original continuous-in-time gradient flow or those that do not. But in either case, the
unconditional energy stability and unique nonlinear solvability are established in detail. The
related work of second order convexity splitting for gradient system can be found in [7].

Meanwhile, these second order schemes are highly nonlinear, and their numerical imple-
mentations are highly non-trivial. In [19], we performed a second order accurate numerical
simulation of the slope-selection model (6), using the approach without preserving the vari-
ational structure. For the slope-selection model, the nonlinear term is still in the polynomial
format so that a nonlinear conjugate gradient solver can be efficiently applied. However, for
the no-slope-selection model (4), the numerical difficulty associated with the high degree of
nonlinearity is much more prominent, due to the complicated terms appearing in the fractional
quotients, either with or without the preservation of the variational structures.

As a result, the numerical implementation of the second order accurate and unconditionally
energy stable scheme for the no-slope-selection model (4) has become a very challenging
problem. In this paper, we present an efficient linear iteration solver to implement it, with an
introduction of second order accurate O(s2) artificial diffusion term in the form of Douglas-
Dupont regularization. In turn, although the numerical scheme itself is highly nonlinear, we
treat the nonlinear term explicitly at each iteration stage. Moreover, by a careful nonlinear
analysis and using a subtle estimate of the functional bound for the nonlinear quotient term
in the no-slope-selection model, a contraction mapping property is theoretically justified if a
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parameter associated with the artificial diffusion coefficient is greater than a given constant
5
4 . In other words, the highly nonlinear numerical scheme can be very efficiently solved
by such a linear iteration algorithm, and a geometric convergence rate is assured for this
linear iteration under the given constraint. Similar to the linear splitting scheme reported
in [1], the linear operator involved in the scheme, denoted L : H̊2

per → H̊−2
per , is positive

elliptic with constant coefficients, and it can be efficiently inverted at the discrete level by
FFT or other existing fast linear solvers. Here we use the notations H̊2

per :=H2
per ∩ L2

0 and

H̊−2
per :=

{
v ∈

(
H2

per

)∗∣∣
∣〈v, 1〉 = 0

}
.

In addition to the unconditional energy stability and unique solvability of this second order
scheme, its convergence analysis is also non-trivial, due to the complicated nonlinear terms in
a quotient form. In this paper, we also provide a detailed convergence analysis and numerical
error estimate in H1 norm for this fully discrete scheme (with Fourier spectral differentiation
in space), with a fixed final time. The convergence analysis follows the standard procedure
of consistency and stability estimates. In the error estimate, the key part is the control for the
nonlinear error terms, in which the bound can be obtained with the help of the specific quotient
form in the no-slope-selection model. Subsequently, a careful application of summation by
parts in Fourier spectral space leads to the convergence of the numerical scheme in a discrete
L∞(0, T ; H1) ∩ L2(0, T ; H3) norm.

The rest of the manuscript is organized as follows. In Sect. 2 we present the numerical
scheme. First we recall a second order convex splitting scheme for the no-slope-selection
model (4) with unconditional energy stability and unique solvability, as reported in [19].
Then we propose an O(s2) artificial diffusion term in the form of a Douglas-Dupont-type
regularization, and a linear iteration algorithm to implement it. We show that the unconditional
energy stability is preserved for such an addition of artificial diffusion, and the corresponding
linear iteration algorithm is assured to be a contraction mapping under a condition for the
artificial diffusion constant. In Sect. 3 we present the fully discrete scheme, where Fourier
spectral differentiation is utilized in space. The convergence analysis is provided in Sect. 4.
In Sect. 5 we present some numerical simulation results. We offer our concluding remarks
in Sect. 6.

2 The Numerical Scheme

2.1 A Second-Order Convex Splitting Scheme

Second order accurate convex splitting schemes for the epitaxial thin film growth models, with
and without slope selection[see (6) and (4)], were studied in detail in a recent article [19].
Two variants were presented: those schemes that preserve the variational structure of the
gradient flow, and those that do not. For simplicity, we recall the one without variational
structure. The extension of our method to the scheme with the variational structure can be
carried out in a similar manner.

First, consider the energy decomposition given by E(φ) = Ec,1 + Ec,2 − Ee, where

Ec,1 = −1

2

∫

�

ln
(
1 + |∇φ|2) dx, Ec,2 = 1

2

∫

�

{
A |∇φ|2 + (

ε2 + B
)
(�φ)2

}
dx, (7)

Ee = 1

2

∫

�

{
A|∇φ|2 + B(�φ)2

}
dx, (8)
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where A and B are artificial splitting parameters. It is straight forward to show that the
contractive part, Ec:=Ec,1 + Ec,2 is convex, provided A ≥ 1 and B ≥ 0. The expansive
part, Ee, is convex for any A, B ≥ 0. Our second-order scheme will respect this convex
splitting, and in doing so we can guarantee unconditional stability and unconditional uni-
solvency of the scheme, as we show below.

To describe the scheme, we first focus on the treatment of the logarithmic, non-quadratic
part of the energy density. For the logarithmic term, set L(x, y) = ln

(
1 + x2 + y2

)
. Suppose

that ψ,φ ∈ R
2 are given, with ψ = (ψx , ψy)

T and φ = (φx , φy)
T . Define

Lx (ψ,φ) =

⎧
⎪⎪⎨

⎪⎪⎩

−1

4

L(ψx , ψy)− L(φx , ψy)

ψx − φx
− 1

4

L(ψx , φy)− L(φx , φy)

ψx − φx
, if ψx �= φx ,

−1

2

ψx

1 + (ψx )2 + (ψy)2
− 1

2

ψx

1 + (ψx )2 + (φy)2
, if ψx = φx ,

(9)

Ly (ψ,φ) =

⎧
⎪⎪⎨

⎪⎪⎩

−1

4

L(ψx , ψy)− L(ψx , φy)

ψy − φy
− 1

4

L(φx , ψy)− L(φx , φy)

ψy − φy
, if ψy �= φy,

−1

2

ψy

1 + (ψx )2 + (ψy)2
− 1

2

ψy

1 + (φx )2 + (ψy)2
, if ψy = φy .

(10)

Now, define

μ
n+1/2
c,1 :=μc,1(φ

n+1, φn):= − ∂x Lx
(∇φn+1,∇φn) − ∂yLy

(∇φn+1,∇φn) . (11)

The second order convex splitting scheme for the no slope selection model (4) is given by

φn+1−φn

s
= −μn+1/2

c,1 − ε
2

2
�2 (

φn+1+φn)+ A

2
�

(
φn+1 + φn) − A�

(
3

2
φn − 1

2
φn−1

)

− B

2
�2 (

φn+1 + φn) + B�2
(

3

2
φn − 1

2
φn−1

)

, (12)

in which s is the time step size. In respecting the convex splitting introduced above, we
have treated the contribution to the chemical potential from the contractive part, Ec, using
an implicit Crank–Nicholson/secant approximation, and the contribution from the expansive
part, Ee, using an explicit Adams–Bashforth approximation.

Employing the notation

�̃sφ
n :=φn+1 − 2φn + φn−1, (13)

the scheme can be written as

φn+1 − φn

s
= −μn+1/2

c,1 − ε2

2
�2 (

φn+1 + φn) + A

2
�

(
�̃sφ

n) − B

2
�2 (

�̃sφ
n) . (14)

Theorem 2.1 For any A ≥ 0 and any B ≥ 0 the scheme (14) is second order, i.e., its local
truncation error is O

(
s2

)
, and is unconditionally strongly energy stable with respect to the

discrete energy

E(φn, φn−1):=E(φn)+ A

4

∥
∥∇ (

φn − φn−1)∥∥2
L2 + B

4

∥
∥�

(
φn − φn−1)∥∥2

L2 , (15)

i.e., E(φn+1, φn) ≤ E(φn, φn−1), for any n ≥ 1, and any s > 0. Furthermore, if A ≥ 1 the
scheme is unconditionally uniquely solvable.
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Proof The assertion regarding the order of the method can be verified by Taylor expansions,
assuming sufficient regularity. We omit the details for brevity. For energy stability, we use
the identities

−
(
φn+1 − φn, μ

n+1/2
c,1

)
= −Ec,1(φ

n+1)+ Ec,1(φ
n), (16)

which follows from the careful construction of μn+1/2
c,1 [19],

A

2

(
φn+1 − φn,�

(
�̃sφ

n)) = − A

4

∥
∥∇ (

φn+1 − φn)∥∥2
L2 + A

4

∥
∥∇ (

φn − φn−1)∥∥2
L2

− A

4

∥
∥∇ (

�̃sφ
n)∥∥2

L2 , (17)

− B

2

(
φn+1 − φn,�2 (

�̃sφ
n)) = − B

4

∥
∥∇ (

φn+1 − φn)∥∥2
L2 + B

4

∥
∥�

(
φn − φn−1)∥∥2

L2

− B

4

∥
∥�

(
�̃sφ

n)∥∥2
L2 , (18)

and

− ε2

2

(
φn+1 − φn,�2 (

φn+1 + φn)) = −ε
2

2

∥
∥�φn+1

∥
∥2

L2 + ε2

2

∥
∥�φn

∥
∥2

L2 . (19)

Testing the scheme (14) with φn+1 − φn , using the identities above, and rearranging terms,
we have

E (
φn+1, φn) + A

4

∥
∥∇ (

�̃sφ
n)∥∥2

L2 + B

4

∥
∥�

(
�̃sφ

n)∥∥2
L2

+s

∥
∥
∥
∥
φn+1 − φn

s

∥
∥
∥
∥

2

L2
= E (

φn, φn−1) , (20)

which proves the unconditional energy stability. The assertion regarding the unconditional
solvability follows from similar arguments in [19], and we omit the details here. ��
2.2 A Linear Iteration Scheme

The unconditional energy stability and unique solvability of the second order scheme (14)
having been established, it remains to efficiently “invert” the method at each time step.
However, the numerical implementation of the scheme is clearly a challenge, due to its
highly nonlinear nature. In this section, we propose a linear iteration method to solve the
scheme, and prove that the iteration in question always converges to the unique solution of
(14) if the splitting parameter A is chosen judiciously.

From here let us fix the value of one of the splitting parameters, setting B = ε2

2 . The
scheme (14) then becomes

φn+1 − φn

s
= −μn+1/2

c,1 + A

2
�

(
�̃sφ

n) − ε2�2
(

3

4
φn+1 + 1

4
φn−1

)

. (21)

The splitting parameter A will be chosen later; for now we only assume that A ≥ 1, so that
the scheme enjoys unconditional solvability. The purpose for taking B > 0 is to place heavier
weight on the highest order linear term at the time step tn+1. This has the effect to simplify
the convergence analysis that will follow later. Our choice of B fixes the discrete energy for
the scheme to be

E(φn, φn−1):=E(φn)+ A

4

∥
∥∇ (

φn − φn−1)∥∥2
L2 + ε2

8

∥
∥�

(
φn − φn−1)∥∥2

L2 . (22)
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Now, the scheme (21) can be rewritten as

L (
φn+1) :=

(
1

s
I − A

2
�+ 3ε2

4
�2

)

φn+1 = −μc,1(φ
n+1, φn)+ F

(
φn, φn−1) , (23)

where

F
(
φn, φn−1) :=1

s
φn + A

2
�

(−2φn + φn−1) − ε2

4
�2φn−1. (24)

Recall, μc,1(φ
n+1, φn) = μ

n+1/2
c,1 , as defined in (11). L is a positive, linear, constant coeffi-

cient differential operator.
Now, we propose the following linear iteration method to solve the scheme (23): given

φn, φn−1, and ψk smooth enough and periodic, find the unique periodic solution, ψk+1, that
satisfies

L
(
ψk+1

)
= −μc,1(ψ

k, φn)+ F
(
φn, φn−1) . (25)

Here k stands for the iteration index, not the time step index. The method is initialized via
ψ0:=φn . Clearly, ψ = φn+1 is the unique fixed point solution:

L(ψ) = −μc,1(ψ, φ
n)+ F

(
φn, φn−1) . (26)

We now prove that the linear fixed point iteration (25) must converge, and therefore to the
unique fixed point, provided A is sufficiently large.

Theorem 2.2 The linear iteration (25) is a contraction mapping provided that α:=
√

3ε√
s

+
A
2 >

5
4 .

Two preliminary estimates are needed for proving the theorem and are given in the next
two lemmas.

Lemma 2.3 Let a, b ∈ R be arbitrary but fixed. Define h1 : R → R via

h1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

L(x, a)− L(b, a)

x − b
, if x �= b,

2b

1 + b2 + a2 , if x = b.

(27)

Then h1 ∈ C1(R) and
∣
∣h′

1(x)
∣
∣ ≤ 2, for all x ∈ R.

Proof Define f (x):=L(x, a) = ln(1 + x2 + a2) for any x ∈ R. It is clear that h1(x) =
f (x)− f (b)

x−b for x �= b and h1 is at least twice continuously differentiable for all such x . A
direct calculation yields

h′
1(x) = f ′(x) · (x − b)− ( f (x)− f (b))

(x − b)2
= f ′(x)− f (x)− f (b)

x−b

x − b
. (28)

Without loss of generality, suppose x < b. An application of the mean value theorem gives

f (x)− f (b)

x − b
= f ′(ξ), (29)

for some ξ ∈ (x, b). We obtain

h′
1(x) = f ′(x)− f ′(ξ)

x − b
= f ′′(η)(x − ξ)

x − b
, (30)
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for some η ∈ (x, ξ), where we have invoked the mean value theorem a second time in the
last step. We clearly have |x − ξ | ≤ |x − b|, and, as a result, we arrive at

∣
∣h′

1(x)
∣
∣ ≤ ∣

∣ f ′′(η)
∣
∣ ≤ max

η∈(x,b)
∣
∣ f ′′(η)

∣
∣ . (31)

Meanwhile, we have

f ′(x) = 2x

1 + x2 + a2 , f ′′(x) = 2(1 − x2 + a2)

1 + x2 + a2 , and max
x∈R

∣
∣ f ′′(x)

∣
∣ ≤ 2. (32)

The result then follows from (31).
Now, a detailed Taylor expansion for f shows that

f (x) = ln(1 + x2 + a2) = f (b)+ 2b

1 + b2 + a2 · (x − b)+ 1 − ζ 2 + a2

(1 + ζ 2 + a2)2
· (x − b)2,

(33)

for some ζ = ζ(x) between x and b. This in turn yields

h1(x) = f (x)− f (b)

x − b
= 2b

1 + b2 + a2 + 1 − ζ 2 + a2

(1 + ζ 2 + a2)2
· (x − b), (34)

so that

h1(x)− h1(b)

x − b
= 1 − ζ 2 + a2

(1 + ζ 2 + a2)2
. (35)

Since ζ → b as x → b, we have

h′
1(b) = 1 − b2 + a2

(1 + b2 + a2)2
. (36)

From here it is easy to show that
∣
∣h′

1(b)
∣
∣ ≤ 1, and the result is proven. ��

Lemma 2.4 Let a, b ∈ R be arbitrary but fixed. Define h2 : R → R via

h2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

L(a, x)− L(b, x)

a − b
, if a �= b,

2a

1 + a2 + x2 , if a = b.
(37)

Then h2 ∈ C1(R) and
∣
∣h′

2(x)
∣
∣ ≤ 1, for all x ∈ R.

Proof If a �= b, a direct calculation shows that

h′
2(x) = −2x(a + b)

(1 + a2 + x2)(1 + b2 + x2)
. (38)

From this, it is straightforward to show that
∣
∣h′

2(x)
∣
∣ ≤ 1 for all x, a, b ∈ R. On the other

hand, if a = b, we have

h′
2(x) = −4xa

(1 + a2 + x2)2
. (39)

It easily follows that
∣
∣h′

2(x)
∣
∣ ≤ 1 for all x, a ∈ R, and the result is proven. ��

We now proceed to prove the theorem.
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Proof of Theorem 2.2 Letψ ∈ H4
per(�) be the unique solution to (26) and define the iteration

error at each stage via

ek :=ψk − ψ, (40)

where ψk ∈ H4
per(�) is the kth iterate generated by the linear iteration scheme (25). Sub-

tracting (26) from (25) yields

L
(

ek+1
)

= ∇ ·
(

Lx
(∇ψk,∇φn

) − Lx (∇ψ,∇φn)

Ly
(∇ψk,∇φn

) − Ly (∇ψ,∇φn)

)

. (41)

Taking the inner product with ek+1 leads to

(
L

(
ek+1

)
, ek+1

)
= 1

s

∥
∥
∥ek+1

∥
∥
∥

2 + A

2

∥
∥
∥∇ek+1

∥
∥
∥

2 + 3ε2

4

∥
∥
∥�ek+1

∥
∥
∥

2

= −
(
Lx

(
∇ψk,∇φn

)
− Lx

(∇ψ,∇φn) , ∂x ek+1
)

−
(
Ly

(
∇ψk,∇φn

)
− Ly

(∇ψ,∇φn) , ∂yek+1
)
. (42)

Now, define

N1:=L
(
∂xψ

k, ∂yψ
k
) − L

(
∂xφ

n, ∂yψ
k
)

∂xψk − ∂xφn
− L

(
∂xψ, ∂yψ

) − L
(
∂xφ

n, ∂yψ
)

∂xψ − ∂xφn
,

N2:=L
(
∂xψ

k, ∂yφ
n
) − L

(
∂xφ

n, ∂yφ
n
)

∂xψk − ∂xφn
− L

(
∂xψ, ∂yφ

n
) − L

(
∂xφ

n, ∂yφ
n
)

∂xψ − ∂xφn
. (43)

Then, with Lx as in (9), we have

Lx

(
∇ψk,∇φn

)
− Lx

(∇ψ,∇φn) = −1

4
(N1 + N2) . (44)

The second nonlinear error term N2 can be represented as

N2 = h1

(
∂xψ

k
)

− h1 (∂xψ) , with a = ∂yφ
n, b = ∂xφ

n . (45)

An application of the mean value theorem and Lemma 2.3 yields point-wise estimate

|N2(x)| ≤ ∣
∣h′

1(ξ(x))
∣
∣ ·

∣
∣
∣∂xψ

k(x)− ∂xψ(x)
∣
∣
∣ ≤ 2

∣
∣
∣∂x ek(x)

∣
∣
∣ , ∀x ∈ �, (46)

where ξ(x) is between ∂xψ
k
x (x) and ∂xψ(x).

Note that for the first nonlinear error term N1, neither Lemma 2.3 nor Lemma 2.4 can be
applied directly. Instead, we perform the following, further decomposition: N1 = N3 + N4,
with

N3:=L
(
∂xψ

k, ∂yψ
) − L

(
∂xφ

n, ∂yψ
)

∂xψk − ∂xφn
− L

(
∂xψ, ∂yψ

) − L
(
∂xφ

n, ∂yψ
)

∂xψ − ∂xφn
,

N4:=L
(
∂xψ

k, ∂yψ
k
) − L

(
∂xφ

n, ∂yψ
k
)

∂xψk − ∂xφn
− L

(
∂xψ

k, ∂yψ
) − L

(
∂xφ

n, ∂yψ
)

∂xψk − ∂xφn
. (47)

Observe that N3 and N4 can be represented as

N3 = h1

(
∂xψ

k
)

− h1 (∂xψ) , with a = ∂yψ, b = ∂xφ
n, (48)

N4 = h2

(
∂yψ

k
)

− h2
(
∂yψ

)
, with a = ∂xψ

k, b = ∂xφ
n . (49)
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Now, applications of the mean value theorem and Lemmas 2.3 and 2.4 result in the point-wise
estimates

|N3(x)| ≤ ∣
∣h′

1 (ξ1(x))
∣
∣ ·

∣
∣
∣∂xψ

k(x)− ∂xψ(x)
∣
∣
∣ ≤ 2

∣
∣
∣∂x ek(x)

∣
∣
∣ , ∀x ∈ �, (50)

|N4(x)| ≤ ∣
∣h′

2 (ξ2(x))
∣
∣ ·

∣
∣
∣∂yψ

k(x)− ∂yψ(x)
∣
∣
∣ ≤

∣
∣
∣∂yek(x)

∣
∣
∣ , ∀x ∈ �. (51)

Substitution of (46), (50), and (51) into (44) yields the point-wise estimate
∣
∣
∣Lx

(
∇ψk,∇φn

)
− Lx

(∇ψ,∇φn)
∣
∣
∣ ≤

∣
∣
∣∂x ek

∣
∣
∣ + 1

4

∣
∣
∣∂yek

∣
∣
∣ . (52)

With an application of Cauchy’s inequality, we arrive at

−
(
Lx

(
∇ψk,∇φn

)
− Lx

(∇ψ,∇φn) , ∂x ek+1
)

≤
(∣
∣
∣∂x ek

∣
∣
∣ ,

∣
∣
∣∂x ek+1

∣
∣
∣
)

+ 1

4

(∣
∣
∣∂yek

∣
∣
∣ ,

∣
∣
∣∂x ek+1

∣
∣
∣
)

≤ 1

2

∥
∥
∥∂x ek

∥
∥
∥

2 + 1

8

∥
∥
∥∂yek

∥
∥
∥

2 + 5

8

∥
∥
∥∂x ek+1

∥
∥
∥

2
. (53)

The second component of the nonlinear error term associated with Ly can be analyzed in
exactly the same fashion. Specifically, one obtains the point-wise estimate

∣
∣
∣Ly

(
∇ψk,∇φn

)
− Ly

(∇ψ,∇φn)
∣
∣
∣ ≤ 1

4

∣
∣
∣∂x ek

∣
∣
∣ +

∣
∣
∣∂yek

∣
∣
∣ , (54)

which, in turn, yields

−
(
Ly

(
∇ψk,∇φn

)
−Ly

(∇ψ,∇φn) , ∂yek+1
)

≤ 1

8

∥
∥
∥∂x ek

∥
∥
∥

2+ 1

2

∥
∥
∥∂yek

∥
∥
∥

2+ 5

8

∥
∥
∥∂yek+1

∥
∥
∥

2
.

(55)

Finally, a substitution of (53), (55) into (42) yields

1

s

∥
∥
∥ek+1

∥
∥
∥

2+
(

A

2
− 5

8

)∥
∥
∥∇ek+1

∥
∥
∥

2 + 3

4
ε2

∥
∥
∥�ek+1

∥
∥
∥

2 ≤ 5

8

∥
∥
∥∇ek

∥
∥
∥

2
. (56)

On the other hand, an application of Cauchy inequality shows that

1

s
‖ f ‖2 + 3

4
ε2 ‖� f ‖2 ≥ 2

√
1

s
· 3

4
ε2 ‖ f ‖ · ‖� f ‖ =

√
3ε√
s

‖ f ‖ · ‖� f ‖ ≥
√

3ε√
s

‖∇ f ‖2 ,(57)

for any f ∈ H2
per(�). The last step comes from a simple estimate based on integration by

parts: for all f ∈ H2
per(�),

‖∇ f ‖2 = − ( f,� f ) ≤ ‖ f ‖ · ‖� f ‖ . (58)

Now, going back to (56) and using (57), we get
(√

3ε√
s

+ A

2
− 5

8

)∥
∥
∥∇ek+1

∥
∥
∥

2 ≤ 5

8

∥
∥
∥∇ek

∥
∥
∥

2
. (59)

As a result, the contraction mapping property is assured under the following condition

α:=
√

3ε√
s

+ A

2
>

5

4
. (60)

The result is proven. ��
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Remark 2.5 In Theorem 2.2, the reason for establishing the contraction mapping property
with respect to ‖∇e‖ rather than ‖e‖ is because of the gradient structure of this thin film
model. However, using (56), (60), which implies A

2 ≥ 5
8 ; and elliptic regularity we have

C0

∥
∥
∥ek+1

∥
∥
∥

2

H2
≤ 1

s

∥
∥
∥ek+1

∥
∥
∥

2 + 3

4
ε2

∥
∥
∥�ek+1

∥
∥
∥

2

<
1

s

∥
∥
∥ek+1

∥
∥
∥

2 +
(

A

2
− 5

8

)∥
∥
∥∇ek+1

∥
∥
∥

2 + 3

4
ε2

∥
∥
∥�ek+1

∥
∥
∥

2

≤ 5

8

∥
∥
∥∇ek

∥
∥
∥

2 ≤ 5

8
βk

∥
∥∇e0

∥
∥2
, (61)

for some C0 = C0(ε, s) > 0 and some 0 < β < 1. This, together with the Sobolev
embedding H2 ↪→ L∞, implies a geometric convergence in L∞.

3 A Fully Discrete Scheme

3.1 A Collocation Fourier Spectral Discretization of Space

So far, we have ignored the discretization of space, which is required for a fully practical
method and implementation. Of course, Galerkin (spectral or finite element) methods will
automatically inherit the properties described above. One can also use finite difference or
collocation methods, the idea being to mimic the variational structure using summation-by-
parts formulae and carefully constructed finite difference operators. In [19] we used a finite
difference method and in [1] we used a spectral collocation method in precisely this way.

Motivated by the presence of the constant coefficient linear operator L appearing in the
linear iteration scheme (25), together with the assumption of periodic boundary conditions, a
natural choice here is to use collocation Fourier spectral differentiation in spatial discretiza-
tion. Assume that Lx = Nx · hx and L y = Ny · hy , for some mesh sizes hx , hy > 0 and
some positive integers Nx and Ny . For simplicity of presentation, we use a square domain,
i.e., Lx = L y = L , and a uniform mesh: hx = hy = h, Nx = Ny = N . We will always
assume that N is even. All the variables are evaluated/defined at the regular numerical grid
vertices (pi , p j ), 0 ≤ i, j ≤ N , where pi = i · h.

For a periodic grid function f : {0, . . . , N − 1} × {0, . . . , N − 1} → R, its discrete
Fourier expansion is given by

fi, j =
N/2∑

k,l=−N/2+1

f̂k,le
2π i
L (k pi +lp j ). (62)

The f̂k,l are the collocation Fourier coefficients and are different from the regular Fourier
coefficients, in general, due to aliasing error. However, the two are equivalent if the continuous
“version” of f is in PN , the span of the trigonometric polynomials of degree not greater than
N/2. See, for example [20].

The collocation Fourier spectral approximations to the first and second order partial deriv-
atives (in the x direction) of f are given by

(DN ,x f
)

i, j =
N/2∑

k,l=−N/2+1

(
2kπ i

L

)

f̂k,le
2π i(k pi +lp j )/L , (63)
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(D2
N ,x f

)
i, j

=
N/2∑

k,l=−N/2+1

(−4π2k2

L2

)

f̂k,le
2π i(k pi +lp j )/L . (64)

The corresponding collocation spectral differentiations in the y direction can be defined in
the same way. In turn, the discrete Laplacian, gradient and divergence operators become

�N f = D2
N ,x f + D2

N ,y f , ∇N f =
(DN ,x f

DN ,y f

)

, ∇N ·
(

fx

fy

)

= DN ,x fx + DN ,y fy ,

(65)

all at the point-wise level.
The fully discrete scheme is formulated as follows: given periodic grid functions φn−1

and φn , find the periodic grid function φn+1 that satisfies

φn+1 − φn

s
= ∇N ·

(
Lx

(∇Nφ
n+1,∇Nφ

n
)

Ly
(∇Nφ

n+1,∇Nφ
n
)
)

+ A

2
�N

(
�̃sφ

n) − ε2�2
N

(
3

4
φn+1 + 1

4
φn−1

)

. (66)

with the logarithmic flux terms Lx ,Ly given in (9) and (10). The corresponding linear algo-
rithm becomes

LN

(
ψk+1

)
:=

(
1

s
− A

2
�N + 3

4
ε2�2

N

)

ψk+1

= ∇N ·
(

Lx
(∇Nψ

k,∇Nφ
n
)

Ly
(∇Nψ

k,∇Nφ
n
)
)

− FN
(
φn, φn−1) , (67)

with the forcing term FN
(
φn, φn−1

) := 1
s φ

n + A
2�N

(−2φn + φn−1
) − 1

4ε
2�2

Nφ
n−1. The

spatially discrete fixed point, ψ , satisfies

LN (ψ) = ∇N ·
(

Lx (∇Nψ,∇Nφ
n)

Ly (∇Nψ,∇Nφ
n)

)

− FN
(
φn, φn−1) . (68)

The unique solvability of the fully discrete linear iteration scheme (67) (at each iteration
stage, k) is clear. For each discrete eigenfunction e2π i(k pi +lp j )/L , the corresponding eigen-
value for the operator LN is precisely

λk,l:=1

s
− A

2
(λk + λl)+ 3

4
ε2 (λk + λl)

2 > 0, (69)

with λk = − 4π2k2

L2 , λl = − 4π2 l2

L2 . This implies the unique unconditional solvability of the
fully discrete algorithm (67). Naturally, the FFT can be very efficiently utilized to invert LN

and, therefore, to obtain numerical solutions.

3.2 Fully Discrete Energy Stability

Similar to an earlier work [1], we define a fully discrete analogue of the energy (1) and
establish a discrete version of the global in time energy stability property, regardless of the
time step size s and independent of the spatial resolution N . With any periodic grid functions
f and g (over the 2D numerical grid described above), the discrete approximations to the L2
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norm and inner product are given as

‖ f ‖2 = √〈 f, f 〉 , with 〈 f, g〉 = h2
N−1∑

i=0

N−1∑

j=0

fi, j gi, j . (70)

A careful calculation shows that the following summation by parts formulas are valid:
〈

f,∇N ·
(

g1

g2

)〉

= −
〈

∇N f,

(
g1

g2

)〉

, (71)

〈 f,�N g〉 = − 〈∇N f,∇N g〉 , 〈
f,�2

N g
〉 = 〈�N f,�N g〉 ; (72)

see the related derivations in [1]. The fully discrete energy is defined as

EN (φ)= Ec,1,N (φ)+ ε
2

2
‖�Nφ‖2

2 , Ec,1,N (φ)=h2
N−1∑

i=0

N−1∑

j=0

(

−1

2
ln

(
1 + |∇Nφ|2)i, j

)

.

(73)

The proof of the following result is similar to the spatially continuous case and is, therefore,
skipped to keep the presentation short.

Theorem 3.1 For any A ≥ 0 the scheme (66) is second order in time and spectrally accurate
in space, i.e., its local truncation error is O (hm)+ O

(
s2

)
, and is unconditionally strongly

energy stable with respect to the discrete energy

EN (φ
n, φn−1):=EN (φ

n)+ A

4

∥
∥∇N

(
φn − φn−1)∥∥2

2 + B

4

∥
∥�N

(
φn − φn−1)∥∥2

2 , (74)

i.e., EN (φ
n+1, φn) ≤ EN (φ

n, φn−1), for any n ≥ 1, and any s > 0. Furthermore, if A ≥ 1
the fully discrete scheme is unconditionally uniquely solvable.

In addition to the unconditional energy stability, the following proposition states a global
in time bound for ‖�φ‖2

2 of the numerical solution.

Lemma 3.2 Let � ∈ H4
per(�). Suppose that φ0

i, j :=�(pi , p j ) and φ−1 ≡ φ0. Then, for
solutions of the fully discrete second order scheme (66), we have the global in time bounds

EN (φ
n) ≤ C0,

∥
∥�Nφ

n
∥
∥2

2 ≤ C1, (75)

for any n ≥ 1, and any h and s, where C0,C1 > 0 depend upon ε, L and the data, but are
independent of the step sizes h and s and of the final time T .

Proof First, by the energy stability above and the definition of EN ,

EN (φ
n) ≤ EN (φ

n, φn−1) ≤ · · · ≤ EN (φ
0, φ−1) = EN (φ

0) ≤ Ch4 + E(�) ≤ C0, (76)

where a consistency argument for the collocation spectral approximation is applied in the
last steps. For the second part, we need the point-wise estimate (see [1,22])

F (y)=−1

2
ln

(
1+|y|2) ≥ −1

2

(
β |y|2−ln(β)+ β − 1

)
, ∀ 0 < β ≤ 1, ∀ y ∈ R

2,

(77)

and the following discrete elliptic regularity estimate in 2D: for all periodic grid functions φ,

‖�Nφ‖2
2 ≥ C2 ‖∇Nφ‖2

2 , C2 = 4π2

L2 . (78)
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Then, with the choice of β = ε2C2
2 , we obtain, for all periodic grid functions φ,

EN (φ) ≥ L2

2

(

ln

(
ε2C2

2

)

− ε2C2

2
+ 1

)

+ ε2

4
‖�Nφ‖2

2 . (79)

This, in turn, shows that

∥
∥�Nφ

n
∥
∥2

2 ≤ 4

ε2

(

EN (φ
n)+ L2

2

(

− ln

(
ε2C2

2

)

+ ε2C1

2
− 1

))

≤ 4

ε2

(

EN (φ
0)+ L2

2

(

− ln

(
ε2C2

2

)

+ ε2C2

2
− 1

))

≤ 4

ε2

(

C0 + L2

2

(

− ln

(
ε2C2

2

)

+ ε2C2

2
− 1

))

=:C1. (80)

��
Remark 3.3 It is clear that the numerical solution of the fully discrete second order scheme
(66) is mass-conserving at the discrete level, i.e., φn+1 = φn = φ0, where

f := 1

N 2

N−1∑

i, j=0

fi, j . (81)

Without loss of generality, we may assume that φ0 = 0 so that φn = 0, for n = 0, 1, 2, . . .,
since only the gradient of φ is of consequence. Under this assumption, a discrete elliptic
regularity can be applied so that we obtain a global in time H2 bound for the numerical
solution, at the discrete level:

∥
∥φn

N

∥
∥

H2 ≤ C
∥
∥�φn

N

∥
∥

L2 ≤ C
√

C1=:C3, (82)

where φn
N is the continuous version of the discrete numerical solution φn obtained by inter-

polating into the space PN . Note that C3 is also a global in time constant, only dependent
upon ε, L , and the initial data.

Remark 3.4 There are some alternate approaches to develop the energy stability for a second
order accurate numerical scheme for the no-slope-selection model (4), in a modified way.
For instance, in a very recent article [15], the authors found a certain PDE satisfied by the
nonlinear integrand appearing in the nonlinear energy (1), and proposed a second order
scheme to update such a nonlinear integrand. In turn, an alternate energy was defined and the
non-increasing property was proved for the scheme with respect to the alternate energy. While
the approach in [15] represents a clever way to achieve the desired numerical stability—since
it avoids the complicated form of the nonlinear energy in the numerical scheme—it appears
that such an alternate energy stability cannot assure an H2 stability of the variable φ at the
theoretical level. To the best of the authors’ knowledge, the schemes presented in [19] and the
linear iteration algorithm given by this paper are the only second order numerical schemes
in which a global in time H2 stability can be established for the height function φ.

3.3 Contraction for the Fully Discrete Linear Iteration Method

For the fully discrete linear iteration scheme (67), all of the derivations and estimates in the
proof of Theorem 2.2 can be extended to the spatially discrete case, with summation-by-parts
replacing integration-by-parts in the arguments. The proof of the following is skipped for
brevity of presentation.
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Theorem 3.5 The fully discrete linear iteration defined in (67) is a contraction mapping

provided that α:=
√

3ε√
s

+ A
2 >

5
4 .

4 Convergence Analysis for the Fully Discrete Scheme

We present a detailed convergence analysis for the fully discrete second order scheme (66) in
this section. To simplify the presentation, a preliminary estimate for the nonlinear error term
is given in the following lemma. For brevity, we state this preliminary result in the case with
space kept continuous. Its extension to the fully discrete error estimate is straightforward and
we will cite this lemma in later analysis.

Lemma 4.1 Let�n,�n+1, φn, φn+1 ∈ C1
per(�) be arbitrary, and define ek :=�k −φk, k =

n, n + 1. Then
∣
∣Lx

(∇�n+1,∇�n) − Lx
(∇φn+1,∇φn)∣∣ ≤ (∣∣∂x en+1

∣
∣ + ∣

∣∂x en
∣
∣)

+1

4

(∣∣∂yen+1
∣
∣ + ∣

∣∂yen
∣
∣) , (83)

∣
∣Ly

(∇�n+1,∇�n) − Ly
(∇φn+1,∇φn)∣∣ ≤ 1

4

(∣∣∂x en+1
∣
∣ + ∣

∣∂x en
∣
∣)

+ (∣∣∂yen+1
∣
∣ + ∣

∣∂yen
∣
∣) . (84)

Proof For the term Lx , we start from the following calculation:

Lx
(∇�n+1,∇�n) − Lx

(∇φn+1,∇φn)

= − 1

4

(
L

(
∂x�

n+1, ∂y�
n+1

) − L
(
∂x�

n, ∂y�
n+1

)

∂x�n+1 − ∂x�n
− L

(
∂xφ

n+1, ∂yφ
n+1

) − L
(
∂xφ

n, ∂yφ
n+1

)

∂xφn+1 − ∂xφn

)

− 1

4

(
L

(
∂x�

n+1, ∂y�
n
) − L

(
∂x�

n, ∂y�
n
)

∂x�n+1 − ∂x�n
− L

(
∂xφ

n+1, ∂yφ
n)− L(∂xφ

n, ∂yφ
n
)

∂xφn+1 − ∂xφn

)

. (85)

The first term appearing above can be decomposed as follows:

L(∂x�
n+1, ∂y�

n+1)− L(∂x�
n, ∂y�

n+1)

∂x�n+1 − ∂x�n
− L(∂xφ

n+1, ∂yφ
n+1)− L(∂xφ

n, ∂yφ
n+1)

∂xφn+1 − ∂xφn

= N5 + N6 + N7, (86)

where

N5:=L
(
∂x�

n+1, ∂y�
n+1

) − L
(
∂x�

n, ∂y�
n+1

)

∂x�n+1 − ∂x�n

−L
(
∂xφ

n+1, ∂y�
n+1

) − L
(
∂x�

n, ∂y�
n+1

)

∂xφn+1 − ∂x�n
, (87)

N6:=L
(
∂x�

n, ∂y�
n+1

) − L
(
∂xφ

n+1, ∂y�
n+1

)

∂x�n − ∂xφn+1

−L
(
∂xφ

n, ∂y�
n+1

) − L
(
∂xφ

n+1, ∂y�
n+1

)

∂xφn − ∂xφn+1 , (88)

N7:=L
(
∂xφ

n+1, ∂y�
n+1

) − L
(
∂xφ

n, ∂y�
n+1

)

∂xφn+1 − ∂xφn
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−L
(
∂xφ

n+1, ∂yφ
n+1

) − L
(
∂xφ

n, ∂yφ
n+1

)

∂xφn+1 − ∂xφn
. (89)

The following representations are clear:

N5 = h1
(
∂x�

n+1) − h1
(
∂xφ

n+1) , a = ∂y�
n+1, b = ∂x�

n, (90)

N6 = h1
(
∂x�

n) − h1
(
∂xφ

n) , a = ∂y�
n+1, b = ∂xφ

n+1, (91)

N7 = h2
(
∂y�

n+1) − h2
(
∂yφ

n+1) , a = ∂xφ
n+1, b = ∂xφ

n . (92)

Similar to (46), (50), (51), applications of the mean value theorem and Lemmas 2.3 and 2.4
result in the point-wise estimates

|N5(x)| ≤ ∣
∣h′

1(ξ1(x))
∣
∣ · ∣∣∂x�

n+1(x)− ∂xφ
n+1(x)

∣
∣ ≤ 2

∣
∣∂x en+1(x)

∣
∣ , ∀x ∈ �, (93)

|N6(x)| ≤ ∣
∣h′

1(ξ2(x))
∣
∣ · ∣∣∂x�

n(x)− ∂xφ
n(x)

∣
∣ ≤ 2

∣
∣∂x en(x)

∣
∣ , ∀x ∈ �, (94)

|N7(x)| ≤ ∣
∣h′

2(ξ3(x))
∣
∣ · ∣∣∂y�

n+1(x)− ∂y(x)φn+1
∣
∣ ≤ ∣

∣∂yen+1(x)
∣
∣ , ∀x ∈ �. (95)

Then we arrive at
∣
∣
∣
∣
∣

L
(
∂x�
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) − L
(
∂x�

n, ∂y�
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)
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− L

(
∂xφ
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(
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∣
∣
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∣
∣

≤ 2
(∣∣∂x en+1

∣
∣ + ∣

∣∂x en
∣
∣) + ∣

∣∂yen+1
∣
∣ . (96)

The second term in (85) can be analyzed in an analogous manner; the details of the
following are omitted for the sake of brevity:

∣
∣
∣
∣
∣
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(
∂x�

n+1, ∂y�
n
) − L

(
∂x�

n, ∂y�
n
)
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− L

(
∂xφ

n+1, ∂yφ
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) − L

(
∂xφ

n, ∂yφ
n
)

∂xφn+1 − ∂xφn

∣
∣
∣
∣
∣

≤ 2
(∣∣∂x en+1

∣
∣ + ∣

∣∂x en
∣
∣) + ∣

∣∂yen
∣
∣ . (97)

A combination of (85), (96) and (97) results in (83). The estimate (84) involving Ly is derived
by a similar approach. The result is proven. ��

The convergence theorem for the fully discrete second order scheme (66) is stated below.

Theorem 4.2 Denote by � the exact smooth, periodic solution for the no-slope-selection
model (4). Set φ0

i, j := �(pi , p j , 0) and φ−1 ≡ φ0. Define en
i, j :=�

(
xi , y j , s · n

)−φn
i, j , with

φ the fully discrete solution for the second order scheme (66). Then, provided s is sufficiently
small, we have the following error estimate in a discrete L∞(0, T ; H1) ∩ L2(0, T ; H3)

norm: for any k, with 1 ≤ k ≤ T/s,

∥
∥
∥∇N ek

∥
∥
∥

2
+

(
sε2

4

k∑

l=1

∥
∥
∥∇N

(
�N el

)∥
∥
∥

2

2

)1/2

≤ C
(
s2 + hm)

, (98)

where C > 0 is a constant that depends upon ε, L, the final time T , and the exact solution
�, but is independent of the step sizes h and s.

Proof A consistency analysis shows that

�n+1 −�n

s
= ∇N ·

(
Lx

(∇N�
n+1,∇N�

n
)

Ly
(∇N�

n+1,∇N�
n
)
)

+ A

2
�N

(
�n+1 − 2�n +�n−1)

−ε2�2
N

(
3

4
�n+1 + 1

4
�n−1

)

+ τ n+1/2, (99)
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where the local truncation error satisfies the estimate

∥
∥τ n+1/2

∥
∥

2 ≤ C
(
s2 + hm)

. (100)

The functions Lx ,Ly are given in (9) and (10). The last estimate is based on a Fourier spectral
differentiation analysis in space and Taylor expansions in the time dimension. The details
are left to interested readers.

Subtracting the numerical scheme (66) from (99), we get the equation for the numerical
error function:

en+1 − en

s
− A

2
�N

(
en+1 − 2en + en−1) + ε2�2

N

(
3

4
en+1 + 1

4
en−1

)

= ∇N ·
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(∇N�

n+1,∇N�
n
) − Lx
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n
)

Ly
(∇N�

n+1,∇N�
n
) − Ly

(∇Nφ
n+1,∇Nφ

n
)
)

+ τ n+1/2. (101)

Taking the discrete L2 inner product with −2�N en+1 gives

∥
∥∇N en+1

∥
∥2

2 − ∥
∥∇N en

∥
∥2

2 + ∥
∥∇N (e
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〉

−ε2s

〈

�N en+1,�2
N

(
3

2
en+1 + 1

2
en−1
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= −s
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n
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(∇Nφ
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)
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(∇N�

n+1,∇N�
n
) − Ly

(∇Nφ
n+1,∇Nφ

n
)
)

, 2∇N�N en+1
〉

, (102)

where the summation-by-parts formulae (71) and (72) were applied. The term associated
with the truncation error can be controlled by Cauchy’s inequality:

− 2
〈
τ n+1/2,�N en+1〉 ≤ 2

∥
∥τ n+1/2

∥
∥

2 · ∥∥�N en+1
∥
∥

2 ≤ ∥
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∥
∥2
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∥
∥2

2 . (103)

The term associated with the artificial diffusion can be handled by

− 〈
�N en+1,�N (e

n+1 − 2en + en−1)
〉

= − ∥
∥�N en+1

∥
∥2

2 + 2
〈
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2 + ∥
∥�N en+1

∥
∥2

2 + ∥
∥�N en

∥
∥2

2 + 1

2

(∥
∥�N en+1

∥
∥2

2 + ∥
∥�N en−1

∥
∥2
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. (104)

The term associated with the surface diffusion can be analyzed as follows:

−
〈
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N
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3

2
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2
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∥
∥2
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∥
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2 . (105)
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For the nonlinear term, an extension of Lemma 4.1 to the space discrete case indicates
that

∣
∣Lx

(∇N�
n+1,∇N�

n) − Lx
(∇Nφ

n+1,∇Nφ
n)∣∣

≤ (∣∣DN x en+1
∣
∣ + ∣

∣DN x en
∣
∣) + 1

4

(∣∣DN yen+1
∣
∣ + ∣

∣∂yen
∣
∣) , (106)

∣
∣Ly

(∇N�
n+1,∇N�

n) − Ly
(∇Nφ

n+1,∇Nφ
n)∣∣

≤ (∣∣DN yen+1
∣
∣ + ∣

∣DN yen
∣
∣) + 1

4

(∣∣DN x en+1
∣
∣ + ∣

∣DN x en
∣
∣) . (107)

Therefore, we arrive at
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n+1,∇N�
n
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. (108)

Subsequently, a substitution of estimates (103)–(108) into (102) yields
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Meanwhile, the following estimate for
∥
∥�N ek

∥
∥2

2 is valid:
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, (110)

for all β > 0. Using the last estimate, with a careful choice of β, we obtain
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2 . (111)

Finally, if s is small enough (s < ε2

C ), summing in time and applying a discrete Gronwall
inequality, we arrive at the desired discrete L∞(0, T ; H1)∩ L2(0, T ; H3) error estimate for
solutions of the fully discrete scheme (66). ��
Remark 4.3 A detailed consistency analysis shows that a regularity of� ∈ W 3,∞(0, T ; Hm)

∩ W 2,∞(0, T ; Hm+4) is needed for the exact solution � to make the local truncation error
estimate (100) valid at every time step. Moreover, a more careful analysis indicates that a
reduced regularity assumption � ∈ H3(0, T ; Hm) ∩ H2(0, T ; Hm+4) can be made for �,
if we only need the local truncation error estimate (100) satisfied in �2(0, T ), at the discrete
time level. That could also lead to the desired convergence analysis result as in (98).

In this paper, we made an assumption that “� is the exact smooth solution” in Theorem 4.2,
for simplicity of presentation.
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Remark 4.4 To derive the convergence from (111), we cannot avoid a severe constraint

s ≤ ε2

C , compared with the unconditional energy stability (s independent on ε). Moreover,

the convergence constant appearing on the right hand side of (98) is of order O

(

e
T
ε2

)

, with

T the final time. In other words, Theorem 4.2 is only valid for a fixed parameter ε and final
time T , as always in the nonlinear analysis.

Remark 4.5 We note that the initialization φ−1 ≡ φ0 is only first order accurate. However,
this “one-step” degradation of accuracy does not affect the overall numerical accuracy. In
more detail, we observe that, although truncation error at the first time step is only of O(s),
the numerical solution φ1 updated from the fully discrete scheme (66) is still an O(s2)

approximation to �1, because of its detailed expansions. In other words, we have an exact
approximation φ0 and an O(s2) approximation φ1. Subsequently, after the first time step, all
the local truncation errors are of second order accurate in time. In turn, both the theoretical
analysis presented in this paper and the numerical experiments have indicated a full second
order accuracy in time.

5 Numerical Simulation Results

5.1 Convergence of the Linear Iteration Scheme

In this subsection we present some tests, the results of which support the theoretical conver-
gence for the proposed linear iteration algorithm (25). It is clear that the convergence rate of
the linear iteration scheme will dependent on the values of surface diffusion coefficient, ε,
the artificial diffusion coefficient, A, and time step size s, as well as others, like the value of
N . We will vary ε, A, and s and compare the convergence rates. We take the following exact
profile for the phase variable:

ψ(x, y) = sin(2πx)cos(2πy) (112)

over the domain � = (0, 1)2. Making this the exact solution requires that we manufacture
appropriate values for φn and F in (26). In Figs. 1, 2, 3, we plot the iteration error

∥
∥ek

∥
∥

2
versus k, where ek :=ψk − ψ , as in Theorem 2.2. For the tests, we fix N = 64, and do not
explore the convergence rate dependence on this parameter here. Of course, (112) will not
be the solution to the fully discrete equation (68). We expect to and, in fact, do see a finite
saturation of the iteration error in Figs. 1, 2, 3. And, as expected, the saturation levels differ
for different values of the parameters. Naturally, a larger value of N will allow for smaller
saturation levels in each case, but at the cost of more computation.

For the first test, the results for which are reported in Fig. 1, we fix s = 0.01 and A = 2
and vary ε: ε = 1, ε = 0.1 and ε = 0.01. It is clear that the linear iteration error reaches
a saturation after a few (k ≤ 8) iteration stages. From Fig. 1, we observe that the conver-
gence rate for the linear iteration increases with an increasing value of ε. This implies that
numerical implementation of the linear iteration algorithm (25) becomes more challenging
with a smaller surface diffusion coefficient. This result matches with our theoretical analysis
in proof of Theorem 2.2. Also note, that each iteration of the linear iteration method reduces
the iteration by roughly a constant amount, which is not surprising since we have a pure
contraction of the error.

For the second test, the results for which are reported in Fig. 2, we fix s = 0.01 and
ε = 0.01 and we vary A: A = 2, A = 4 and A = 8. Again, the linear iteration error reaches

123



J Sci Comput (2014) 59:574–601 593

0 2 4 6 8 10 12 14 16 18 20

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

k

E
rr

or
 fo

r 
th

e 
lin

ea
r 

ite
ra

tio
n

ε=1
ε=0.1
ε=0.01

Fig. 1 Dependence of the convergence rate of the linear iteration method on the surface diffusion parameter
ε. Here we plot the L2 norm of the error for the linear iteration versus the iteration stage k, with time step
s = 0.01 and artificial diffusion parameter A = 2
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Fig. 2 Dependence of the convergence rate of the linear iteration method on the artificial diffusion parameter
A. Here we plot the L2 norm of the error for the linear iteration versus the iteration stage k, with time step
s = 0.01 and the surface diffusion coefficient ε = 0.01

a saturation after a few (≤ 8) iteration stages. Moreover, the convergence rate for the linear
iteration increases with an increasing value of A. For the third test, the results for which
are reported in Fig. 3, we fix ε = 0.01 and A = 2 and we vary s : s = 10−2, s = 10−3

and s = 10−4. The linear iteration error reaches a saturation after a few iteration stages.
The convergence rate for the linear iteration increases with a decreasing value of s. These
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Fig. 3 Dependence of the convergence rate of the linear iteration method on the time step s. Here we plot
the L2 norm of the error for the linear iteration versus the iteration stage k, with artificial diffusion parameter
A = 2 and the surface diffusion coefficient ε = 0.01

results likewise match with our theoretical analysis in the proof of Theorem 2.2. As before,
the iteration error is decreased by roughly the same amount for each iteration stage.

5.2 Convergence of the Convex Splitting Scheme

In this subsection we perform a numerical accuracy check for the energy stable, fully discrete
second order scheme (66). Similar to the last example, the computational domain is set to be
� = (0, 1)2, and the exact profile for the phase variable is set to be

�(x, y, t) = sin(2πx) cos(2πy) cos(t). (113)

As with the last test, to make � satisfy the original PDE (4), we have to add an artificial,
time-dependent forcing term, which we do. The proposed second order scheme (66) (with
Fourier spectral differentiation in space) can be implemented to (4), with the linear iteration
(25) applied to solve the nonlinear system. We compute solutions with grid sizes N = 64
to N = 192 in increments of 16, and we solve up to time T = 1. The errors are reported
at this final time. Two parameters for the surface diffusion are used: ε = 0.5 and ε = 0.05.
The time step s is determined by the linear refinement path s = 0.5h, where h is the spatial
grid size. Figures 4 and 5 show the discrete L1, L2 and L∞ norm s of the errors between the
numerical and exact solutions. A clear second order accuracy is observed in all cases.

5.3 Coarsening and Energy Dissipation

Typically one is interested in the how properties associated with the solutions to (4) and
(6) scale with time, where it is assumed that ε � min

{
Lx , L y

}
. The physically interesting

quantities that may be obtained from the solutions of the no-slope selection equation (4) are
(1) the energy E(t); (2) the characteristic (average) height (also called the surface roughness)
h(t); and (3) the characteristic (average) slope m(t), the latter two defined precisely as
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Fig. 4 L1, L2 and L∞ numerical errors at T = 1.0 plotted versus N for the fully discrete second order
scheme (66), with the linear iteration algorithm (25) applied. The surface diffusion parameter is taken to be
ε = 0.5 and the time step size is s = 0.5h. The data lie roughly on curves C N−2, for appropriate choices of
C , confirming the full second-order accuracy of the scheme
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Fig. 5 L1, L2 and L∞ numerical errors at T = 1.0 plotted versus N for the fully discrete second order
scheme (66), with the linear iteration algorithm (25) applied. The surface diffusion parameter is taken to be
ε = 0.05 and the time step size is s = 0.5h. The data lie roughly on curves C N−2, for appropriate choices of
C , confirming the full second-order accuracy of the scheme
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h(t) =
√√
√
√

1

|�|
∫

�

∣
∣
∣φ(x, t)− φ̄(t)

∣
∣
∣
2
dx , with φ̄(t):= 1

|�|
∫

�

φ(x, t)dx, (114)

m(t) =
√√
√
√

1

|�|
∫

�

|∇φ(x, t)|2 dx. (115)

For the no-slope-selection equation (4), one obtains h ∼ O
(
t1/2

)
,m(t) ∼ O

(
t1/4

)
, and

E ∼ O (− ln(t)) as t → ∞. (See [6,12,13] and references therein.) This implies that the
characteristic (average) length �(t):=h(t)/m(t) ∼ O

(
t1/4

)
as t → ∞. In other words,

the average length and average slope scale the same with increasing time. Observe that the
average mound height h(t) grows faster than the average length �(t), which is expected
because there is no preferred slope of the height function φ.

In the rigorous setting, as detailed in [9,10,13], one can only (at best) obtain lower bounds
for the energy dissipation and, conversely, upper bounds for the average height. However,
the rates quoted as the upper or lower bounds are typically observed for the averaged values
of the quantities of interest. Predicting these scaling laws numerically is quite challenging,
since doing so requires very long simulation times. To adequately capture the full range of
coarsening behaviors, numerical simulations for the coarsening process require short- and
long-time accuracy and stability, in addition to high spatial accuracy for small values of ε.

Here we show a numerical simulation result using the proposed second order scheme (66)
combined with the linear iteration algorithm (25) for the no-slope-selection equation (4) to
compare our computed solutions against the predicted coarsening rates. This test is a repeat
of those given in our previous papers [1,22]. The surface diffusion coefficient parameter is
taken to be ε = 0.02. For the domain we take L = Lx = L y = 12.8 and h = L/N , where
h is the uniform spatial step size. For such a value of ε, our previous numerical experiments
have shown that N = 512 is adequate to resolve the small structures in the solution.

For the temporal step size s, we use increasing values of s, namely, s = 0.004 on the time
interval [0, 400], s = 0.04 on the time interval [400, 6, 000], s = 0.16 on the time interval
[6, 000, 105], and s = 0.32 for t > 105. Whenever a new time step size is applied, we initiate
the two-step numerical scheme by taking φ−1 = φ0, with the initial data φ0 given by the
final time output of the last time period. Both the energy stability and second order numerical
accuracy are assured by our arguments in Sects. 3, 4. Figure 6 presents time snapshots of
the film height φ with ε = 0.02. Significant coarsening in the system is evident. At early
times many small hills (red) and valleys (blue) are present. At the final time, t = 300, 000,
a one-hill-one-valley structure emerges, and further coarsening is not possible.

The long time characteristics of the solution, especially the energy decay rate, average
height growth rate, and the mound width growth rate, are of interest to surface scientists. The
last two quantities can be easily measured experimentally. Recall that, at the space-discrete
level, the energy, EN is defined via (73). The space-continuous average height and average
slope are defined in (114), (115), and the analogous fully discrete versions are also available,
and these discrete quantities are the quantities reported below. Rigorously, the lower bound
for the energy decay rate is of the order of − ln(t), the upper bounds for the average height
and average slope/average length are of the order of t1/2, t1/4, respectively, as established
for the no-slope-selection equation (4) in Li and Liu’s work [13]. Figures 7, 8, 9 present the
semi-log plots for the energy versus time and log-log plots for the average height versus time,
and average slope versus time, respectively, with the given physical parameter ε = 0.02. The
detailed scaling “exponents” are obtained using least squares fits of the computed data up
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t = 400 t = 6000 t = 20000

t = 300000t = 80000t = 40000

Fig. 6 (Color online) Snapshots of the computed height function φ at the indicated times for the parameters
L = 12.8, ε = 0.02. Note that the color scale changes with time. The hills (red) at early times are not as high
as time at later times, and similarly with the valley (blue). To see how the average height/depth changes with
time, see Fig. 8

to time t = 400. A clear observation of the − ln(t), t1/2 and t1/4 scaling laws can be made,
with different coefficients dependent upon ε, or, equivalently, the domain size, L .

Now we recall that a lower bound for the energy (1), assuming � = (0, L) × (0, L),
which has been derived in our earlier article [22] and polished in a more recent one [1]:

E(φ) ≥ L2

2

(

ln

(
4ε2π2

L2

)

− 4ε2π2

L2 + 1

)

=:γ. (116)

Obviously, since the energy is bounded below it cannot keep decreasing at the rate − ln(t).
This fact manifests itself in the calculated data as the rate of decrease of the energy, for
example, begins to wildly deviate from the predicted − ln(t) curve. Sometimes the rate of
decrease increases, and sometimes it slows as the systems “feels” the periodic boundary
conditions. Interestedly, regardless of this later-time deviation from the accepted rates, the
time at which the system saturates (i.e., the time when the energy abruptly and essentially
stops decreasing) is roughly that predicted by extending the blue lines in Fig. 7 to the predicted
minimum energy (116).

Remark 5.1 In this numerical simulation, the time step sizes are taken as 4 times larger as
the ones taken in the first order linear splitting scheme presented in our earlier work [1], at
different time range. Meanwhile, the computational cost at each time step is about 3 to 5
times as that of the first order scheme, due to the presence of linear iteration algorithm. Thus,
in the final analysis, the total computational cost is at a comparable level as that of the first
order scheme.
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Fig. 7 Semi-log plot of the temporal evolution the energy EN for ε = 0.02. The energy decreases like − ln(t)
until saturation. The dotted lines correspond to the minimum energy reached by the numerical simulation. The
red lines represent the energy plot obtained by the simulations, while the straight lines are obtained by least
squares approximations to the energy data. The least squares fit is only taken for the linear part of the calculated
data, only up to about time t = 400. The fitted line has the form ae ln(t)+be , with ae = −40.68, be = −152.73
(Color figure online)
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Fig. 8 The log-log plot of the average height (or roughness) of φ, denoted h(t) for ε = 0.02. For the no slope
selection model, h(t) grows like t1/2. The red lines represent the plot obtained by the numerical simulations,
while the straight lines are linear least squares approximations to the t1/2 growth. The least squares fit is only
taken for the linear part of the calculated data, only up to about time t = 400. The (blue) fitting line has the
form ahtbh , with ah = 0.40, bh = 0.51 (Color figure online)
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Fig. 9 The log-log plot of the average slope of φ, denoted m(t) for ε = 0.02. For the no slope selection
model, m(t) grows like t1/4. The red lines represent the plot obtained by the numerical simulations, while
the straight lines are linear least squares approximations to the t1/4 growth. The least squares fit is only taken
for the linear part of the calculated data, only up to about time t = 400. The (blue) fitting line has the form
amtbm , with am = 4.13, bm = 0.26 (Color figure online)

For the long time simulation, both the first order and second order schemes have produced
similar evolutionary curves in terms of energy and the standard deviation, as presented in
Figs. 7 and 8. A more detailed calculation shows that long time asymptotic growth rate of
the standard deviation given by the second order numerical simulation is closer to t1/2 than
that by the first order scheme. Here we found mr = 0.51, as recorded in Fig. 8, while in [1]
this exponent was found to be mr = 0.52. This gives more evidence that the second order
scheme is able to produce more accurate long time numerical simulation results than the first
order schemes, even if its time step size is 4 times larger than the later (so that they have
comparable computational costs).

6 Summary and Remarks

In this paper we have presented a linear iteration algorithm to implement an unconditionally
energy stable second-order convex splitting scheme for thin film epitaxy without slope selec-
tion, i.e, the no-slope-selection equation (4). The second order convex splitting was given by
a recent article [19]. Here an O(s2) artificial diffusion term, a Douglas-Dupont-type regular-
ization, is added to assure a contraction mapping property of our proposed linear iteration.
The addition of this regularization does not affect the unconditional unique solvability and
unconditional energy stability of the scheme. Moreover, a global in time H2 bound for the
numerical solution is obtained at the discrete level and the convergence for the numerical
scheme in a discrete L∞(0, T ; H1) ∩ L2(0, T ; H3) norm is proved. This convergence is
made by the available bounds of the nonlinear terms involved in the numerical scheme.
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The work here demonstrates an important tool to implement a highly nonlinear scheme,
namely a linear iteration. We envision that this technique will have more applications in many
other nonlinear convex splitting schemes for gradient equations. Here, the nonlinear system
can be decomposed as an iteration of purely linear solvers, which can be very efficiently
implemented with the help of FFT in a collocation Fourier spectral setting. The numerical
simulation experiments showed that the second order scheme, combined with the linear
iteration algorithm, is able to produce a more accurate long time numerical results than
the first order schemes reported in [1,22], with a comparable computational cost. This is
remarkable when one notes that the scheme in [1] is linear.
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