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ABSTRACT 

A method is described with which immittance data can be tested for Kronig-Kramers compliance. In contrast with 
other procedures, this method is l inear in nature and is based on a predetermined set of relaxation times. The model 
contains as many parameters (or less) as there are data sets. Three modes of operation are described, the first two are based 
on a linear fit of the model function to the imaginary part or to the real part of the data set. With the fit parameters the 
corresponding real or imaginary dispersion can be calculated and compared with the actual measurement. In the third 
mode a complex model function is fitted to the complete data set. As the model function does comply with (a relaxed set 
of) the Kronig-Kramers (K-K) rules, it will not be able to reproduce the data set satisfactory in the case of nonK-K behavior, 
as can be observed from the residuals plot. Due to its linear nature, no starting values are needed for the data validation. 
The main l imitation of this procedure is the size of the matrix and the accuracy of the matrix inversion. 

Introduction 
Electrochemical impedance spectroscopy (EIS) has be- 

come an important research tool within the entire electro- 
chemical research community, with significant applica- 
tions in corrosion research, solid-state electrochemistry, 
and aqueous and nonaqueous electrochemistry, as well as 
in electronics. Its application ranges from fundamental  in-  
vestigations to very applied uses such as product quality 
monitoring. The large advancement in EIS has been 
brought about by the development of powerful data analy- 
sis programs which have become generally available 
within the last decade. By now the best known and most 
used programs are LEVM by Macdonald ~-5 and EQUIVA- 
LENT CIRCUIT (EQUIVCRT) by the~ author. 6-s Both pro- 
grams are based on a powerful nonlinear  least squares fit 
algorithm developed by Levenberg 9 and Marquardt. ~~ 

Both complex nonl inear  least squares (CNLS) programs 
are based on the use of an equivalent circuit (EqC) as a 
modeling function. The nonlinear  fit procedure does re- 
quire an adequate set of starting values for the adjustable 
parameters of the modeling function. For CNLS-fits with a 
large number  of adjustable parameters, the speed of con- 
vergence critically depends on the quality of the starting 
values. Reasonable values generally can be obtained 
through graphical means. The software package EQUIVA- 
LENT CIRCUIT employs a special subroutine which pro- 
vides a "rough" deconvolution of the immittance spectra, 
thus yielding a probable equivalent circuit together with a 
set of appropriate starting values. This subroutine has the 
potential for unveiling small contributions to the fre- 
quency response that are buried in the overall frequency 
dispersion. 

How well the modeling function reproduces the actual 
data set can best be observed in a graph of the relative 
residuals, A~,~ and h~., vs. log r where co is the radial fre- 
quency (2wf). The residuals are defined by 

X ~  - XAco~) Ximi -- XiAco0 
hre,i ~- 'lX(coi)] and him,i = 'lX(coi)l - -  [1] 

with X~o,~ and X~,j the real and imaginary parts of the i th  
data set (at frequency ~o~) and X~e(COi) and X~(co~) the real and 
imaginary parts of the modeling function for coi. IX(m~)l is 
the vector length (absolute value) of the modeling function. 
Besides impedance and admittance, X may also represent 
the modulus or the dielectric response. 

An optimum fit is obtained when the residuals are spread 
randomly around the log co axis. When the residuals show a 
systematic deviation from the horizontal axis, e.g., by R~ 
forming a "trace" around, above, or below the log co axis, 
the CNLS fit is not adequate. This can be caused by several 
factors, which can be classified into two categories, (i) the 
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data contain systematic errors; these can be due to the 
measuring setup and equipment, aging of the sample, slow 
change in the sample temperature, etc., and (ii) the chosen 
modeling function is inappropriate; this can be due to a 
wrong selection and/or arrangement of the dispersive ele- 
ments, or it may be that the data require a nonideal transfer 
function (i.e., one that cannot be built  up by a set of simple 
dispersion elements or transfer functions). 

It is important to be able to distinguish between cases (i) 
and (ii), so that no time is wasted on the interpretation of 
"bad" data. Here the Kronig-Kramers transforms can be 
used to indicate whether the data are at fault or the EqC is 
inadequate. The Kronlg-Kramers relations, which are 
based on the principle of causality, n-la dictate that the real 
and imaginary part  of any immittance function are interde- 
pendent, provided that the following conditions are met: (i) 
causality: the response must be related to the excitation 
signal only; (ii) linearity: only the first-order term must be 
present in the response signal. For inherently nonlinear 
systems (e.g., electrode processes) this implies the use of 
small excitation voltages, e.g. <10 mV; (iii) stability: the 
system may not change with time, nor continue to oscillate 
when the excitation signal is removed, which requires the 
system to be passive; and (iv) finite: for all values of ~, 
including co ~ 0 and co -> =. 

For practical application of the K-K transforms, this last 
condition is not critical. The stability condition, however, is 
the key in the data validation process. The interdependence 
between the real and imaginary parts of the dispersion is 
presented in the Kronig-Kramers transform integrals. 
When the imaginary part of the dispersion is known, the 
real part can be obtained through the K-K transform inte- 
gral. In the impedance representation 

Zre(co) -~ Rw 4- 2 fo ~ XZjm(X ) - coZim(fD ) ~ 
~r x2 _ • ~ [2] 

while the imaginary part  can be obtained from 

2co ~ 

Fig. 1. Equivalent circuit model for the linear Kronig-Kramers trans- 
form test of data in the impedance representation. 
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Thus data from a stable system must comply with these 
transformation rules. If the imaginary part  does not appear 
to be the same as the real-to-imaginary transform, Eq. 3, or 
vise versa, then the data set must be considered to be nonK- 
K transformable, i.e., time varying or nonlinear. 

The main  problem, however, with applying the K-K 
transformations is the necessity for integration over the 
frequency range from 0 to c~. Several ways have been de- 
vised to extend the measured frequency range by extrapo- 
lations. Urquidi-Macdonald e t  al.14 suggested the use of 
polynomial extrapolation. In a previous publication, 1~ ex- 
trapolation through the partial  fit of a simple circuit (e.g., 

a resistance in series with a parallel resistance-CPE circuit) 
was advocated. This works well when the end regions of the 
frequency dispersion are mainly resulting from a single dis- 
persive function or time constant. 

A different approach used by Agarwal e t  al. io consisted 
of modeling the measured impedance data with an EqC 
represented by a chain of series connected, parallel R - C  

circuits (Voigt circuit, see Fig. 1). As each R - C  circuit is K-K 
transformable, the entire circuit must be. Hence if the data 
can be modeled (within a certain allowable error limit) 
with this circuit, the data must be K-K transformable. The 
main  advantage is that no extrapolation to zero and in- 
finite frequency is required. The disadvantage of this pro- 
cedure is that it requires CNLS-fitting and hence a set of 
starting values. In a recent comparative study by Boukamp 
and Macdonald, 17 using an improved general multiR-C cir- 
cuit, quite good results were obtained for different data 
sets. But, as indicated in that study, the calculation pro- 
cedure is rather time consuming and may require an itera- 
tive procedure in which a new R - C  circuit is added upon 
a successful convergence unti l  no further improvement is 
obtained. 

A different fit procedure also based on the Voigt circuit of 
Fig. 1, but  l inear in its parameters, is presented in this 
paper. The method of l inearization used here is similar to 
the procedure employed by Uhlman and Hakim. TM They 
used it to establish a distr ibution of relaxation times for a 
dielectric response. This quite different application is often 
limited by the occurrence of severe oscillation in the fit 
parameters as was demonstrated by Morgan and Lesmes. t9 
The advantage of these l inear procedures, however, is that 
due to the linear nature no starting values are required and 
no iterative approximations take place. 

With the procedure described in this paper it is possible 
to perform K-K transformation without the need for evalu- 
ation of the Kronig-Kramers integrals and extrapolations 
to zero and infinite frequency. The applicability and limita- 
tions of this procedure are demonstrated on several sets of 
widely differing dispersion data. 

Basic Principle of the Linear Fit 

Similarly to the approach presented by Agarwal e t  al., ~8 

a chain of parallel R - C  circuits (Voigt network) is used 
for data in the impedance representation (see Fig. 1). 
The imaginary part  of the fitting function can then be pre- 
sented by 

toiR~C k 
Z~(~i) = - 1 + (~iRkCk) 2 k=l 

E0iRk~ k 
k=l 1 + (~i%) 2 with % = RkCk [4] 

By taking a fixed distr ibution for the %, ~8 the fit function 
becomes linear in the Rk values. For M equal to the num-  
ber of data points, N, a perfect fit can be obtained. This 
is useful only for near-perfect data; otherwise it would 
be quite likely that the noise is also (partly) fitted. There 
are limitless possibilities for the distr ibution of v values 
(time constants, Tcs), but  taking the inverse of the measure- 
ment frequencies (assuming that these are logarithmically 
placed along the frequency axis) over the entire frequency 
range has proved to be an excellent starting point 

Tk = [r -1 [5] 
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Fig. 2. Impedance representation of the dispersion of test circuit I 
(TC-1). The equivalent circuit is represented in the inset. Parameter 
values are given in Table I. The frequency range is ! Hz to 10 kHz 
with seven points/decade. 

For simplicity and demonstration purposes we take the 
number of adjustable parameters, M, equal to the number 
of data sets, N. The results in M simultaneous equations of 
the type of Eq. 4. Hence by using a single-matrix inversion 
or matrix solving routine the set of Rk values is obtained. 
Due to the size of M, the matrix routine must have high 
precision. For the results that will follow a Gauss-Jordan 
pivoting routine, ~~ implemented in Turbo Pascal (| 
International), has been employed successfully. 

The basic assumption in the approach is that the above 
fitting function smoothly follows the imaginary data set 
(Zim,i VS. iog ~0). AS the fit function is a priori K-K trans- 
formable, its real part, which is calculated directly from the 
parameter set, might be expected to follow the real data set, 
provided that the data set complies with the K-K transfor- 
mation rules. The real part of the fitting function is simply 
given by 

Zre((Di) = R ~  "l" i + (%%)2 [6] 
k=l 

R~ is the high (infinite) frequency cutoff resistance which 
cannot be obtained from the K-K transform of the imagi- 
nary data set. Its value can quite simply be determined by 
calculating the mean distance between the actual real data 

15 set and the transformed set. In case of a large variation in 
the impedance vector length over the frequency range it is 
necessary to calculate the weighted mean for R~ 

R~ = ~=1 k=l [7] N 

i-1 

(the weight factor, w,  is defined below). To demonstrate 
this procedure, a simple data file is simulated using the test 
circuit presented in the inset in Fig. 2 (denoted further on as 
TC-1). The frequency range and selected parameters are 
given in Table I. The data file, which was obtained through 
the simulation subroutine of EQUIVALENT CIRCUIT, does 
not extend to the real axis at either frequency limit. For a 
proper K-K transform using the integrals of Eq. I and 2, an 
extrapolation is definitely necessary, t5 The model function, 
Eq. 4, was fitted exactly to the imaginary part of this data 

Table I. Parameter values for the elements of the test circuit of Fig. 2. 
The W symbol represents a Warburg lype response: 

Z(o~) =/Y0 ~j~]-l. The frequency range was 1 Hz to 10 kHz with 
seven points/decade (29 data points). 

Element/parameter Value Unit 

R-1 100 1~ 
R-2 200 f~ 
C-3 0.8 ~F 
R-4 500 f~ 

W-5, Y0 4 • 10 -4 S.s ~ 
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Fig. 3. Relative deviations between the measured and K-K trans- 
form calculated dispersion. Lower part, right axis, [�9 ~ ,  i, K-K trans- 
farm of imaginary fit (Eq. 4). Upper part (left axis) Aim i- (ll) K-K 
Imnsform of real fit (Eq. 8) and (11) K-K transform of real f~ followed 
by adjustment using Eq. 10. 

set (TC-1). The residual  relative error between the K-K 
transform and the real par t  of the dispersion is presented in 
the lower par t  of Fig. 3 (open circles). The deviation be- 
tween the t ransformed set and the real  data  set is less than 
0.4% and is most pronounced at  both ends of the frequency 
range. 

Similar ly  we can fit the model function to the real  par t  of 
the dispersion, but  here R~ must be included as fit  parame-  
ter  (R~ is represented by R0 

M Rk 
Zl~, i  = R 1 -t- E 1 + ((DiTk) 2 [ 8 ]  

k=2 

Of course, R1 does not appear  in the imaginary transform. 
The result  of the real fit  and t ransformat ion to the imagi-  
nary par t  is also presented in Fig. 3 (upper part ,  closed 
circles). Here a relat ively large deviat ion is observed at 
both ends of the frequency dispersion (~3%). Apparent ly  
the information contained in the real par t  of the dispersion 
is insufficient to construct accurately the imaginary part.  It  
may be assumed that  other fit  models will  result in differ- 
ent t ransformations to the imaginary par t  of the dispersion, 
despite the fact that  the real par t  fits (within the error of 
the calculation) are vir tual ly  indistinguishable.  In other 
words: al though no ext rapola t ion of the fit function is 
made visible in this procedure, it  is implied in the transfor-  
mat ion to the imaginary  part.  The implicat ion of this is that  
the precision, with which the imaginary par t  can be ex- 
t racted from the real par t  of the dispersion, depends cri t i-  
cally on the extent  of the frequency range employed. 
Hence, increasing the frequency range is expected to yield 
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Fig. 4. Relative imaginary deviation, Aim i, obtained for the K-K 
transformation of the real part fit (Eq. 8), wi~aut adjustment, far the 
extended (I mHz to I MHz) dispersion data of test circuit TC-1 (inset 
Fig. 2). Note the difference in the vertical scale with respect to Fig. 3. 

a significant improvement,  which is demonstrated in the 
imaginary residual  plot  of Fig. 4. Here the frequency range 
for TC-1 (Fig. 2, Table I) was increased from 4 decades to 9 
decades (1 mHz to 1 MHz). Now the relative deviation for 
the real to imaginary transformation,  him.i, is 0.05 % at most 
at  both ends of the frequency spectrum, which represents 
an excellent fit. 

On the other hand i t  can be argued that  the model func- 
tion for the real par t  of the dispersion cannot contain ele- 
ments which give only a contr ibution to the imaginary part.  
In the impedance representat ion these can be a capacitance 
and an inductance in series with the equivalent circuit  of 
Fig. 1. In fact, this assumption does suggest that  the real to 
imaginary K-K transform could be augmented to 

2oJ (~ Zre(X) -- Zre(r 
Zi~(e)) = (~L - (o~C) -1 + --~ )o x 2 r d x  [9] 

which could be viewed as a "relaxed form" of the K-K 
transformation.  But some caution must be exercised here. 
The K-K transform integral  (Eq. 2) yields zero for a series 
capacitance (Zim = -1/~oC), thus not giving a direct viola- 
tion. For  a series inductance, however, the integral  goes to 
infinity. Unless the inductance is bypassed by a circuit  (e.g., 

resistance) which will  cause the high frequency dispersion 
to re turn to the real axis for ~ ~ % Eq. 9 is not valid. For  
the l imited frequency ranges used in this study, however, 
this l imitat ion can be ignored without  consequences. 

Hence, after the t ransformation of the real par t  to yield 
the calculated imaginary part ,  Zim(r a second l inear fit 
procedure is performed with the series inductance and ca-  
paci tance as adjustable parameters  

S = f wi [Zim,i - Zim(tDi)  - -  Leo+ X/(D] 2 [10] 
i=l 

where X = 1/C. By setting OS/OL and a S / O X  = O, the L and 
X values can be obtained from the resulting matr ix  equa- 
tions. The result  of this second operat ion is also presented 
in Fig. 3 (upper  part ,  solid squares), indicat ing a signifi-  
cantly improved fit. Thus, al though the imaginary par t  of 
the dispersion cannot be retrieved with precision for data  
with a l imited frequency range, it  is still  possible to check 
whether, or not, this data  set obeys the K-K transformation 
rules. This is done by  comparing the t ransformed and ad-  
justed (Eq. 7 and 10) fit functions to the actual  data. If data  
do not comply with K-K, Eq. 6-10 will not lead to a random 
distr ibut ion of the residuals along the log ~o axis. 

But when the intention is just to check the data  for K-K 
compliance, it  is far  more appropr ia te  to fit the complex 
transform function to the complete data  set by minimizing 
the following error sum 

s =  wi Z ~ e . i - R 1 -  ~ l + ( ~ k ) 2 J  
i=l k=B 

,~-1 Rk'~,~ ]2~ 
+ Zim+X2+LMcoi -  ~ l+(toi%) 2 j ]  [11] 

(Di k~3 

where X2 (=1/C = R2) is the second fit parameter  and LM is 
the last  fit  parameter  (=RM). Hence, the fit parameters  Rk 
may have different dimensions. Taking OS/ORq = 0 yields M 
linear simultaneous equations 

q = 1 w~Zi~.i = w~ R~ + 1 + Rk 
i=1 ~=1 = 

q = 2  w. ~ -  w i [  r LM E 1+(~i%) 2 
i=l 1 (D i i=i k=3 

f Z r e  i + Zirn,i0)iT~ 
2 < q < M w i  i "t- (ll)i~rq) 2 

i=I 

1 - tOi'rkT l 
- -  - -  R - q 

q = M wiZim, i (Di  = wi -X2 + LM~i 2 - E 1 + (toi'rk)2J 
i=l i=l k=3 

[12] 
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Fig. 5. Relative deviations, Ar~ i (O) and A~,i ( I )  for the complex 
linear fit of the TC-1 impedance ~lata (Fig. 2) using Eq. 11. 

3 

10 

1 
102 

~'1o 

1 
10 

I pos I neg TC-1 

2O 
11 
25 1 5 15 30 

k ~. 

Fig. 6. Distribution of the Rk values for the imaginary fit to the 
simulated TC-1 impedance data (Fig. 2). Positive values are indicated 
by the filled bars, negative values by the open bars. 

The weight factor, wi, is taken as 

wi = [(Z~e,i) 2 + (Z~,i)2] -1 [13] 

under  the assumption that the random noise present in 
the data originates before the signal is split into a real 
and imaginary part  and that its magnitude, in first approx- 
imation, is proportional to the absolute value of the 
impedance vector length (see also Ref. 7 and 21). This as- 
sumption is generally fulfilled as can be seen from the fol- 
lowing examples. 

The set of M simultaneous equations (Eq. 12) is again 
solved using standard matrix inversion techniques (Gauss- 
Jordan2~ As there are in principle more data points (2N, a 
real and an imaginary set) than adjustable parameters, this 
fit procedure should not result in a "perfect fit " for M = N, 
as was possible for the single real and imaginary fits. Al- 
though, depending on the data, M could be taken larger 
then N, this has no real advantage as will be demonstrated 
below. An example of this complex fit performed on the 
TC-1 data set is presented in the residuals plot of Fig. 5. The 
range of the vertical axis is a factor of 10 smaller than in the 
plot of the residuals for the solitary transforms (Fig. 3), 
indicating an excellent fit. That the fit is not "perfect" is 
demonstrated by the pseudo chi-squared fit value, • = 
7.6 x 10 -8, where X~ is defined here by 

N 

X2s  ---- ~ W i ( [ Z r e , i  - Z r e ( O } i ) ]  2 + [ Z i r a ,  i - -  Z i m ( { O i ) 2 ] )  [ 1 4 ]  

~=1 

Hence, for randomly distributed relative residuals, the 
mean value is approximately equal to the square root of • 
i.e., a mean error of 0.5% for X 2, = 2.5 x 10 -~. From Fig. 5 
it is clear that with this l inear modeling function an ex- 
cellent fit to the data can be obtained, and that in a 
much shorter time than with either the model presented 
by Agarwal e t  al. ,8 or the models presented by Boukamp 
and Macdonald. ~7 

The Fitted Parameter Set 
So far no at tention has been paid to the appearance of the 

thus calculated parameter set, Rk. As no restrictions are 
placed on the values the Rk may attain, negative values also 
belong to the possibilities. In fact, it turns out that the Rk 
values are almost al ternatingly positive and negative, 
which is generally endemic to this class of fit procedures. ~9 
An example of the parameter values obtained for the imag- 
inary fit of the test circuit of Fig. 2 is presented in Fig. 6 
and clearly shows the al ternating sign. As the �9 values 
are by definition positive, the corresponding capacitances 
have the same sign as the resistances. Hence double nega- 
tive parallel R - C  pairs are formed, which present a semicir- 
cle below the real axis (taking - Z ~  as positive y-axis) in 
the impedance representation. These negative R - C  pairs, 
which also obey the K-K rules, might be interpreted as 
"corrections" on the contribution of the positive R - C  pairs. 

But now the question arises whether the fit model func- 
tions behave smoothly between the original data points. 
That this is the case (at least for the ideal data set of TC-1, 
Fig. 2) is demonstrated in Fig. 7 where both the real (Eq. 8) 
and imaginary (Eq. 4) model functions are evaluated at four 
additional intermediate frequency points between each 
pair of original frequency values. Hence it may be con- 
cluded that this oscillatory behavior has no consequences 
for the fit procedures presented here. But it also means that 
no physical meaning may be attr ibuted to the obtained fit 
parameters. 

It turns out that for immittance data which contain little 
random noise (e.g., <0.5 % of IZ~I) a perfect fit is obtained in 
the primary (real c.q. imaginary) data set, while the relative 
residuals (Eq. 1) of the transformed pairs are increased 
with respect to the error distribution in the complex fit of 
Eq. 1. 

Influence of lhe M-N Ratio and Noise 

As indicated above, even when data contain noise, they 
can be fitted perfectly in the single part  mode using Eq. 8 
for the real part fit and Eq. 4 for the imaginary part  fit. But 
it is possible to average the noise by just reducing the num-  
ber of parameters, M, with respect to the number  of data 
sets, N (which effectively means a reduction in the number  
of Tcs per decade). For the single real and imaginary fit this 
requires minimization of an error sum by setting its partial 
derivatives to zero, similar to the complex fit procedure of 
Eq. 11. The error sum for the real part  fit is then given by 

S = wi Zre,i -- RI - 1 + (-~k)2J [15] 
i=I k=2 
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Fig. 7. Comparison between the TC-1 impedance data and the fit 
model functions. Left axis for the real data and real fit function (Eq. 8), 
right axis for the imaginary data and imaginary fit function (Eq. 4). 
Data paints are indicated by (| The fit function values are calculated 
at four extra frequencies between each original frequency pair and 
are presented by (.). 
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Fig. 8. Impedance representation of the dispersion data of the 
Fe-implanted, yllria-stabilized zirconia/gold, oxygen eledmde 
(IMP). s (�9 Actual measurements, (m) fit function dispersion. The fit 
function parameters are presented in Table II. The EqC used in the 
CNLS-fit is presented in ~ inset. 

Setting the OS/ORq equal to zero again yields M simulta- 
neous equations, l inear in the parameters Rq 

q = 1 ~. w i Z l e , i  = W i I~ 1 -I- ~,,  1 

~I i=1 k:l [16] 

W i  1 + (tO'(fq)2 = Z r e i  ~ [ M R~ ] 1 
i= l  i=I - 

The �9 values are taken to span the entire frequency region. 
Consequently Eq. 3 must be adjusted accordingly 

k - 1  

with "h = [~1] -I and T~ = [~0~] -1 [17]. 

which yields a series of T values spaced at equal intervals 
along the log �9 axis ( - log  ~ axis). Applying the Gauss-Jor- 
dan routine yields the fit function parameters, Rk. To 
demonstrate the influence of the M/N ratio on the fit qual- 
ity, a different set of impedance data is analyzed. This data 
set (denoted IMP) was obtained for an O2,Au/Pe-implanted 
yttria-stabilized zireonia electrode. A CNLS-fit analysis of 
the IMP-data set, using EQUIVALENT CIRCUIT, has been 
presented in Ref. 8 and is shown in Fig. 8. This impedance 
data has also been successfully subjected to a K-K trans- 
form test using a nonlinear  set of R-C circuits, as well as to 
a full K-K transformation using end-region extrapola- 
tion. ~ Results have been published recently by Boukamp 
and Macdonald.~7 

2 The dependence of • on the M / N  ratio for this data set is 
presented in Pig. 9. The complex fit (Eq. 11) shows more or 
less a plateau at • = 1.2 to 1.4 x 10 -o above M/N= 0.9. The 
real part  fit (Eq. 15) is mueh less sensitive to the M / N  ratio, 
but  shows a much higher • value (2 x 10 -~ to 3 x 10-~). The 
weighted imaginary part  fit (equations not presented) gave 
a somewhat more complicated picture. The lowest value for 
X~, (2.5 x 10 -6) was observed in the range 0.65 < M / N <  0.85. 
A similar plot for the complex fit of the (ideal) TC-1 data 
gave an almost exponential dependence for • ranging 
from • = 7.6 • 10 -~ for M / N  = i to 3.8 • 10 -~ for M / N =  0.5. 
Comparing this behavior with the complex fit of Fig. 9 
suggests that the plateau in Fig. 9 results from the noise 
present in the data. The residuals plot of M / N  = 1 for the 
complex linear fit is identical in appearance to the residual 
plot for the CNLS fit of the IMP-data (Table II). The X~ 
values are also close: 1.2 x 10 -6 for the complex linear fit 
with M = N vs. 4.4 x 10 -~ for the CNLS-fit (EQUIVCRT). 

Influence of the �9 Range 

Besides the N / M  ratio we can also vary the range of 
values. So far the range has been set equal to the range of 
inverse frequencies (Eq. 5 or 17). This ~ range can be en- 
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Fig. 9. Influence of the M/N ratio on X~ in the weighted fit proce- 
dures applied to the IMP data: (O) for the complex fit, Eq. 11; (n) for 
the real part fit with imaginary adjustment (in analogy with Eq. 15 
and using subsequently Eq. 10); (A) for the imagi'nary part fit, 
Eq. 15. The (D) indicates the x~ for the unweighted fit according to 
Eq. 4. The unweighted real fit (Eq. 8 and 10) yielded ihe same ~ a s  
the weighted fit for M/N. The top axis represents the resulting num- 
ber of Tcs per decade. 

larged, thus including RC-time constants which lie outside 
the measured frequency range. Again it is useful to monitor 
the pseudo • values obtained in the linear fit procedures. 
For testing purposes both the lower t limit and the upper T 
limit have been shifted by the same amount. For demon- 
stration purposes we start with a T range smaller than the 
range of frequencies, varying the extension factor, F~ ,  
from 0.125 to about 106 in a factor of two increments, with 

TZ = - -  ~M = F ~ t ~ ,  [18] 

and calculating the *k using Eq. 17. 
The influence of the v range on • for the IMP data, with 

M = N, is presented in Fig. 10. Both the real part (solid 
squares) and imaginary part (solid triangles) fit procedures 
are extremely sensitive to deviations from the previously 
defined v range. Although the primary fit to the partial  
dispersions is quite good (• - 10-~), the transforms show 
a large deviation for Fex t < 0.5 or F ~  > 2. A sharp 

Table II. Parameter values and error estimates for the EqC 
(inset Fig. 8) used in the CNLS fit of the Fe-implanted eledrode data 
u u 8  2 6 IMP . The fit yielded • = 4.4 x 10- using function proportional 
weighting. The Q symbol represents a constant-phase element (CPE) 

with the admittance representation: Y((o) = I"0 (jco)'. 

Element/parameter Value Rel. error (%) Unit 

LI 2.02 X I0 -~ 3 H 
R2 13.4 0.5 l-I 
Q~ Yo 5.05 x 10 -~ 2 S.s" 

n 0.695 0.4 - -  
R~ 311 2 D. 
C5 3.6 X 10 -5 10 F 
R6 57 7 t] 
R7 -86 9 
Q8 Y0 -8.7 x 10 4 5 S.s ~ 

n 0.83 3 
R9 88 23 
Qlo Yo 1.7 • 10 _2 14 S.s ~ 

n 0.79 13 

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 130.89.112.124Downloaded on 2014-11-25 to IP 

http://ecsdl.org/site/terms_use


1890 J. Electrochem. Soc., Vol. 142, No. 6, June 1995 �9 The Electrochemical Society, Inc. 

10  "a 

I 

10"4: 

10 "s 

10 
0.1 

IMP �9 real 

�9 imag 

o cmpl 

o 

0 0 
o 

0 
o 

, , , . .~. .  o . 0 . . ~ ,  o .  o , , ~ , , , , o  ,o .  ,~,o.,., ,~ o o o o o 

1 10 10 ~ 10 a 10 ~ 10 s 10 ~ 

Fig. 10. Influence of the "r range on X#, for the IMP data set: (0} 
complex fit procedure using Eq. 11 with M/N, (11) the weighted real 
part fit (Eq. 15), and (A) the weighted imaginary part fit. 

minimum is located at -Fex t = 0.5 to 1, which is quite an 
unexpected result. 

In contrast, in the complex fit the �9 range can be ex- 
tended on both sides over a large number  of decades with- 
out a significant increase in )(2 (Fig. 10, open circles). Over 
this range of v extensions, the number  of negative R-C pairs 
in the complex fit function does decrease to some extent, 
although in a rather erratic fashion. Changing the M/N 
ratio shifts the upturn  in • to lower Fe~t values (from about 
10 ~ for M = N= 35 to 10 ~ for M= 30). 

Test of NonK-K Transformable Data 
Besides showing that this fit / transform procedure works 

well for simulated and for properly measured data, it is 
important to demonstrate its power to unveil data that is 
not compliant with the K-K transformation. To illustrate 
this, an impedance data set of terbium-doped yttr ia-stabi-  
lized zirconia (TZY), which has also been tested for K-K 
compliance in Rei. 17, is analyzed here. The original meas- 
urements were performed in a nitrogen atmosphere. Ap- 
parently the mixed conducting sample was not in thermo- 
dynamic equil ibrium with the oxygen partial  pressure in 
the ambient  (pO~ = 10 -~ atm) during the impedance meas- 
urement. Hence, it is assumed that oxygen continued to 
diffuse out of the sample, thus increasing the electronic 
conductivity during the measurement sequence and hence 
causing a distortion of the impedance spectrum. The meas- 
ured dispersion and the best CNLS fit simulation are pre- 
sented in the impedance representation in Fig. 11. The EqC 
used is shown in the inset of Fig. 11. The measurements 
were performed at 10.5 frequency points per decade. Hence 

10 
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! 
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5 10 15 
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Fig. 11. Impedance representation of the dispersion data of the 
terbium-doped YSZ sample (TZY). lz (O) Actual measurements, (ll) fit 
function dispersion. The EqC used in the fit is presented in the insert. 
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Fig. 12. Residuals plot far the fit transforms of the TZY impedance 
data which shows nonK-K behavior. Presented are the relative errors, 
A,e i and ~'im i, (a) for the real-to-imaginary transformation (O) and far 
the' imaginary-to-real transformation (F1), (b} for the complex trans- 
formation (Eq. 1 I) and (cl for the CNLS-fit. (O} = Are,i, (ll} = Air,,i. 

the number  of fit variables, M, was substantially reduced to 
40 ( -e ight  �9 values per decade, number  of data points N = 
53). In Fig. 12 the residuals plots are presented for the sep- 
arate real and imaginary (adjusted) transform fits (Fig. 
12a) and the complex function fit (Fig. 12b), while the 
residuals of the CNLS-fit are presented in the lower part. 

It is evident from this figure that the single transforms 
are very sensitive to nonK-K behavior. Especially the real- 
to-imaginary transform shows a distinct deviation from the 
zero error axis. As the complex fit function (Eq. 11) tries to 
accommodate both parts of the data set, the deviation from 
ideal behavior is less pronounced, but  the clear trace above 
and below the zero error axis is stil] a prominent indication 
that the data do not comply with the K-K transform rules. 
The form of this residuals plot is very much like the CNLS- 
fit residuals plot (Fig. 12c), as are the X~s values: 0.9 • 10 -4 
for the complex linear fit (Eq. 11) and 1.4 • 10 -4 for the 
CNLS-fit. This can be taken as an indication that the EqC 
of Fig. 11 represents one of the closest fits to this flawed 
data set. An interesting observation for this data set is that 
the • values were quite insensitive to variation of the M/N 
ratio in the range 0.4 to 1, with X~s about 10 -4 for the com- 
plex and real part  fit, and • - 10 -3 for the imaginary part 
fit. 

Systems with Blocking Electrodes 
The impedance spectra of samples with "blocking" elec- 

trodes seem to pose a problem for the K-K transformation 
as they do not appear to be finite for co -~ 0 (i.e., not return- 
ing to the real axis). Of course for very low frequencies the 
overall electronic resistance, how ever large it may be, will 
dominate the impedance spectrum and cause a, generally 
very large, finite dc-resistance for oJ -~ O. But this will take 
effect only for impractically low frequencies. When the 
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high frequency resistance has a finite value, the easiest way 
is to transform the impedance data to the admittance rep- 
resentation where the blocking electrode dispersion will 
yield a low frequency semicircle which passes through the 
origin. 

In analogy with the chain of parallel R-C circuits (Fig. 1) 
a ladder of series R-C circuits (Maxwell circuit model), as 
presented in Fig. 13, can be envisioned as basis for the fit 
function. In order to compensate for the nontransforming 
"capacitive and inductive" offset in the imaginary part  of 
the dispersion (compare Eq. 11) also a parallel capacitance 
and inductance have been added to the circuit of Fig. 13. 
With this again a l inear fit function can be formulated, now 
with Ck as adjustable parameter set 

Y(r = 1 ~1  Ck(D~i'k 
R-~ + ~=3 1 + (~k)  ~ 

1 ~-~ C ~  ] 
+ j C2r - ~ + ~ 1 + (~k)~J ' [19] 

with C1 = 1/R~ and CM = 1/LM. To test the validity of this 
l inear fit procedure a published set of admittance data, 
obtained for a single crystal of Li3N with blocking gold 
electrodes, ~2 has been used. This data set (hereafter named 
Li3N) has been subjected to a comprehensive CNLS data 
analysis which has been published recently by Macdon- 
ald. 23 In Fig. 14 both the impedance and the admittance 
representations of the Li3N dispersion are presented to- 
gether with the simulations of a CNLS-fit using the 
EQUIVALENT CIRCUIT package. The EqC used in this fit 
is presented in the inset of Fig. 14a; the associated parame- 
ter values are given in Table III. This EqC, which gave a X~ 
value of 8.3 • 10 -6 for function proportional weighting, is 
different from the one presented by Macdonald. 23 It is not 
necessarily the most physically realistic model; it just 
serves our purpose of comparing the best CNLS fit with the 
linear model transform. Similarly to the analysis of the 

R= 

t 

c, 

Fig. 13. Schematic representation of the equivalent circuit which is 
used in the linear transformation/fit,procedure of admittance data. 
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Fig. 14. Presentation of the dispersion measured for a hydrogen 
doped U3N single crystal with gold electrodes at 45~ according to 
Ref. 23. (a) Impedance representation, (b) admiltance representation. 
(O) measured data, (ll} CNLS-fit result (see Table III). The EqC used in 
the CNLS-fit is presented in the inset of Fig. 14a. 

IMP data, first the dependence of X~ on the M/N ratio, i.e., 
th number  of Tcs per decade, was investigated. The results 
are presented in Fig. 15. Clearly the best results for the 
partial  fit and transform procedures are obtained with less 
than 7 Tcs per decade, while the complex lineary fit (Eq. 19) 
is found to be much less sensitive to this parameter. A com- 
parison of the corresponding residuals plots for M = 35 is 

Table Ill. Parameter values and error estimates for the EqC used in the 
23 2 6 CNLS fit of the Li3N data. The fit yielded xp, = 8.3 x 10- using 

function proportional weighting. 
See caption Table II for the definition of the Q element. 

Element/parameter Value Rel. error (%) Unit 

R1 73.5 0.5 
Q2 Y0 4.0 x 10 -7 17 S.s ~ 

n 0.822 1.5 
R 3 430 17 
Q4 Yo 7.2 • 10 7 30 S.s ~ 

n 0.76 4 
R5 600 11 ~t 
RB 8.2 • 105 14 ~t 
Q7 Yo 2.17 • 10 -~ 4 S.s ~ 

n 0.566 1 
C8 3.52 • 10 -~ 4 F 
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Fig. 15. Influence of the M/N ratio on X~ in the weighted admit- 
tance fit procedures applied to the Li3N data: (0) for the complex fit, 
Eq. 19; (111) for the weighted real part fit with imaginary adjustment, 
(~k) for the weighted imaginary part fit. The top axis represents the 
resulting number of Tcs per decade. 

presented in Fig. 16 for the real to imaginary transform (top 
section), the imaginary to real transform (middle section), 
and the complex linear fit (bottom section). Especially for 
the complex fit a very good • value of 4.4 • 10 -6 is ob- 
tained. In the real to imaginary part  transform, the subse- 
quent parallel  C and L adjustment (cf. Eq. 10) was in- 
cluded. Without this adjustment, a rather poor fit was 
obtained, indicating that reconstruction of the imaginary 
dispersion from the real part  cannot be done with precision 
for this data set. 

When the impedance dispersion of a system with block- 
ing electrodes includes the bulk (dielectric) response, a 
shift to the admittance plane is not useful since the dielec- 
tric part  will present a straight line for co ---> ~ in the admit- 
tance representation. This problem has been recognized by 
L~ing et  al. 24 Their approach, which is also applicable in 
this context, is to add mathematically a sufficiently small 
parallel resistance value to the measured dispersion. This 
will result in a downward curving of the electrode response, 
and thus allows analysis with the linear fit functions of 
Eq. 4-10 in the impedance representation. Conversely one 
could also add a series resistance to the dispersion data and 
subsequently perform the analysis in the admittance repre- 
sentation. In the next paragraph, an example is presented 
of the application of this modified dispersion procedure to 

I 2L_ Lj3N .... .  : ~ rz_' im . . . . . . .  o~ . . . .  ~ . . . . .  1 "~ l 

z.;to_ .............. . . . . . .  ' - -  ] ~  

. t o  
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Fig. 16. Residuals plot for the complex linear fit of the Li3N data set 
with M = 35 ( -6.2 �9 values per decade). 
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Fi 9. 17. Impedance representation of the dispersion of a corroding 
Cr electrode in 0.5M sulfuric acid at -0 .95 V vs. a saturated mer- 
curous sulfate electrode (active-passive transition region). (a) Actual 
impedance data CORR according to Ref. 25-27, (b) impedance data 
after computational addition of a parallel resistance of 400 ~, de- 
noted by CORR-400. 

impedance data which present a different problem for K-K 
validation. 

Data Validation of Dispersions 

with a Negative Resistance 
A special group is formed by impedance data which in-  

cludes a single negative resistance. This phenomenon is 
mostly observed in corrosion studies. The negative differ- 
ential resistance is a direct consequence of the negative 
slope in the current/polarization curve just above the pas- 
sivation voltage. ~5 In principle this group of data cannot be 
checked for validity by the K-K transformation as was 
demonstrated by Urquidi-Macdonald e~ al. ~4 There is, how- 
ever, a simple way to resolve this problem by adding a small 
enough parallel resistance to the dispersion data so that the 
negative resistance is removed completely. This procedure, 
which is entirely compatible with the K-K transform rules, 
is similar to the alternative method proposed for the 
impedance data of blocking electrodes. 24 As an example a 
typical impedance data set (CORR) is used which was ob- 
tained for pure chromium in 0.5M sulfuric acid in the ac- 
tive-passive transit ion region (courtesy of Dr. J. A. L. Dob- 
belaar, Fig. 17a). It was the first time that this type of 
dispersion data was completely, resolved by CNLS fit- 
ring. 25-27 From the dispersion presented in Fig. 17a it can be 
estimated that adding a parallel resistance of 400 tl  is suffi- 
cient to eliminate the negative resistance and to shift the 
impedance dispersion to the second quadrant  of the com- 
plex plane, which then takes the form as presented in 
Fig. 17b. This data set, named CORR-400, contained 62 
data points over a frequency range of about 6.4 decades. 
Hence first the relation between • and the M / N  ratio 
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Fig. 18. Influence of the M/N ratio on X~, in the weighted fit 
procedures applied to the CORR-400 data: (0) for the complex fit, 
Eq. 19; (~) for the weighted real part fit with imaginary adjuslment; 
(�9 for the weighted imaginary part fit. The top axis represents the 
resulting number of Tcs per decade. 
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Fig. 20. Relative residuals for the reduced CORR-400 data set (c0 
values above 3000 rad/s excluded), (a, tap) for the complex linear 
fit and (b, bottom) CNLS-fit using an EqC as presented in Ref. 25-27. 

was investigated. The results are presented in Fig. 18. It 
is obvious that the number  of Tcs per decade is quite cru- 
cial for the partial fit and transform procedures, giving a 
reasonable result for about five to six �9 values per decade. 
As noticed before, the complex linear fit is much less af- 
fected, yielding acceptable results for nine or less �9 values 
per decade. 

The result of the complex linear fit for M = 50 (-7.6 
values per decade) is presented in the residuals plot of 
Fig. 19. The shift in the position of the residuals above co = 
3000 rad/s indicates a serious flaw in the data set. This has 
already been observed in a previous Kronig-Kramers data 
validation procedure of the CORR-400 data set, in which 
the procedure, as outlined in Ref. 15, was followed (unpub- 
lished results). Inspection of the dispersion in the imped- 
ance representation, Fig. 17b, shows that these high fre- 
quency data sets can be removed without a significant loss 
in information. 

A subsequent analysis, in which data points above co = 
3000 rad/s were excluded, gave a much improved result 
with X~ = 5.2 • 10 6 v s .  2.6 • 10 -6 for the full data set.The 
residuals plot is presented in Fig. 20a. Here a slight trace in 
both the real and imaginary parts is noticeable. This is not 
surprising as we are dealing here with a corroding system, 
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Fig. 19. Relative residuals for the complex linear fit of the CORR- 
400 data set with M = 50 (-7.6 �9 values/decade). 

which cannot be expected to be invariant  for a prolonged 
time. The increased deviation for co < 0.8 rad/s is most likely 
due to the multisine fast Fourier transform (FFT) measur- 
ing technique, which was used at low frequencies. This be- 
comes even more evident from the residuals plot for the 
CNLS-fit of the reduced data set (Fig. 20b), which also 
indicates that the applied EqC is probably too ideal. 

Discussion and Conclusions 

The linear fit and transform procedure presented here 
shows some similarities with respect to the inversion of 
dielectric relaxation spectra presented in Ref. 18, 19. A sig- 
nificant difference is that the inversion problem cannot al- 
low negative probabilities (~ fit parameters) for the %s of 
distribution of time constants. For these problems a non-  
linear fit procedure in which the %s are left free, as recently 
described by Macdonald, 28 is more appropriate. For the K- 
K transform testing, the sign of the fit parameters is irrele- 
vant  as here the goal is to obtain a close fit to the (partial-) 
data set with the K-K transformabili ty as imposed restric- 
tion. The applicability of the linear K-K testing is clearly 
demonstrated by the presented results, which were ob- 
tained for a very diverse set of immittance data. From these 
tests the picture emerges that the complex linear fit is quite 
robust with respect to the choice of the distribution and 
range of �9 values. Through inspection of the relative residu- 
als plots for these complex linear fits, it is possible to iso- 
late data that do not comply with the K-K transformation 
rules, or to indicate which part of the frequency dispersion 
of the data set is questionable. 

The single fit and transformation procedure, which in 
many instances could replace the K-K transform integrals 
(Eq. 2, 3), is quite sensitive to the choice of the parameter 
set size and even more so to the v range. It is obvious that 
the reliability of the transformation strongly depends on 
the frequency range as well as on the number  of overlap- 
ping dispersion sources in the electrochemical system. This 
is particularly true for the real to imaginary transforma- 
tion. But, if substantial  errors in the end regions of the 
dispersion are tolerable, again a simple, general, and fast 
K-K transformation is possible. 
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The additional fit of an inductance and a capacitance to 
the transformed imaginary data must be viewed more as a 
mathematical  improvement, rather than having these ele- 
ments "physically"' present in the possible equivalent cir- 
cuit model. This adjustment follows from the inadequacy of 
the model function to predict accurately the real part dis- 
persion outside the frequency range of the measured data 
(as has been indicated in the section on the Basic Principle 
of the Linear Fit). 

As a rule of thumb we can conclude that, for the single fit 
and transformation, the v range should be equal to the in- 
verse co range with a distr ibution of 6 or 7 Tcs per decade. 
More field testing will be necessary, however, to obtain a 
clear understanding. With respect to the linear testing pro- 
cedure in other immittanee representations, the formulas 
can simply be derived from the equations presented here. 
For example a complex linear fit in the dielectric represen- 
tation is obtained by dividing Eq. 19 by jcoCo, where C0 is 
the capacitance of the empty cell 

M-~ Cs [~1 Cs + C~] [20] 
e(coi) = C~ + E 1 + (co,Tk) ~ - j 1 + (-~1%) 2 co~ j 

k-~. k=2 

-1 

with C~ and C~/Co and C~ = (RoCo) , and the parallel induc- 
tance omitted. 

The main  advantage of these linear fit / transform proce- 
dures is that  no initial  guesses are required. As there is no 
iterative convergence procedure, calculation times can be 
short (under 5 s for a data set of 65 frequencies and 50 
parameters, using a personal computer with a 66 MHz 
80486-DX2 and double precision reals). Hence the linear 
complex fit procedure could be used as a "K-K compliance 
filter" directly after the measurement has been finished. 
With the latest version of LEVM, ~9 it is in principle possible 
to perform all these suggested l inear fit procedures and 
K-K transform tests. 

A further advantage of this procedure over the CNLS-fit 
of a simple multi-R-C circuit is that no negative time con- 
stants can occur as these have been defined as positive 
quantities. The problem with a negative T value is that then 
either the resistance or the capacitance is negative. This 
situation is not K-K compatible, and a CNLS fit which 
yields one or more negative �9 values may mask nonK-K 
behavior in certain data sets. The major drawback of this 
l inear approach is that there is not yet a theoretical basis 
with which the observed behavior can be explained. Also 
the parameter sets do not seem to have a direct connection 
with the physical dispersive processes. Hence no distribu- 
tion of Tcs can be extracted, which is one of the advantages 
of the recently published modified multi-R-C CNLS-fit 
p rocedure /F ina l ly ,  it would be interesting to test the pos- 
sibilities of data extrapolation using the l inear complex fit. 
Especially for the determination of the corrosion resistance 
in corroding systems this would be valuable. Further tests 
in this direction will be performed, but  for a "full" con- 
struction of the possible low frequency dispersion, the se- 
ries capacitance in Eq. 11 must be omitted. It should be 
stressed here that the additional inductances and capaci- 
tances only have a meaning with respect to the fit within 
the frequency range of the data. 
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