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Abstract. Global retrievals of near-infrared sun-induced

chlorophyll fluorescence (SIF) have been achieved in the

last few years by means of a number of space-borne at-

mospheric spectrometers. Here, we present a new retrieval

method for medium spectral resolution instruments such as

the Global Ozone Monitoring Experiment-2 (GOME-2) and

the SCanning Imaging Absorption SpectroMeter for Atmo-

spheric CHartographY (SCIAMACHY). Building upon the

previous work by Guanter et al. (2013) and Joiner et al.

(2013), our approach provides a solution for the selection

of the number of free parameters. In particular, a backward

elimination algorithm is applied to optimize the number of

coefficients to fit, which reduces also the retrieval noise and

selects the number of state vector elements automatically.

A sensitivity analysis with simulated spectra has been uti-

lized to evaluate the performance of our retrieval approach.

The method has also been applied to estimate SIF at 740 nm

from real spectra from GOME-2 and for the first time, from

SCIAMACHY. We find a good correspondence of the abso-

lute SIF values and the spatial patterns from the two sen-

sors, which suggests the robustness of the proposed retrieval

method. In addition, we compare our results to existing SIF

data sets, examine uncertainties and use our GOME-2 re-

trievals to show empirically the relatively low sensitivity of

the SIF retrieval to cloud contamination.

1 Introduction

During the process of photosynthesis, the chlorophyll-a of

photosynthetically active vegetation emits a small fraction of

its absorbed energy as an electromagnetic signal (e.g., Zarco-

Tejada et al., 2003). This signal, called sun-induced fluores-

cence (SIF), takes place in the 650–800 nm spectral region.

Several studies have addressed the estimation of SIF from

ground-based, airborne and spaceborne spectrometers in the

last decade (see Meroni et al., 2009, and references therein).

Here, we focus on SIF retrieval methods from space and their

achievements.

The first global SIF observations have been achieved in the

last 4 years by studies from Joiner et al. (2011), Frankenberg

et al. (2011a) and Guanter et al. (2012) using data from the

Fourier transform spectrometer (FTS) on board the Japanese

Greenhouse Gases Observing Satellite (GOSAT). The first

band of the GOSAT-FTS samples the 755–775 nm spectral

window with a high spectral resolution of approximately

0.025 nm, which enabled an evaluation of the in-filling of

solar Fraunhofer lines around the O2 A absorption band by

SIF. Joiner et al. (2011) based their retrieval on the strong K

line around 770.1 nm on condition that a measured irradiance

spectrum is available. In contrast, Frankenberg et al. (2011b)

and Guanter et al. (2012) used two micro fitting windows

around 757 and 770 nm by means of a reference solar irradi-

ance data set. The 757 nm spectral region contains several so-

lar Fraunhofer lines and is devoid of significant atmospheric

absorption, which minimizes the impact of atmospheric ef-

fects on the retrieval. Two micro fitting windows have also

been used by Joiner et al. (2012) to reduce noise, whereas

SIF-free Earth radiance spectra served as a reference. The

method proposed by Frankenberg et al. (2011a) relies on the

physical modeling of the in-filling of several solar Fraun-

hofer lines by SIF using the instrumental line shape func-

tion and a reference solar irradiance data set. The surface re-
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flectance, atmospheric scattering as well as wavelength shifts

have to be estimated for each measurement. Instead of explic-

itly modeling these parameters for each measurement, Guan-

ter et al. (2012) proposed a data-driven approach, which is

based on a singular value decomposition (SVD) technique.

The basic assumption for this retrieval method is that any ra-

diance spectrum can be expressed as a linear combination of

singular vectors plus fluorescence. A caveat of this technique

is an arbitrary selection of the optimum number of singu-

lar vectors, which has an effect on the retrieval accuracy and

precision.

One intrinsic limitation of the GOSAT-FTS data arises

from the coarse resolution of global maps (2◦ × 2◦), which

is caused by a poor spatial sampling and a relatively high re-

trieval noise (Frankenberg et al., 2011b). Therefore, it was

crucial that results from Joiner et al. (2012, 2013) indi-

cated that instruments with lower spectral resolutions but

better spatial coverage are also capable of estimating SIF

from space. Joiner et al. (2012) examined the in-filling of

the deep calcium (Ca) II solar Fraunhofer line at 866 nm by

SIF using the SCanning Imaging Absorption SpectroMeter

for Atmospheric CHartographY (SCIAMACHY) satellite in-

struments, which has a spectral resolution of approximately

0.5 nm. Spatial and temporal variations of retrieved SIF were

found to be consistent, although there is only a weak inten-

sity of SIF in the examined spectral range. In this context,

it should be considered that the representativeness of spa-

tially mapped SIF is enhanced by using data from instru-

ments which provide a continuous spatial sampling.

A further achievement was the data-driven study of Joiner

et al. (2013). They proposed another SIF retrieval method

for the Global Ozone Monitoring Experiment-2 (GOME-2),

which enabled a significant increase of the spatiotemporal

resolution with respect to previous works. In principle, this

proposed approach extends the SVD (or principal component

analysis, PCA) technique applied exclusively on solar Fraun-

hofer lines (Guanter et al., 2012) to a broader wavelength

range making also use of atmospheric absorption bands (wa-

ter vapor, O2 A).

Here, we present a new SIF retrieval method using a com-

parable methodology to that developed for ground-based

instrumentations by Guanter et al. (2013) and for space-

based measurements by Joiner et al. (2013). A feature of

the method is the automated determination of the principal

components (PCs) needed. The proposed retrieval method is

applied to simulated data (Sect. 4) as well as to data from

GOME-2 and SCIAMACHY (Sect. 5). Besides a time series

of GOME-2 SIF covering the 2007–2011 time period, we are

able to present a SIF data set from SCIAMACHY data for the

August 2002–March 2012 time span. We compare those data

sets with each other (Sect. 5.3) and with existing SIF data sets

from GOME-2 (Joiner et al., 2013) and GOSAT data (Köhler

et al., 2015) (Sect. 5.4). In addition, we examine uncertain-

ties (Sects. 5.5, 5.6) and assess the effect of clouds on the
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Figure 1. Sample GOME-2 spectrum in band 4. The spectral win-

dow that we use for SIF retrievals (720–758 nm) is marked in green.

The reference fluorescence emission spectrum is depicted in green.

retrieval through the analysis of different cloud filter thresh-

olds (Sect. 5.7).

2 Instruments

2.1 GOME-2

The Global Ozone Monitoring Experiment-2 (Munro et al.,

2006) is a nadir-scanning medium-resolution UV/VIS spec-

trometer on board EUMETSAT’s polar orbiting Mete-

orological Operational Satellites (MetOp-A and MetOp-

B). MetOp-A (launched in October 2006) and MetOp-B

(launched in September 2012) each carry 13 instruments per-

forming operational measurements of atmosphere, land and

sea surface. The polar orbit satellites reside in orbit at an al-

titude of approximately 820 km and have an equator cross-

ing time near 09:30 local solar time. One revolution takes

around 100 min. GOME-2 was designed to measure distribu-

tions of various chemical trace gases in the atmosphere. For

this purpose, the spectral range between 240 and 790 nm is

covered by four detector channels. The fourth channel (590–

790 nm) encompasses the SIF wavelength region (Fig. 1).

This channel has a spectral resolution of 0.5 nm and a signal-

to-noise ratio (SNR) up to 2000. Here, we use a subchannel

from GOME-2 on board MetOp-A, namely the spectral re-

gion between 720 and 758 nm covering 191 spectral points,

to evaluate the SIF at 740 nm. The large default swath width

of 1920 km with a footprint size of 80km × 40km enables

a global coverage within 1.5 days. The GOME-2 level 1B

product consists of radiance spectra and a daily solar irra-

diance measurement. Satellite data covering the 2007–2011

time period were used for this study.

2.2 SCIAMACHY

SCIAMACHY (Bovensmann et al., 1999) was 1 of 10 in-

struments on board European Space Agency’s Environmen-

tal Satellite (ENVISAT). ENVISAT was launched in March
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2002 and became non-operational in April 2012, when com-

munications were lost. Similar to MetOp-A, the satellite

has a sun-synchronous orbit at an altitude of approximately

800 km with an equator overpass time at 10:00 local solar

time. Like GOME-2, the SCIAMACHY instrument was de-

signed to measure distributions of various chemical trace

gases in the atmosphere. Overall, a spectral range of 240–

2400 nm is covered by eight detector channels, whereas

a subset of the fourth channel (604–805 nm, spectral reso-

lution of 0.48 nm, SNR up to 3000) is used to evaluate the

amount of SIF at 740 nm.

SCIAMACHY measured alternately in nadir and limb

mode, which leads to blockwise rather than continuous nadir

measurements. Due to this default scan option, a global cov-

erage is achieved within 6 days. The swath width of 960 km is

only half as large as the swath width of GOME-2 in the nomi-

nal mode while the spatial resolution along track is 30 km and

the nominal across track pixel size is 60 km. Due to data rate

limitations, radiances in the spectral range of interest were

downlinked at 240 km (four pixels binned) across track. Us-

ing the spectral interval between 720–758 nm to retrieve SIF

leads therefore to a reduced spatial resolution by a factor of

2–3 compared to GOME-2.

As stated in Lichtenberg et al. (2006), two relevant correc-

tions have to be applied in the processing chain of the level

1 data for the considered wavelength range: the memory ef-

fect correction and the dark signal correction. The first cor-

rection is probably more critical and a potential error source

in the SIF retrieval because the memory effect modifies the

absolute value of the signal and it involves the risk of ar-

tificial spectral features in the measurements. Both changes

produce artifacts that are expected to influence SIF retrieval

results since the level of SIF in comparison to the total signal

at the sensor is low. Satellite data of SCIAMACHY for the

August 2002–March 2012 time span have been used for this

study.

3 Retrieval methodology

The main challenge when retrieving SIF from space-borne

instruments is to isolate the SIF signal from the about

100-times-more-intense reflected solar radiation in the mea-

sured top-of-atmosphere (TOA) radiance spectrum. This sec-

tion describes a strategy which is similar to the data-driven

method proposed by Joiner et al. (2013).

3.1 Fundamental basis

Assuming a Lambertian reflecting surface in a plane-parallel

atmosphere, the TOA radiance measured by a satellite sensor

(F TOA) can be described by:

F TOA =
ρp

π
· I sol · µ0, (1)

where ρp is the planetary reflectance, I sol is the solar ir-

radiance at the TOA and µ0 is the cosine of the solar zenith

angle (bold characters indicate variables with a spectral com-

ponent). Verhoef and Bach (2003) split ρp into contributions

due to atmospheric path radiance, adjacency effect (path ra-

diance from objects outside the field of view), reflected sky-

light by the target and reflected sunlight by the target. As-

suming that a fluorescent target is observed, Eq. (1) can be

modified as follows

F TOA =
ρp

π
· I sol · µ0 + Fs · hf · T ↑, (2)

where Fs is the amount of sun-induced fluorescence at

740 nm (second peak of the emission spectrum), hf is a nor-

malized reference fluorescence emission spectrum and T ↑ is

the atmospheric transmittance in the upward direction.

As stated above, we use a statistical modeling approach

similar to Joiner et al. (2013) in order to separate spectral fea-

tures from planetary reflectance (including atmospheric ab-

sorption, atmospheric path radiance, surface reflectance) and

SIF. The basic idea consists of modeling low and high fre-

quency components of the planetary reflected radiance with

a sufficient accuracy to be able to evaluate the changes in the

fractional depth of solar Fraunhofer lines by SIF. It has to

be emphasized that the main information for the retrieval is

expected to originate from solar Fraunhofer lines, as simu-

lations with a flat solar spectrum (Joiner et al., 2013) have

shown that essentially no information about SIF can be re-

trieved. More specifically, it was not possible to disentangle

atmospheric absorption from the SIF signal in the O2 A-band

with the statistical approach.

Here, I sol is known through satellite measurements (from

GOME-2 and SCIAMACHY) or the external spectral library

from Chance and Kurucz (2010), which has been used for the

sensitivity analysis. Since hf is a prescribed spectral function,

it is necessary to find appropriate estimates for ρp and T ↑ to

retrieve the amount of SIF at 740 nm (Fs). In order to model

ρp with a high accuracy, we use a combination of a third-

order polynomial in wavelength to account for the spectrally

smooth part and a set of atmospheric principal components

(PCs) for the high frequency pattern of the spectrum. Thus,

the preliminary forward model can be written as

F TOA = I sol ·
µ0

π
·

3∑

i=0

(αi ·λi)·
nPC∑

j=1

(βj ·PCj )+Fs ·hf ·T ↑, (3)

where αi , βj , Fs and T ↑ are the unknowns which are neces-

sary to generate a synthetic measurement. Note that Eq. (3) is

equivalent to the forward model from Joiner et al. (2013) and

Guanter et al. (2015). The difference lies in the derivation and

interpretation, since so far no assumptions concerning effects

of atmospheric scattering were made. The spectrally smooth

contribution can mostly be attributed to surface reflectance

and atmospheric scattering effects, which is henceforth re-

ferred to as apparent reflectance. The spectrally oscillating
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part is due to distinct atmospheric absorption features. Al-

though the continuum absorption of the atmosphere is part

of the apparent reflectance (low frequency component), we

formally refer to the oscillating component of the spectrum

as effective atmospheric transmittance.

The statistically based approach assumes that spectra with-

out SIF emission can reproduce the variance of the planetary

reflectance also for spectra which contain SIF. For this pur-

pose, the data are divided into a training set (measurements

over non-fluorescent targets) and a test set (basically all mea-

surements over land). According to Eq. (3), spectra of the

training set need to be disaggregated into low and high fre-

quency components in order to generate atmospheric PCs as

described below.

3.2 Preparation of training set and generation of

atmospheric principal components

The training set is exclusively composed of measurements

over non-fluorescent targets and we assume that Eq. (2) is

valid. As in Joiner et al. (2013), we use a principal compo-

nent analysis (PCA) to convert these SIF-free spectra into

a set of linearly uncorrelated components (PCs). Only a sub-

set of all PCs (the same number as spectral points in the

fitting window) will be needed to reconstruct each SIF-free

spectrum with an appropriate precision.

First of all, ρp is obtained through the normalization of the

spectrum by the solar irradiance (I sol) (which is also mea-

sured by GOME-2/SCIAMACHY), the cosine of the solar

zenith angle (µ0) and π . Figure 2 depicts such a normal-

ized sample GOME-2 measurement in the 720–758 nm fit-

ting window. The next step requires an estimate of the appar-

ent reflectance (or the spectrally smooth component). There-

fore, we assume two windows mostly devoid of atmospheric

absorption within the retrieval window, namely the spectral

regions between 721.5–722.5 and 743–758 nm, in order to

estimate the apparent reflectance by a third-order polyno-

mial. This is also shown in Fig. 2.

In the next step, the apparent reflectance estimate is used

to normalize ρp in order to separate the effective atmospheric

transmittance (high frequency component). If all spectra

from the training set are processed in this way, a PCA is ap-

plied in order to obtain the atmospheric PCs. It is necessary to

capture a sufficient number of atmospheric states within the

training set so that the effective atmospheric transmittance

can also be adequately constructed for the test data. Effects

of correlation between the PCs and SIF will be investigated

in detail below (Sect. 4.3).

An important advantage in using this method is that there

is no need to perform explicit radiative transfer calcula-

tions to characterize atmospheric parameters, which affect

the measurement (e.g., temperature and water vapor profiles).
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Figure 2. Estimation of apparent reflectance (green) from a sam-

ple GOME-2 measurement in the 720–758 nm fitting window by

a third-order polynomial using atmospheric windows (red).

3.3 Estimation of the ground to sensor transmittance

According to the preliminary forward model in Eq. (3), an es-

timate of T ↑ is the last necessary step to be able to retrieve

SIF.

As it was shown by Joiner et al. (2013), T ↑ can be ap-

proximated in terms of the total atmospheric transmittance

in downward and upward direction (T ↓↑). Hence, T ↓↑ and

T ↑ are simultaneously computed from the state vector ele-

ments in the forward model from Joiner et al. (2013). Here,

we estimate an effective ground to sensor transmittance (T e
↑)

prior to solving the forward model in order to obtain an addi-

tional model parameter. The equation relating T e
↑ to T e

↓↑ is

given by

T e
↑ = exp

[
ln(T e

↓↑) ·
sec(θv)

sec(θv) + sec(θ0)

]
, (4)

where θv is the viewing zenith angle and θ0 is the solar zenith

angle. Each measurement is normalized in the same way as

for the training set to separate T e
↓↑, that is in turn used to esti-

mate T e
↑ through Eq. (4). Figure 3 depicts such an estimation

for a sample GOME-2 measurement.

However, a few implications arise through this approach,

which are evaluated in the following.

Firstly, it is necessary to assume zero SIF, although these

measurements potentially contain a SIF emission. Hence, an

in-filling of atmospheric absorption lines might occur, which

potentially affects the estimation of T e
↑ and in turn the re-

trieved SIF. By means of simulated TOA radiances (a de-

tailed description can be found in Sect. 4), it becomes appar-

ent that this effect is negligible. We have tested two scenarios

without instrumental noise, a medium and a large difference

in SIF emission (2.1 and 4.3mWm−2 sr−1 nm−1), and calcu-

lated T e
↑. Figure 4 depicts the resulting changes in T e

↑ due to
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Figure 3. Estimation of the effective atmospheric transmittance in

down- and upward direction (black) and in upward direction (red)

using Eq. (4) from a sample GOME-2 measurement in the 720–

758 nm fitting window.

the in-filling of atmospheric absorption lines, and as can be

seen, differences are only marginal.

Another consequence of the T e
↑ estimation procedure

arises through the normalization of T e
↑ to one, although

continuum absorption exists. This can lead to a bias in re-

trieved SIF values for inclined illumination/viewing angles

and a high optical thickness (Guanter et al., 2015). It should

also be noted, that the first assumed atmospheric micro-

window (721.5–722.5 nm) might be influenced by water va-

por absorption to a small extent, which is due to the in-

strumental resolution of about 0.5 nm. In consequence, too

high retrieval results may occur. However, the contribution

of SIF in the lower wavelengths of the fitting window is de-

creased for two reasons: an increasing distance to the max-

imum of the prescribed spectral function at 740 nm and at-

mospheric absorption (except for the atmospheric micro-

window). These theoretical considerations as well as our sim-

ulation results suggest that this effect is also negligible.

Our forward model is linearized as a result of the imple-

mentation from T e
↑ as a model parameter. That means the

estimation problem could in principle be solved without iter-

ations. However, it should be noted that the SIF estimation is

inherently non-linear, and a linearisation is necessary, either

at each step of an iterative algorithm (Joiner et al., 2013) or

in advance.

3.4 Final forward model

By using I sol,λ,PC and T e
↑ as model parameters and merg-

ing the high and low frequency components to model the

planetary reflectance, the final forward model results in

F TOA = I sol ·
µ0

π
·

3∑

i=0

nPC∑

j=1

(γi,j ·λi ·PCj )+Fs ·hf ·T e
↑, (5)

where γi,j and Fs are the state vector elements. Thus, there

are 4 · nPC + 1 coefficients to be derived by an ordinary least
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Figure 4. Changes in the estimated effective ground to sensor trans-

mittance (T e
↑) for a medium (2.1mWm−2 sr−1 nm−1, blue) and

a large (4.3mWm−2 sr−1 nm−1, black) SIF emission difference.

Simulated TOA radiances (described in Sect. 4) without instrumen-

tal noise have been used for the calculation of T e
↑ in the 720–758 nm

fitting window.

squares fit. It might be noted that Eq. (5) is a simple algebraic

transformation of Eq. (3).

A consequence of our approach is an increased number of

state vector elements compared to Joiner et al. (2013), where

the forward model is solved for ni + nPC + 1 elements. Note

that a comparable forward model to our approach was pro-

posed by Guanter et al. (2013), where the forward model

is further simplified by convolving only the most significant

PC with the low order polynomial in wavelength to avoid

an overfitting of the measurement. Here, we omit an overfit-

ting by applying a backward elimination algorithm to reduce

the number of coefficients to fit. An important and unique

consequence, which arises through this additional step, is

an automated determination of the optimum number of PCs.

The selection of the number of PCs has an effect on retrieval

accuracy and precision as it is known from studies by Guan-

ter et al. (2013) and Joiner et al. (2013). Hence, it is crucial

to provide a solution for this issue, which is described in the

following.

3.5 Backward elimination algorithm

The forward model in Eq. (5) contains 4 ·nPC +1 coefficients

to fit, whereas not all of these coefficients are required. From

a theoretical point of view, there is no reason to prefer an un-

necessarily complex model rather than a simple one. To ac-

count for this fact, we use a backward elimination algorithm.

Joiner et al. (2013) reported that only a few PCs (about 5,

exact number depends on the fitting window) can explain al-

ready a very large amount of variance (> 99.999%) of the

normalized radiance. Using too many PCs and thus coeffi-

cients to fit might therefore result in an overfitting of the mea-

surement. That means an unnecessarily complex model loses

its predictive performance by fitting noise. For this reason,

www.atmos-meas-tech.net/8/2589/2015/ Atmos. Meas. Tech., 8, 2589–2608, 2015
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we start with all candidate variables and remove each vari-

able in order to test if any removal improves the model fit to

the data. It should be noted that the coefficients of the first

PC (carrying the most variance) and the targeted SIF are ex-

cepted from being removed. If any removal improves the fit,

the removed variable, which improves the model fit the most,

is abandoned in the state vector from the forward model in

Eq. (5). This process is repeated until no further improve-

ment occurs (for each single retrieval). The improvement is

determined through the Bayesian information criterion (BIC,

Wit et al., 2012), formally defined as

BIC = −2l(2̂) + p · log(n), (6)

where l(2̂) is the log-likelihood estimate of the model, p is

the number of model parameters and n the number of spec-

tral points. In simplified terms, it represents the goodness

of fit weighted by the number of coefficients. The BIC is

used as a statistical tool for model selection and balances the

goodness of fit with the model complexity, where complex-

ity refers to the number of parameters in the model. The BIC

value itself is not interpretable, but the model with the lowest

BIC should be preferred because a lower BIC is associated

with fewer model parameters and/or a better fit.

It should be mentioned that there are also other methods

to compare and select models in order to avoid problems of

overfitted measurements. Here, we decided to use the BIC

because it penalizes the number of model parameters the

most. It should further be noted that it would be necessary

to test all possible combinations of model parameters to find

the “best” model, which is computationally too expensive.

For this reason, a stepwise model selection (backward elimi-

nation) is performed.

Using the backward elimination algorithm has the conse-

quence that the number of provided PCs is unimportant, as

long as there are more PCs provided than actually necessary

for an appropriate fit. In reverse it means that the optimum

number of PCs is determined automatically. The detailed be-

havior of this supplementary step in comparison to a simple

linear regression using all potential coefficients (all candidate

variables) will be shown below in Sect. 4.3.

3.6 Uncertainty estimation

In order to assess the uncertainty of the SIF measurements,

the 1σ retrieval error is calculated by propagating the mea-

surement noise. We assume that measurement noise can be

characterized by spectrally uncorrelated Gaussian noise. In

this case, following Sanders and de Haan (2013), the signal-

to-noise ratio (SNR) can be calculated for any radiance level

if the SNR is known for a reference radiance level Fref at

a reference wavelength λref
i following

SNR(λi) = SNRref ·

√
F(λi)

Fref
. (7)

The measurement noise scales with the square root of the

signal level, which is an appropriate assumption for grating

spectrometers such as GOME-2 and SCIAMACHY. Here,

we determine SNRref for each measurement (simulated and

real) from the averaged radiance (Fref) from 757.7–758 nm

using calculations of the SNR vs. level 1B calibrated radi-

ances (also averaged from 757.7–758 nm) under defined con-

ditions (2 % albedo, solar zenith angle of 0◦, integration time

of 1.5 s) performed by EUMETSAT. The error is then calcu-

lated through the evaluation of the retrieval error covariance

matrix given by

Se =
(

KTS−1
0 K

)−1
, (8)

where K is the Jacobian matrix formed by linear model pa-

rameters from Eq. (3) and S0 is the measurement error co-

variance matrix, which is a diagonal matrix (because of the

assumption of spectrally uncorrelated noise) with the ele-

ments

σ 2
i =

(
F(λi)

SNR(λi)

)2

. (9)

In order to assess the restriction for the precision of spa-

tiotemporal SIF composites due to instrumental noise only,

the standard error of the weighted average can be calculated

for each grid cell by

σnoise(Fs) =
1√∑n

i=1(1/σi)2
, (10)

where Fs is the mean SIF value, and σi is the 1σ retrieval

error given by Eq. (8).

Furthermore, the standard error of the mean from monthly

mapped SIF has been computed for SCIAMACHY and

GOME-2 as follows

SEMFs
=

σret√
n
, (11)

where σret is the standard deviation and n is the number of

observations per grid cell. In contrast to Eq. (10), this value

is a measure of instrumental noise plus natural variability of

SIF in the considered time range.

4 Sensitivity analysis

The retrieval approach has been tested for a wide range

of conditions using simulated radiances in order to assess

retrieval precision and accuracy, the effect of the back-

ward elimination algorithm as well as the optimal retrieval

window. This section describes the underlying simulations

briefly and examines retrieval properties and advantages with

respect to a simple linear model without a backward elimi-

nation.
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4.1 Simulated TOA radiances

As in Joiner et al. (2013), we use simulated sun-normalized

TOA radiances from the Matrix Operator MOdel (MOMO)

radiative transfer code (Fell and Fischer, 2001) with a spec-

tral sampling of 0.005 nm. We take the widely used spectral

library from Chance and Kurucz (2010) to simulate the so-

lar irradiance. The simulations include two viewing zenith

angles (0 and 16◦), four solar zenith angles (15, 30, 45 and

70◦), two atmospheric temperature profiles (middle latitude

summer and winter), four surface pressures (955, 980, 1005

and 1030 hPa), four water vapor columns (0.5, 1.5, 2.5 and

4.0 gcm−2), three aerosol layer heights (500–700, 600–800

and 700–900 hPa) using a continental aerosol model and five

aerosol optical thicknesses at 550 nm (0.05, 0.12, 0.2, 0.3

and 0.4). Apart from the observation and illumination geom-

etry, simulations for 480 different atmospheric states have

been carried out in order to test the retrieval. In this case,

the training set uses a spectral library of 10 different soil

and snow surface reflectance spectra, which means that the

training data contain 38 400 samples. A set of top-of-canopy

(TOC) reflectances and SIF spectra derived with the Fluor-

SAIL radiative transfer model has been utilized to produce

the test data set. The surface reflectance is thereby a function

of chlorophyll content and leaf area index (LAI), while SIF is

a function of chlorophyll content (5, 10, 20 and 40 µgcm−2),

LAI (0.5, 1, 2, 3 and 4 m2 m−2) and quantum efficiency

(which affects the intensity of the SIF flux; 0.02, 0.05 and

0.08). It follows from these 60 diverse TOC fluorescence

spectra and various simulations that the test data are com-

posed out of 230 400 samples. We convolve the high spec-

tral resolution TOA spectra (0.005 nm) to a lower resolution

spectrometer grid with a 0.5 nm full-width at half-maximum

and a spectral sampling interval of 0.2 nm which is similar to

GOME-2 and SCIAMACHY. A realistic instrumental noise

with respect to the calculated SNR from GOME-2 (in rela-

tion to the radiance level at a reference wavelength) provided

by EUMETSAT is then added to the spectra using Eq. (7).

4.2 End-to-end simulation

Figure 5 depicts the result of the end-to-end simulation using

the described retrieval approach with a fitting window rang-

ing from 720–758 nm and providing eight PCs (derived from

the synthetic training set). The mean and standard deviation

of the 480 simulated atmospheric states as well as the illumi-

nation and observation angles were calculated for each of the

60 TOC SIF spectra.

The good correlation between simulated and retrieved SIF

in Fig. 5 suggests that the retrieval approach is basically ap-

propriate for the separation of the SIF signal from the TOA

radiance. However, to enhance confidence and to prove that

several potential systematic effects can be excluded, we de-

pict the retrieved minus simulated SIF in dependence on the
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Figure 5. Input vs. retrieved SIF at 740 nm of the end-to-end sim-

ulation using the retrieval window from 720–758 nm and providing

eight PCs. The average of the retrieved SIF for each top-of-canopy

(TOC) measurement is shown together with its standard deviation

(error bar). A linear fit of all TOC means is shown in red.

simulated solar zenith angle, the water vapor column and

aerosol optical thickness at 550 nm in Fig. 6.

The only visible bias is with respect to the solar zenith

angle. Low illumination angles cause a slightly higher vari-

ance, which can be expected since the noise level increases

with a higher TOA radiance.

Figure 7 illustrates the extent to which the theoretical ran-

dom error, calculated through Eq. (8), matches the actual pre-

cision error. It can be seen that the root-mean-square error

(denoted by crosses) is higher than the majority of our theo-

retical error estimates, but well within the statistical spread.

This is due to the fact that the forward model is an approxi-

mation; therefore, small systematic errors (as can be seen in

Fig. 5) occur, which are not represented in the retrieval error

covariance matrix Se. Furthermore, Fig. 7 reveals that the er-

ror (theoretical and actual) increases slightly with the signal

level.

In view of the good correspondence between input and

retrieved SIF in the end-to-end simulation, it can be stated

that the retrieval method is appropriate. One limitation of this

sensitivity study consists of the absence of clouds, which in-

evitably impact the retrieval of SIF. The result of other simu-

lation studies by Frankenberg et al. (2012) and Guanter et al.

(2015) suggests that an underestimation of SIF can be ex-

pected in the presence of clouds. The reason is a shielding

effect, which is not captured by the forward model. Neverthe-

less, this should be of secondary importance when evaluating

the pure retrieval methodology. Furthermore, we will assess
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Figure 7. Estimated SIF error in dependence on the simulated so-

lar zenith angle (SZA) for the same retrieval properties as in Fig. 5

(eight provided PCs, 720–758 nm retrieval window). The vertical

bar represents the median, the box/error bar covers 50/90 % of the

theoretical random errors as calculated from Eq. (8). The crosses de-

note the estimated root-mean-square errors of the simulation-based

retrieval test.

the impact of clouds on the retrieval based on real satellite

measurements in Sect. 5.7.

4.3 Influence of number of PCs used and backward

elimination

We performed the retrieval several times using 5–25 PCs in

order to assess the sensitivity to the number of provided PCs.

In addition, the backward elimination algorithm was disabled

(all 4 · nPC + 1 coefficients from Eq. 5 are used) to evaluate

whether the algorithm is capable of reducing the noise and

avoid an overfitting. Results are presented in Fig. 8 in form

of various statistical comparisons which are evaluated and

described below.

The first plot in Fig. 8 shows the average number of se-

lected atmospheric PCs and coefficients as a function of pro-

vided PCs. This plot is insufficient to decide how many at-

mospheric PCs should be provided to the algorithm, but it re-

veals that a saturation occurs at about seven selected PCs and

15 coefficients (combination of a third-order polynomial in

wavelength with individual PCs), respectively. In the follow-

ing, it should be taken into account that the linear model fit

contains all 4 ·nPC +1 coefficients, while the backward elim-

ination algorithm selects a maximum number of nine PCs/21

coefficients with a probability of not being exceeded in 90 %

of cases.

The bias which was calculated through the mean differ-

ence of retrieved minus input SIF represents the accuracy

of the retrieval. It can be seen that the bias drops down to

a value close to zero when providing more than seven PCs

for both the linear model fit and the backward elimination

fit. Using all coefficients leads to a slightly increasing pos-

itive bias associated with a larger number of PCs, which is

not the case when the backward elimination is applied. Con-

sequently, an unnecessary complex model would potentially

result in overestimated SIF values.

A difference between the disabled and enabled backward

elimination algorithm can also be seen in the comparison of

the mean standard deviation. Here, the resulting standard de-

viations of the retrieved SIF under differing atmospheric con-

ditions for the 60 TOC SIF spectra were averaged to assess

the retrieval precision. It can be noted that the precision of

the backward elimination fit remains constant, while the lin-

ear model fit loses precision with a larger number of PCs.

Also this comparison suggests providing at least seven PCs

to the retrieval.

More pronounced differences arise in the comparison be-

tween the mean Bayesian information criterion (BIC) values.

This fact is expected since the number of coefficients serves

as weight for this criterion (as described in Sect. 3.5). For an

interpretation of the BIC it has to be noted that the model

with the lowest value is to be preferred. As a consequence,

the BIC can be used to determine the appropriate number of

PCs for the retrieval. It turns out that six to eight PCs should

be used for the linear model fit using all coefficients, while

at least eight PCs should be provided for the backward elimi-

nation fit. This finding concurs with the results from the pre-

vious comparisons and supports the applicability of this cri-
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Figure 8. The plot on the left shows the average number of selected PCs (blue) and coefficients (green) as a function of PCs provided to

the backward elimination algorithm. In the following, the retrieval results for the linear model fit using all potentials coefficients (red) are

compared to the backward elimination fit (blue). Depicted are the bias (mean difference of retrieved minus input SIF), the average standard

deviation of retrieved SIF for the 60 TOC SIF spectra (SD) and the mean Bayesian information criterion (BIC).

terion. It should be mentioned that the order of magnitude of

BIC values clearly shows that the backward elimination fit

should be preferred in any case. A potential overfitting of the

measurement can be successfully prevented in this way.

Theoretically, there should be no more variability in data

points for large numbers of initial PCs if the model parameter

selection is enabled. Although Fig. 8 basically reflects this

expectation, there is still a low variability. The reason can be

found in the stepwise model selection, which is performed

because a test of all possible model parameter combinations

would be computationally too expensive (Sect. 3.5).

Even if differences are small, it can be concluded that the

accuracy (no significant bias) and precision (decreased av-

erage standard deviation) are enhanced when the backward

elimination is enabled. Hence the noise is reduced by select-

ing only appropriate coefficients which is expected to be of

particular importance for real satellite measurements. Un-

fortunately, there is no ground truth against which the re-

trieval could be adjusted or validated for real satellite mea-

surements. As a consequence, it is not possible to determine

the most appropriate number of PCs for real satellite data.

Thus, it is advantageous that the backward elimination algo-

rithm ensures stable results, regardless how many PCs are

provided (with the restriction that there is a minimum num-

ber of required PCs). Furthermore, an overfitting of the mea-

surement is avoided by using the discussed algorithm.

As a conclusion of these findings, we decided to provide

initially 10 PCs for the retrieval applied to real GOME-2 and

SCIAMACHY data. The backward elimination algorithm se-

lects the required model parameters (a subset of candidate

parameters from Eq. 5) based on the BIC for each pixel au-

tomatically. In order to prove this assumption and to show

that there are no significant correlations of the SIF spectrum

to any of the selected model parameters, we supplied 10 PCs

(as for the retrieval with satellite data) and calculated the cor-

relation error matrix following Govaerts (2010) for a sample

fit (Fig. 9).

Table 1. Comparison of different retrieval windows. Shown is the

linear fit (retrieved SIF = intercept + slope · input SIF) for supply-

ing the most appropriate number of PCs (determined as in Fig. 8).

Exp. Fitting window No. of PCs linear fit

1 735–758 5 y = 0.09 + 0.91 · x
2 730–758 6 y = 0.10 + 0.89 · x
3 725–758 7 y = 0.05 + 0.92 · x
4 720–758 8 y = 0.04 + 0.99 · x
5 715–758 10 y = 0.04 + 0.97 · x
6 710–758 11 y = 0.26 + 0.86 · x

As can be seen, correlations of selected model parame-

ters with T e
↑ ·hf are not perfectly zero but absolute values do

not exceed 0.3. Higher correlations between other model pa-

rameters occur, especially for those containing the same PC.

However, this is unimportant since it is not intended to inter-

pret the concerned coefficients. These model parameters are

solely necessary to obtain an appropriate fit to the measure-

ment. Nevertheless, it should be noted that higher correla-

tions between T e
↑ ·hf and other model parameters cannot per

se be excluded because the algorithm selects the model pa-

rameters for each single measurement independently of cor-

relations. A further test of the correlation of the PCs obtained

by SCIAMACHY and the assumed SIF spectral shape (hf)

suggests that there are only low correlations (mean correla-

tion coefficient is 0.2).

4.4 Selection of the retrieval window

In order to justify the 720–758 nm retrieval window, we per-

formed retrievals in additional fitting windows (710–758,

715–758, 725–758, 730–758, 735–758 nm). Table 1 provides

the linear fit results for supplying the most appropriate num-

ber of PCs to the retrieval algorithm in each tested fitting

window. This number has been determined with the help of

a statistical comparison as it is shown in Fig. 8.
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Figure 9. Correlation error matrix of a sample retrieval. A total of 10 PCs were supplied, atmospheric conditions were set to a middle latitude

summer temperature profile, 955 hPa surface pressure, 700–500 hPa aerosol layer height, 0.05 aerosol optical thickness, 0.5 gcm−2 water

vapor column. The retrieved/input SIF at 740 nm amounts to 1.72/1.79mWm−2 sr−1 nm−1.

We found that both confined and extended retrieval win-

dows lead to a slight bias. Furthermore, the extended retrieval

windows require a larger number of PCs. The selected re-

trieval window from 720–758 nm is therefore reasonable in

terms of retrieval accuracy and computation time. It might

be worth noting that the described retrieval approach sug-

gests using significantly less PCs as opposed to Joiner et al.

(2014), where the latest algorithm (V25) uses 12 PCs in a re-

trieval window ranging from 734–758 nm. In the following,

further theoretical aspects to select the retrieval window are

discussed.

It is known that vegetation has a unique, spectrally smooth

reflectance signature in the considered wavelength ranges,

which means that there are no distinct absorption lines. Nev-

ertheless, the spectral reflectance of vegetated areas changes

rapidly in the red edge region (680–730 nm), which is due

to the spectral variation in chlorophyll absorption. Using the

narrow atmospheric window at 722 nm assures that the ap-

parent reflectance (which is in turn used to estimate T e
↑) can

be modeled with sufficient precision for the part of the re-

trieval window which is affected by the red edge. Extend-

ing the retrieval window to lower wavelengths would lead

to errors in the reflectance estimation caused by a lack of

further atmospheric windows (the next spectral region with

a high atmospheric transmittance is located at wavelengths

below 710 nm). This error translates into the transmittance

estimation, which propagates to errors in SIF. Extending the

retrieval window to the O2 A-band at 760 nm would be pos-

sible and has also been shown by Joiner et al. (2013), but

a benefit cannot be expected. As already stated by Franken-

berg et al. (2011a), the separation from SIF and atmospheric

scattering properties is ambiguous when using only O2 ab-

sorption lines. Also Joiner et al. (2013) reported that the re-

moval of the O2 A-band is not accompanied with a significant

loss of information content. On the other hand, it is possible

to confine the retrieval window, whereby a loss of informa-

tion content regarding SIF is expected, which leads to a loss

of retrieval precision and accuracy as can be seen in Table 1.

Advantages of the 720–758 nm retrieval window can be

summarized as follows:

1. it covers the second peak of SIF emission at 740 nm;

2. it contains spectral regions with a high atmospheric

transmittance (between 721.5–722.5 and 743–758 nm),

which is necessary to characterize the apparent re-

flectance and in turn T e
↑.

Atmos. Meas. Tech., 8, 2589–2608, 2015 www.atmos-meas-tech.net/8/2589/2015/



P. Köhler et al.: Retrieval of sun-induced chlorophyll fluorescence 2599

5 Results

The presented SIF retrieval method has been used to pro-

duce a global SIF data set from GOME-2 data covering the

2007–2011 time period. In addition, the SIF retrieval has

been implemented for SCIAMACHY data for the August

2002–March 2012 time span. This section describes the ap-

plication of the algorithm to the satellite data, results from

spatiotemporal composites as well as a comparison to the re-

sults from Joiner et al. (2014). In addition, we compare the

GOME-2/SCIAMACHY SIF results to a SIF data set derived

from GOSAT data by Köhler et al. (2015). We also discuss an

important limitation, which arises due to the South Atlantic

Anomaly (SAA). Furthermore, the impact of clouds on the

retrieval will be assessed.

5.1 Application to GOME-2 and SCIAMACHY data

In contrast to the synthetic data set, where training and test

sets are clearly separated, the real satellite data are first par-

titioned as described below.

The selection of the training set is relevant to obtain mean-

ingful results because these data are used to model the plan-

etary reflectance of the desired measurements over land (test

set). It is therefore essential to capture as many atmospheric

states and non-fluorescent surfaces as possible within the

training set to ensure its representativeness. Random sam-

ples of measurements over areas where no SIF signal is ex-

pected (e.g., deserts, ice and sea regardless of the degree

of cloudiness) are used for this purpose. The selection of

such measurements is based on the determination of the land

cover using the International Geosphere and Biosphere Pro-

gramme (IGBP) classification (Friedl et al., 2002) derived

from MODIS data. Care is taken to ensure that only homo-

geneous, non-vegetated land cover classes or measurements

over sea and ice serve as a basis for the training set. Fur-

thermore, it has to be noted that the training set is sampled

on a daily basis for GOME-2 and a 3-day basis for SCIA-

MACHY data. The different period of time to sample the

training data is due to the reduced number of soundings from

SCIAMACHY. Based on the sampled training data, the atmo-

spheric PCs are calculated as explained earlier. Instrumental

artifacts and degradation are expected to be captured by this

method and do not need to be considered.

In general, the test set is composed of all available land

pixels, but cloud-contaminated measurements might make it

problematic to retrieve SIF since it can be expected that the

SIF signal is partly shielded in the presence of clouds, which

potentially biases the retrieval. For this reason, the range of

cloud fractions is limited to 0.5, which saves also compu-

tation time, whereas the restriction is explicitly not applied

to the training set. We use the effective cloud fraction from

the Fast Retrieval Scheme for Clouds from the O2 A-band

(FRESCO, Wang et al., 2008). In the case of GOME-2, the

provided cloud fraction is already attached to the level 1B

satellite data. The FRESCO cloud fraction data for SCIA-

MACHY were available separately and had to be collocated.

The FRESCO cloud fraction is not available for the pres-

ence of snow and ice, which is of particular relevance in the

winter time at higher latitudes. In order to obtain a complete

time series of SIF in affected regions, we evaluate also mea-

surements with an unknown cloud fraction in the presence

of snow. Hence, measurements over snow are determined us-

ing the ERA-Interim re-analysis data (Dee et al. , 2011) on

a 0.75◦ grid. The general cloud fraction threshold of 0.5 will

be further discussed in Sect. 5.7.

Following the results of our sensitivity analysis, at least

eight PCs should be provided for the SIF retrieval in the 720–

758 nm spectral window. Furthermore, it has been evaluated

that the number of provided PCs is not affecting retrieval re-

sults as long as we provide more PCs than actually necessary.

In contrast to the simulations, some PCs may also account

for instrumental effects when applying the algorithm to real

data. For this reason, we provided initially 10 PCs for the

retrieval using real satellite data. It has emerged that the al-

gorithm selects on average 6 PCs and decides in about 3 %

of cases that 10 PCs are actually needed when GOME-2 data

are used. This finding corresponds to our sensitivity analy-

sis, where on average seven PCs are selected. However, this

changes when the retrieval is applied to SCIAMACHY data.

In this case, the algorithm decides in about 40 % of cases that

10 PCs are needed. Therefore, we increased the number of

provided PCs to 20, whereas on average 14 PCs are selected.

The probability that all 20 PCs are selected is below 1 %. It

is unclear why SCIAMACHY requires twice the number of

PCs as GOME-2.

As a consequence of these findings, we provided 10 PCs

for the retrieval for GOME-2 and 20 PCs when SCIA-

MACHY data are used. The processed data can be retrieved

from ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/.

5.2 Quality control

Since it cannot be excluded that the retrieval fails for sin-

gle measurements, the retrieval results have to be checked.

This is done by using the residual sum of squares (RSS) from

each retrieval. The resulting coefficients are used to generate

a synthetic measurement which is compared with the origi-

nal measurement. The RSS value is then the discrepancy be-

tween the data and the model. One major issue, which causes

high residuals, is the South Atlantic Anomaly (SAA), dis-

cussed below in Sect. 5.5. In general, it appears that the RSS

value is around 0.5 (mWm−2 sr−1 nm−1)2. Single retrievals

are removed if the RSS is above 2 (mWm−2 sr−1 nm−1)2 for

both GOME-2 and SCIAMACHY. It turned out, that monthly

composites from GOME-2 SIF retrieval results contain strip-

ing effects from single swaths in individual cases. This issue

might be caused by special orbits (e.g., narrow swath) and

is solved by removing distinct swaths with a high average

of RSS values (above 1 (mWm−2 sr−1 nm−1)2). This striping

www.atmos-meas-tech.net/8/2589/2015/ Atmos. Meas. Tech., 8, 2589–2608, 2015
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Figure 10. Monthly composites of SIF at 740 nm for January (left column) and July (right column) 2011. The upper row depicts SIF results

using SCIAMACHY data and the rows below show SIF composites derived from GOME-2 data using our algorithm (middle row) and SIF

results provided by Joiner et al. (2014) (bottom row). The SCIAMACHY composites and results from Joiner et al. (2014) are scaled by the

relationships in Table 2 to ensure a good visual comparison.

effect was not observed for SIF results obtained from SCIA-

MACHY. Further filtering besides the residual check is not

applied to our data set.

5.3 Spatiotemporal composites

In principle, it is possible to achieve a global coverage of

SIF measurements within 1.5 days for GOME-2 and 6 days

for SCIAMACHY, but the presence of clouds prevents such

a high temporal resolution. Although it is important to con-

sider different time scales, it is common to produce monthly

means. Two monthly composites of SIF in January and

July 2011 derived from SCIAMACHY and GOME-2 data

are shown together with V25 GOME-2 SIF results provided

by Joiner et al. (2014) in Fig. 10.

Overall all three results compare very well concerning

spatial patterns, although the SIF composite derived with

SCIAMACHY is provided in a spatial resolution of 1.5◦ ×
1.5◦, whereas SIF retrievals from GOME-2 are rastered in

0.5◦×0.5◦ grid boxes. The lower spatial resolution for SCIA-

MACHY is due to the fact that the original pixels are co-

added in certain wavelength regions in order to meet down-

link limitations. However, it must be stated that absolute SIF

values obtained from SCIAMACHY are slightly lower than

from GOME-2, although such a difference is not expected

since the overpass time differs only half an hour.

One reason might be a higher cloud contamination of the

bigger footprints from SCIAMACHY. As already stated in

Sect. 4.2, simulation studies by Frankenberg et al. (2012) and

Guanter et al. (2015) have shown that an underestimation of

SIF caused by a extinction through clouds can be expected.

Atmos. Meas. Tech., 8, 2589–2608, 2015 www.atmos-meas-tech.net/8/2589/2015/
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Figure 11. GOME-2 versus SCIAMACHY data of TOA reflectance at 720 nm, FRESCO (Wang et al., 2008) cloud fractions (CF) and SIF.

Averages from February 2007 to December 2011 (rastered on 1.5◦ × 1.5◦ grid) with a cloud fraction lower than 0.5 have been used. The

linear fits are depicted as dotted lines.

Table 2. Relationship between SIF values derived from GOME-2

and SCIAMACHY on a monthly basis to scale SCIAMACHY and

V25 GOME-2 SIF values in Fig. 10. Shown is the linear fit (GOME-

2 SIF = intercept + slope · SCIAMACHY/V25 SIF) similar to those

in Figs. 11 and 14.

... vs. GOME-2 January 2011 July 2011

SCIAMACHY y = 0.03 + 1.42 · x y = 0.35 + 0.95 · x
V25 GOME-2 y = −0.09 + 2.18 · x y = 0.29 + 1.64 · x

Another possible reason could be a relative radiometric off-

set between the two satellite sensors. Therefore, we assess

the TOA reflectance at 720 nm (lower limit of the fitting win-

dow), the FRESCO cloud fraction and the retrieved SIF for

the overlapping data sets in time from GOME-2 and SCIA-

MACHY in Fig. 11.

As can be seen from the TOA reflectance comparison,

there is most likely no offset. When considering the cloud

fractions, the overall linear fit is comparable to that of the

TOA reflectance but points scatter more widely (R2 = 0.73)

with a visible tendency to higher cloud fractions of the SCIA-

MACHY data. In contrast, the scattering of retrieved SIF val-

ues is not widespread (R2 = 0.89) but GOME-2 SIF values

are higher by a factor of 1.25. In view of these results, it is

likely that lower SCIAMACHY SIF values are at least partly

associated with a higher cloud contamination. Nevertheless,

it needs to be mentioned that the relationship between SIF

values from GOME-2 and SCIAMACHY is seasonally de-

pendent. In order to ensure a good visual comparison, derived

SIF values from SCIAMACHY data are therefore scaled in

Fig. 10 by the relationship, which is obtained from monthly

means (see Table 2).

The January 2011 SIF composites in Fig. 10 comprise a

high SIF average in South America which must be treated

with caution, because this region is particularly affected by

the South Atlantic Anomaly. This limitation will be dis-

cussed in Sect. 5.5 but it should already be considered at this

point to avoid a misinterpretation. Concurrently, SIF values

in the Northern Hemisphere are close to 0, which is owing

to the inactivity of vegetation during this month. The appear-

ance of the map changes fundamentally for July. It is interest-

ing to note the high SIF average in the US Corn Belt region

with respect to other regions at the same latitude, which is

produced by large crop- and grassland areas. This region with

pronounced SIF averages was examined in detail by Guan-

ter et al. (2014) with the finding that SIF retrievals provide

a basis for a reliable estimation of gross primary production

(GPP) in cropland and grassland ecosystems. Furthermore, it

has been stated that current carbon cycle models on average

underestimate the GPP in such regions.

Figure 12 depicts a time series of monthly averages

over a sample cropland area between 100–80◦ W, 35–50◦ N

(shown in Fig. 16) in order to investigate the temporal con-

sistency of our SIF retrieval algorithm. Therefore, the re-

trieval output (without averaging the results in grid boxes)

in that area has been collocated with the IGBP classification

(Friedl et al., 2002). Those retrievals which were classified

as cropland with cloud fractions lower than 0.5 or unknown

cloud fractions in the presence of snow, serve as the basis for

the monthly SIF averages in Fig. 12. Both time series show

an aligned annual cycle with high SIF values during summer-

time. Beside the difference in absolute values (no scaling has

been employed) it is noticeable that the interannual variabil-

ity for the two time series may be slightly inconsistent, but

the difference may also be due to noise or the different sam-

pling. Considering that SIF values are close to zero during

inactive periods, the standard deviation in wintertime may be

used to estimate the precision for the SIF retrieval (specific

for the considered area and monthly averages in Fig. 12),

which is of the order of 0.2–0.4mWm−2 sr−1 nm−1. It seems

reasonable that the GOME-2 SIF data exhibit a generally

higher variability because of the fact that each SCIAMACHY

pixel is similar to four averaged GOME-2 pixels.

In order to provide an typical estimate of the uncertainty

of monthly SIF composites due to instrumental noise, Fig. 13

www.atmos-meas-tech.net/8/2589/2015/ Atmos. Meas. Tech., 8, 2589–2608, 2015
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Figure 13. Standard error of the weighted average (using Eq. (10),

measure of instrumental noise only) of GOME-2 SIF for July 2011.

shows the standard error of the weighted average (Eq. 10)

derived with GOME-2 for July 2011.

Highest uncertainties occur over bright areas associated

with a higher photon noise, e.g., deserts and regions with

snow/ice. The resulting pattern can therefore be interpreted

as an error increasing with TOA radiance.

5.4 Comparison with existing retrieval results

Since we present a similar SIF retrieval method to that pro-

posed by Joiner et al. (2013), it is reasonable to compare both

results. It should be noted that there are two released versions

of GOME-2 SIF (V14 & V25), whereas this comparison fo-

cusses on the latest version (V25) described in Joiner et al.

(2014). Main changes from V14 to V25 lie in a confined re-

trieval window (V14: 715–758 nm , V25: 734–758 nm) and

subsequently in a reduced number of PCs used (V14: 25 PCs,

V25: 12 PCs). Furthermore, the spectra are normalized with

respect to earth spectra instead of the GOME-2 solar spectra

in V25. It should be considered that the change in retrieval

window has lead to a significant decrease in absolute SIF val-

ues.

Similar to Fig. 11, a scatter plot between the V25 data set

and SIF values derived with the presented algorithm is de-
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Figure 14. SIF retrieval results from the presented algorithm ver-

sus V25 results provided by Joiner et al. (2014). SIF averages from

February 2007 to December 2011 (rastered on a 0.5◦ × 0.5◦ grid)

with cloud fractions lower than 0.5 have been used. The one-to-one

line (solid line) is depicted as well as a linear fit (dotted line).

picted in Fig. 14 for the overlapping period in time (Febru-

ary 2007 to December 2011).

It is immediately noticeable that the absolute SIF val-

ues obtained from the presented retrieval are about 2 times

higher.

This is inconsistent with our simulation-based retrieval test

with a similar fitting window to that of the V25 algorithm

from Joiner et al. (2014), which only leads to a decrease

of about 10 % in absolute values (see Table 1, Exp. 1). In

view of this discrepancy, it must be stated that there are still

large uncertainties in absolute SIF values, while spatiotem-

poral patterns compare well. At the same time, it should be

noted that a temporal consistency might be more relevant for

potential users of SIF data sets at the moment, since the ab-

solute value is not applied in current research. Although such

a large difference is basically not expected, the data sets are

highly correlated and there is a clear linear relationship. This

relationship also exhibits seasonal variations as shown in Ta-

ble 2, which has been used to scale the monthly composites

in Fig. 10 in order to ensure a good visual comparison.

Atmos. Meas. Tech., 8, 2589–2608, 2015 www.atmos-meas-tech.net/8/2589/2015/
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At this point, we are not able to judge which absolute val-

ues are closer to reality, since there is a lack of ground truth

and validation. The only possibility to assess the validity of

results from the data-driven approaches, besides the sensitiv-

ity analyses, is at present a comparison to physically based

SIF retrieval results from GOSAT data. GOSAT and GOME-

2/SCIAMACHY SIF values are expected to be different,

which is due to different overpass times, evaluated wave-

lengths (GOSAT SIF is evaluated between 755–759 nm), il-

lumination and especially observation geometries. Neverthe-

less, it can be presumed that there is a good correlation be-

tween those data sets.

In Fig. 15 we compare long-term SIF averages for

the June 2009–August 2011 time period from GOME-

2/SCIAMACHY SIF data to GOSAT SIF retrieval results ob-

tained by Köhler et al. (2015).

The averaging interval has been selected according to the

available overlapping periods for all four data sets. The un-

derlying retrieval results are rastered on a 2◦×2◦ grid, which

is due to the poor spatial sampling of the GOSAT mea-

surements. Furthermore, GOME-2/SCIAMACHY measure-

ments with a cloud fraction lower than 0.5 serve as a basis

for the long-term average while the cloud filter for GOSAT

soundings consists of an empirical radiance threshold as re-

ported in Köhler et al. (2015). As can be seen in Fig. 15,

there is an enhanced correlation to the GOSAT SIF data set

for the presented retrieval algorithm. However, a small offset

with respect to the GOSAT SIF data set can be observed in

all comparisons. Our GOME-2 SIF data has the largest off-

set, which is probably introduced by a north–south bias in the

training set (discussed in Sect. 5.6).

In view of these results, it can be assumed that the pre-

sented retrieval approach is not less valid than that of Joiner

et al. (2013). In general, spatiotemporal patterns compare

very well as can be seen in Fig. 10; nevertheless, it remains

unclear which absolute values are more accurate.

5.5 South Atlantic Anomaly

Another point to be considered is that the error estimation

might be too optimistic for large parts of the South American

continent. The reason is the South Atlantic Anomaly (SAA),

which is a region of reduced strength in the Earth’s magnetic

field. Hence, orbiting satellites are exposed to an increased

flux of energetic particles, which leads to increased noise in

the measurements. An impact of the SAA on the SIF retrieval

using GOME-2 data has also been described in the study of

Joiner et al. (2013). Here, we depict the standard error of

the mean (SEM, Eq. 11) of monthly SIF composites for Jan-

uary and July 2011 from our SIF retrieval using GOME-2

and SCIAMACHY data in Fig. 16 to illustrate the impact of

the SAA. This comparison provides also an estimate of the

uncertainty, whereas instrumental noise and natural variabil-

ity are covered. The underlying SCIAMACHY SIF values to

produce Fig. 16 are also scaled by the linear relationship in
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Figure 15. SIF retrieval results from GOSAT (evaluated at 755 nm,

Köhler et al., 2015) versus SIF retrieval results from the presented

algorithm and V25 results provided by Joiner et al. (2014). SIF av-

erages from June 2009 to August 2011 (rastered on a 2◦ × 2◦ grid)

have been used. Each evaluated grid box contains at least 26 re-

trievals using GOSAT data, included GOME-2/SCIAMACHY SIF

retrievals own a cloud fraction lower than 0.5. The one-to-one line

(solid line) is depicted as well as a linear fit (dotted line).

Table 2 and both composites are computed in a spatial reso-

lution of 1.5◦ × 1.5◦ in order ensure a comparison.

The center of the SAA is in close proximity to the coast of

Brazil at about 40◦ W and 30◦ S, which results in extraordi-

nary high SEM values for the GOME-2 SIF data set in nearby

regions. Overall, higher SEM values occur where a signifi-

cant amount of SIF can be observed (see Fig. 10). It can also

be seen that the SEM is generally lower for the GOME-2

www.atmos-meas-tech.net/8/2589/2015/ Atmos. Meas. Tech., 8, 2589–2608, 2015
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Figure 16. Monthly composites of the standard error of the mean (SEM, Eq. 11) of SIF for January (left column) and July (right column)

2011 derived from SCIAMACHY (top) and GOME-2 data (bottom) in a spatial resolution of 1.5◦ × 1.5◦. The underlying SCIAMACHY

SIF values are again scaled by the relationship in Table 2 in order to ensure a good visual comparison. The center of the SAA at 40◦ W and

30◦ S, the analyzed region for Fig. 12 (yellow) and the analyzed region for Fig. 18 (red) are depicted in each map.

SIF composites (except for the SAA affected regions). It is

remarkable that the SAA seems to have a much lower im-

pact on measurements performed by SCIAMACHY in par-

ticular for July 2011, although the difference in orbit height

is only about 20 km. In view of Fig. 16 it is even questionable

whether there is an impact of the SAA on SCIAMACHY data

at all.

In contrast to the SCIAMACHY data set, the impact of the

SAA on GOME-2 data translates also to the residual sum of

squares (RSS) of the SIF retrieval (not shown). High RSS

values occur in particular in the region of large SEM values

on the South American continent. This allows the conclu-

sion that the noise and thus the measurement error is much

higher than expected from our error propagation depicted

in Fig. 13. Although all single retrievals with an RSS big-

ger than 2 (mWm−2 sr−1 nm−1)2 are filtered, care should be

taken when using SIF retrieval results from affected areas,

especially for GOME-2 SIF retrievals.

5.6 North–south bias in training set

Consistency checks and plausibility controls of the derived

SIF values have lead to another source of error. We re-

trieved SIF values from the training set (sea, desert and

ice) with the expectation that all SIF values are close to

zero. It turned out that there is a slight time- and latitude-
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Figure 17. Mean SIF of two different training sets derived with

data from GOME-2 and SCIAMACHY averaged over latitudes for

July 2011. The first training set (Training 1, solid lines) corresponds

to a daily sampling of the data while the second training set (Train-

ing 2, dotted lines) is sampled on a 3-day basis.

dependent offset in retrieved SIF values which amounts to up

to 0.3mWm−2 sr−1 nm−1 for GOME-2 SIF results. Two dif-

ferent ways to sample the training data have been tested for

July 2011 in order to investigate if this bias is related to the

sampling method or if there is an instrumental issue. The first

training set has been sampled on a daily basis as explained in

Sect. 5.1 for both satellite instruments. In contrast, the second

training set has been sampled on a 3-day basis, whereas the
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Figure 18. Time series of SIF retrievals from GOME-2 data over a box in the Amazon Basin (70–65◦ W, 5–0◦ S (shown in Fig. 16), covered

with evergreen broadleaf forest) for different cloud fraction thresholds. The time series corresponds to 12 day means in 2009. The standard

deviation (top) and the number of included retrievals (bottom) per time step are depicted as bar plots.

SAA affected region has been excluded (longitudes between

90◦ W and 15◦ E and latitudes between 10◦ N and 90◦ S) and

spectra have been selected with respect to their latitudinal

representativeness (the number of sampled spectra per lati-

tude corresponds to the median number of spectra per lat-

itude). Figure 17 depicts the monthly composite of SIF of

the two different training sets averaged over latitudes derived

from GOME-2 and SCIAMACHY data for July 2011.

As can be seen, there is almost no difference be-

tween the different sampling methods of the SCIA-

MACHY training data. Nevertheless, a slight offset of

about 0.1mWm−2 sr−1 nm−1 is introduced in latitudes above

40◦ N. The offset in retrieved SIF values from the GOME-2

training set is decreased when the second sampling method is

applied, even though the latitudinal dependency is conserved

and the offset is more pronounced than in the two SCIA-

MACHY training sets. A slight zero level offset is also ob-

servable in the data provided by Joiner et al. (2014), which

supports the thesis that this bias is related to an instrumen-

tal issue. One reason might be a temperature-dependent dark

current change. This issue should be considered in further

investigations.

5.7 Impact of clouds on the retrieval

In contrast to the usually applied pre-filtering of cloud con-

taminated measurements (discussed in Sect. 5.1), we run

the retrieval using GOME-2 data in 2009 without restricted

cloud fractions in order to examine the impact of clouds.

Tropical rainforest areas are frequently covered by clouds

and therefore, it is expected that clouds may affect the re-

trieval of SIF in particular in such regions. Therefore, we

produced a time series over a box in the Amazon Basin

(70–65◦ W, 5–0◦ S (shown in Fig. 16), covered with ever-

green broadleaf forest) with different cloud fraction thresh-

olds, which is shown in Fig. 18. Care was taken when se-

lecting the area to ensure that the impact of the SAA is as

low as possible and the IGBP land cover (Friedl et al., 2002)

(evergreen broadleaf forest) is mostly homogenous.

Overall it can be seen that SIF values are decreasing with

an increasing cloud fraction threshold, whereby the temporal

pattern remains almost unaffected. Using only retrievals with

a low cloud fraction (< 0.25) implies a significant loss of

measurements while the standard deviation (or fluctuation)

is only slightly smaller and even equal for some time steps.

SIF values successively decrease by relaxing the threshold,

which is consistent with the expectation that the SIF signal

is partly shielded by clouds (Frankenberg et al., 2012). An

exception occurs in one time step where the reported stan-

dard deviation is significantly higher than in the other time

steps. Simultaneously, the number of included retrievals is

low and differences in cloud fraction values from FRESCO

are only marginal. For these reasons, the time step at the end

of October 2009 is not meaningful to evaluate the impact

of clouds on the retrieval. Applying a cloud fraction thresh-

old of 0.5 results in differences about 0.1mWm−2 sr−1 nm−1

in comparison to the SIF averages of the lowest evaluated

cloud fraction. The highest increase of measurements with

www.atmos-meas-tech.net/8/2589/2015/ Atmos. Meas. Tech., 8, 2589–2608, 2015
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respect to a cloud fraction threshold of 0.25 can be achieved

by using measurements with cloud fractions up to 0.5. A fur-

ther increase of the cloud fraction has the consequence that

more measurements can be used but the amount of SIF av-

erages is distinctly decreasing. It must be noted that results

remain consistent for different spatiotemporal scales and the

presented region has been chosen as a representative exam-

ple. On this basis, a cloud fraction threshold of 0.5 is a rea-

sonable compromise between the loss of measurements and

changes in the SIF average. As a consequence, we provide

the global SIF data set for measurements with cloud frac-

tions lower than 0.5 including also measurements with un-

known cloud fractions in the presence of snow. Nevertheless,

in view of these results it can be concluded that the presented

SIF retrieval method is robust against moderate cloud con-

tamination.

6 Conclusions

A new statistically based approach to retrieve SIF from

GOME-2 and SCIAMACHY data has been introduced.

Building upon previous works from Guanter et al. (2013) and

Joiner et al. (2013), our approach solves the important issue

of the arbitrary selection of the number of free model param-

eters.

The basic assumption to retrieve SIF from space is that the

contribution of SIF can adequately be separated from low

and high frequency components due to surface and atmo-

spheric properties. In our forward model, the low and high

frequency components are represented by a combination of a

third-order polynomial in wavelength with atmospheric PCs.

A backward elimination algorithm selects the required model

parameters automatically with respect to the goodness of fit

balanced by model complexity. Our sensitivity analysis re-

veals that the precision is enhanced, retrieval noise is reduced

and the risk of an overfitting is minimized by applying the

stepwise model selection to our forward model.

The retrieval approach has also been applied to spectra ac-

quired by GOME-2 and SCIAMACHY. Thus, we were able

to present a continuous SIF data set covering the 08/2002–

03/2012 time period using SCIAMACHY data and the 2007–

2011 time span using GOME-2 data. The number of selected

PCs and total model parameters for the GOME-2 data is in

line with the expectation from the sensitivity analysis while

twice as many PCs (on average 14) are employed for SCIA-

MACHY data. Nevertheless, our approach suggests using

a significantly smaller number of PCs compared to Joiner

et al. (2013, 2014).

Although the achievable spatial resolution of SIF maps

from SCIAMACHY data is coarser than from GOME-2,

there is now a decade long continuous SIF time series avail-

able. However, a significant discrepancy in absolute SIF val-

ues arises when comparing our retrieval results with the V25

results from Joiner et al. (2014), although spatiotemporal pat-

terns are similar. A detailed comparison of the V25 algo-

rithm with our algorithm using simulated data might explain

the discrepancy, but that is beyond the scope of this work. It

remains exceedingly difficult at present to judge which val-

ues are more accurate. Despite this issue, a comparison to

GOSAT SIF data obtained by Köhler et al. (2015) showed

an enhanced correlation for long-term averages between the

different retrieval types, evaluated wavelength and satellite

instruments for the presented approach. This allows us to

conclude that progress has been achieved but also that there

is still research to be done. In particular, there is a need for

ground-based validation, ideally in areas with relatively ho-

mogeneous vegetation.

Furthermore, it must be considered that the SAA causes

high uncertainties in large parts of the South American conti-

nent when using GOME-2 data. In contrast, a significant im-

pact of the SAA on SCIAMACHY data has not been found.

The analysis of different training sets revealed that there is

a slight zero level offset in GOME-2 SIF retrievals which is

probably related to an instrumental issue. On the basis of the

GOME-2 SIF data set in 2009, we have shown that the re-

trieval is only moderately affected by cloud contamination.

It has essentially been found that the SIF signal decreases

with an increasing cloud fraction, but the seasonality is main-

tained.

Finally, it has to be noted that the flexibility of the retrieval

method makes it also applicable to other instruments with

a similar spectral and radiometric performance as GOME-

2 and SCIAMACHY, such as the upcoming TROPOMI

(Veefkind et al., 2012) on board the Sentinel-5 Precursor

and the Earth Explorer 8 mission candidates FLEX (Rascher

et al., 2008) and CarbonSat (Bovensmann et al., 2010).
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