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Abstract

Different exposures, including diet, physical activity, or external conditions can contribute to 

genotype-environment interactions (GxE). Although high-dimensional environmental data are 

increasingly available, and multiple exposures have been implicated with GxE at the same loci, 

multi-environment tests for GxE are not established. Here, we propose the structured linear mixed 

model (StructLMM), a computationally efficient method to identify and characterize loci that 

interact with one or more environments. After validating our model using simulations, we apply 

StructLMM to body mass index in UK Biobank, where our model yields previously known and 

novel GxE signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that 

StructLMM can be used to study interactions with hundreds of environmental variables.
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Introduction

Large population cohorts that combine genetic profiling with deep phenotype and 

environmental data, including diet, physical activity and other lifestyle covariates, have 

fostered interest to study genotype-environment interactions (GxE). Already, such analyses 

have identified GxE for different traits in humans, including disease risk1,2, and molecular 

traits3,4.

Established GxE methods test for interactions between a single environmental variable and 

individual genetic variants5 (Fig. 1a). Recent extensions enable assessing GxE across sets of 

genetic variants, either using genetic risk scores6 or variance component tests7–9. Whilst 

there is evidence that multiple environments can interact with a single genetic locus to 

influence phenotypes, for example a number of environments have been shown to alter the 

effect of FTO on BMI, including physical activity10–13, diet12–15 and smoking12, there 

are no robust methods for the joint GxE analysis of multiple environmental variables.

Multivariate GxE tests can have power advantages, in particular to identify interactions that 

are simultaneously driven by multiple environments, or because combinations of multiple 

environmental variables act as proxy for unobserved drivers of GxE. Additionally, joint tests 

reduce the multiple testing burden. Thus, as increasingly high-dimensional environmental 

data are available in population cohorts, and given the desire to fully understand the impact 

of multiple environments in complex traits and diseases, there is a growing need for multi-

environment GxE tests.

Here, we present the structured linear mixed model (StructLMM), a variance component test 

to identify and characterize GxE interactions with multiple environments. Our model can 

handle hundreds of environmental variables and it can be applied to large cohorts of 

hundreds of thousands of individuals.

Results

Conventional linear mixed models (LMMs) are used to test for associations with constant 

genetic effect sizes across individuals in the population, also called persistent genetic effects. 

Covariates and additional random effect components are included to account for population 

structure, environment, or other additive (confounding) effects. StructLMM extends the 

LMM framework by modelling heterogeneity in effect sizes due to GxE

y = Xb
︸covariates

+ xβG

persistent G

+ x ⊙ βG×E

G×E

+ e
environment

+ ψ
︸noise

. (1)

Here, βG denotes the effect size of a conventional persistent genetic effect component and 

β
G×E

= β
G×E
1

, …, β
G×E
N T

 is a vector of per-individual effect sizes to account for 

heterogeneous genetic effects, which follows a multivariate normal distribution, 

β
G×E

∼ N(0, σ
G×E
2

Σ) . Depending on the functional form of the environmental covariance Σ, 

this model can account for different types of GxE, for example hierarchies of discrete 
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environmental groups, or as considered here, GxE effects based on a set of continuous and 

discrete environmental covariates (Fig. 1b, c). The same environmental covariance is also 

used to account for additive environmental effects, e ~ N(0, Σ). StructLMM is technically 

related to existing variance component tests for rare variants16 and epistasis17; see 

Supplementary Note for a comparison to alternative methods.

Using the multi-environment model defined above (Eq. (1)), we propose a score test to 

identify loci with significant GxE interaction effects. In addition, the same framework can be 

used to define a joint association test that accounts for the possibility of heterogeneous effect 

sizes due to GxE, which generalizes previous two degrees of freedom single-environment 

association tests5,18. Both tests are computationally efficient, enabling genome-wide 

analyses using hundreds of environmental variables on cohorts of hundreds of thousands of 

individuals. The model facilitates different analyses to characterise GxE effects at individual 

loci, including estimation of the fraction of genetic variance explained by GxE (ρ, Methods), 

and estimating per-individual allelic effects based on environmental profiles in the 

population (Fig. 1d), thus identifying individuals at increased/decreased trait risk. Finally, 

StructLMM can be used to explore which environments are most relevant for GxE, by 

comparing models that contain all environmental factors and models with environmental 

variables removed (Fig. 1e). See Methods for a full derivation.

Model validation using simulated data

Initially, we considered simulated data using genotypes from the 1000 Genomes project19 to 

assess the statistical calibration and power of StructLMM. To mimic environmental 

distributions as observed in real settings, we simulated GxE based on 60 environmental 

covariates from UK Biobank, including physical activity, diet, and other lifestyle factors 

(Methods). We varied the sample size of the simulated population, the magnitude of GxE 

effects, the number of driving environments for GxE, and other parameters (Supp. Table 1).

First, we confirmed the statistical calibration of the StructLMM interaction test (referred to 

as StructLMM-int), either considering phenotypes simulated without any genetic effects 

(Fig. 2a, Supp. Fig. 1a,b) or simulated from a persistent effect model without interactions 

(i.e. the null model of StructLMM-int; Supp. Fig. 1a,b).

Next, we simulated phenotypes with variable fractions of the genetic variance explained by 

GxE (ρ, Methods), and assessed power of StructLMM-int. For comparison, we also 

considered a single-environment one-degree of freedom fixed effect test (SingleEnv-Renv-

int, Supp. Table 2; e.g. Gauderman et al.18, Bonferroni adjusted for the number of 

environments, Methods), using the same random effect component (as for StructLMM) to 

account for additive environmental effects under the null.

The power of both tests increases as the fraction of the genetic effect explained by GxE (ρ) 

increases, noting that StructLMM-int is substantially better powered than the SingleEnv-

Renv-int test (Fig. 2b). As a second parameter, we varied the number of active environments 

that contribute to GxE but used all 60 environmental variables during testing. The results of 

this analysis show that StructLMM-int increasingly outperforms the corresponding 
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SingleEnv-Renv-int GxE test as the number of active environments increases (Fig. 2c, Supp. 

Fig. 2b).

We considered a number of additional settings, including varying the total number of 

observed environments, the fraction of phenotypic variance explained by additive 

environmental effects and simulating interaction effects using environments that are not 

included at the testing stage. The latter corresponding to GxE effects driven by environments 

for which there are no measurements available, a scenario that is likely to occur in practice. 

We also considered settings where the environments were heritable themselves, varied the 

extent of distributional skew and considered binary environments with different frequencies. 

Across all settings, StructLMM-int had consistent power advantages over alternative 

methods and remained calibrated (Supp. Fig. 2-4).

For the same settings, we also considered the StructLMM joint association test, which 

accounts for the possibility of heterogeneous effect sizes due to GxE, and compared it to a 

two degrees of freedom single-environment test using fixed effects (e.g. Kraft et al.5; 

Bonferroni adjusted for the number of environments, Methods; Supp. Table 2), as well as to 

conventional association tests that only model persistent effects (Supp. Table 2). In these 

experiments (Supp. Fig. 2-4), the StructLMM joint association test yielded similar power 

advantages as StructLMM-int when testing for interactions, indicating that StructLMM can 

be useful to discover additional associations, in particular for variants with strong GxE 

(Supp. Fig. 2a).

Finally, we considered alternative implementations of interaction and association tests 

(Supp. Table 2), using fixed effects to account for additive environment instead of a random 

effect component, which yielded near-identical results (Supp. Fig. 2). We also note that 

multi-environment GxE tests can in principle be implemented based on fixed effect tests 

with as many degrees of freedoms as environments (Supp. Table 2). However, we observed 

that such tests were not always calibrated (Supp. Fig. 1b), in particular for large numbers of 

environments, and in addition had lower performance (Supp. Fig. 1c).

Taken together, these results show increased power and robustness of StructLMM compared 

to existing methods, in particular when large numbers of environments drive GxE interaction 

effects, as might be expected to occur for the majority of complex traits and diseases.

Application to data from UK Biobank

Initially, we applied StructLMM-int to test for GxE interactions at 97 variants 

(corresponding genes as annotated by GIANT20) that have previously been linked to BMI 

using independent data20. We considered 252,188 unrelated individuals of European 

ancestry, for which BMI and 64 lifestyle covariates, similar to those used in Young et al.13 

(12 diet-related factors, three factors linked to physical activity and six lifestyle factors, 

modelled as gender-adjusted and age-adjusted, Methods, Supp. Fig. 5,6), were available in 

the full release of UK Biobank21. StructLMM-int identified four significant GxE effects 

(α<0.05, Bonferroni adjusted), whereas a single-environment one-degree of freedom fixed 

effect test (SingleEnv-Renv-int) identified only two of these interactions (Fig. 3a, Supp. Fig. 

7, Supp. Table 3). Among the loci identified by StructLMM-int was the FTO locus 
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(rs1241085, ρ=0.14, Supp. Fig. 8a), which has previously been implicated with GxE for 

multiple environments10,12–14, MC4R (Fig. 3b) for which an interaction with physical 

activity in females aged 20-40yrs has been previously suggested (P-adj=0.025 reported 

in12), SEC16B (Supp. Fig. 8b), for which secondary analyses provided some evidence for 

an interaction (P=0.025) with physical activity in Europeans11 and in a separate study in 

Hispanics22 and PARK2 (Supp. Fig. 8c), a gene that has been linked to time-dependent 

variation in BMI23. StructLMM also enhanced the significance of interactions identified by 

both tests (P StructLMM-int = 4.23x10-16 versus P-adj SingleEnv-Renv-int =6.76x10-6 and 

P StructLMM-int = 1.15x10-4 versus P-adj SingleEnv-Renv-int = 4.48x10-4 for FTO and 

SEC16B respectively). Larger differences in the number of discoveries were observed at 

more lenient thresholds, e.g. 11 versus six loci with GxE at FDR<5% (Benjamini-Hochberg 

adjustment, Supp. Table 3).

We also considered additional fixed effect interaction tests, including multi-environment 

GxE tests based on fixed effects, which identified fewer interactions than StructLMM-int 

(N=2 versus N=4; α<0.05), as well as alternative implementations of the single environment 

interaction test, which consistent with the results on simulations, yielded near-identical 

results to SingleEnv-Renv-int (Supp. Fig. 9,10, Supp. Table 3).

Finally, as an alternative filtering strategy, we applied the same interaction tests to 17,606 

variants with significant persistent associations with BMI in UK Biobank (P<5x10-8; LMM-

Renv). StructLMM-int identified 23 loci with GxE interactions (FDR<5%; Benjamini-

Hochberg adjusted, +/-500kb, r2>0.1), including SEC16B, MC4R and FTO, compared to at 

most 11 loci identified by alternative methods (Supp. Fig 11, Supp. Table 3).

The StructLMM framework can also be used to test for associations while accounting for the 

possibility of effect size heterogeneity due to GxE. To explore this, we applied the 

StructLMM joint association test to BMI, using low-frequency and common variants 

(imputed variants, MAF>1%, 7,515,856 variants in total) and the same set of 64 lifestyle 

covariates as considered in the interaction analysis. For comparison we also considered an 

LMM using the same random effect component to account for additive environmental effects 

as in StructLMM (LMM-Renv) and a linear model without accounting for additive 

environment (LM). Although the choice of null model can have a large impact on loci 

discovery (P<5x10-8, +/-500kb, r2>0.1, LMM-Renv 327 loci of which 14.37% were not 

detected by the LM, LM 379 loci of which 25.59% were not detected by LMM-Renv; Supp. 

Table 4, Supp. Fig. 12), StructLMM identified 23 loci that were not detected by other 

methods (351 unique loci in total; Fig. 3c, Supp. Table 4, Supp. Fig. 13-16), indicating that 

the StructLMM joint association test can be used to identify additional loci with a strong 

GxE component. One such locus lies in the ADAMTSL3 gene (rs4842838, P StructLMM = 

9.35x10-10, P LMM = 3.83x10-7, P LM = 2.37x10-5), which codes for a glycoprotein24. 

Other variants within this gene have been linked to BMI-related traits, including lean body 

mass25, waist circumference26 and hip circumference adjusted for BMI27.

Once GxE loci have been identified, StructLMM can be used for the interpretation of these 

effects, and in particular to estimate per-individual allelic effects based on environmental 

profiles to identify individuals with increased/decreased trait risk (Fig. 4a). We confirmed 
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the robustness of these estimates using hold-out validation, providing further evidence for 

possible opposite directions of effect at PARK2 (Supp. Fig. 17). To explore which 

environmental variables are most relevant for individual GxE signal, we calculated Bayes 

factors (BF) between the full model and models with individual environmental exposures 

removed (Supp. Fig. 18), identifying between 20 and 25 environments with putative GxE 

effects (BF>0). Since the environments are not independent of one another, we used 

backward elimination based on BF between the full model and models with increasing 

numbers of environments removed. These analyses identified physical activity measures for 

females (no evidence for males) as contributing to GxE at MC4R, in agreement with12, but 

also yielded a number of additional environments (Fig. 4b, Supp. Fig. 18). For all loci, we 

consistently observed that multiple environments contribute to GxE but there is evidence of 

differences in the GxE architecture, with FTO being associated with the largest number of 

environments whilst SEC16B and PARK2 were associated with a smaller number of 

environments (Supp. Fig. 18). Differences in the environments that contribute to GxE effects 

were also apparent when correlating per-individual allelic effect size estimates across loci 

(Supp. Fig. 19).

Identification of eQTL interactions with cellular state

As a second application, we considered a gene expression dataset28 to illustrate how 

StructLMM can be used to identify context-dependent regulatory effects on gene expression, 

for example due to external stimuli4 or differences in cell type composition29, using 

hundreds of environment covariates. Insights into context-dependent genetic regulation of 

gene expression are important to identify disease-relevant cell types and molecular 

pathways30–32.

We reanalysed a large whole-blood expression dataset comprising of 2,040 genotyped 

individuals profiled with RNA-seq28 (Methods) and applied StructLMM-int to test for cell-

context interactions at cis expression quantitative trait loci (eQTL). Following Zhernakova et 

al.28, we considered gene expression levels both as phenotypes but also as proxy 

(environmental) variables, which can tag variation in blood cell composition and other 

factors across individuals. Specifically, we considered a set of 443 highly variable genes as 

environmental variables in our analysis (Methods).

Initially, we applied a linear model to identify lead cis eQTL variants for 23,506 expressed 

genes (within plus or minus 250 kb from the centre of the gene, Methods). Next, we applied 

StructLMM-int to test for cell-context interactions at lead variants for each of these genes. 

The model produced calibrated P values despite the large number of environments (Supp. 

Fig. 20), identifying 3,483 eQTL with a cell-context interaction (FDR<5%, termed 

interaction eQTL; Supp. Table 5). Although globally, interactions with cell-context tended to 

explain small fractions of the cis genetic variance on gene expression (ρ<0.2, for 68.0% of 

interaction eQTL, Fig. 5a), GxE explained more variance than persistent genetic effects for 

532 genes (ρ>0.5, for 15.3% of interaction eQTL). We also compared StructLMM-int to 

alternative multi-environment interaction tests based on fixed effects, which were markedly 

less robust and identified fewer interaction eQTL (Supp. Fig. 20). Similarly, we compared 

the discovered interaction eQTL to results from a stepwise procedure that was used to 
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identify interaction eQTL in the primary analysis of the same data28 (see Supplementary 

Note for details), which yielded markedly fewer interactions (3,372 versus 1,841 interaction 

eQTL, considering StructLMM and the approach in 28; FDR<5%; Supp. Fig. 20; 

considering 17,952 genes assessed in both studies). Finally, we considered alternative 

approaches to normalise the expression data (Methods), thereby assessing potential biases 

due to gene-exposure correlations and distributional skew of counts-based gene expression 

profiles. These results indicated that StructLMM is robust to both potential sources of bias 

(Supp. Fig. 21).

Next, we overlapped the interaction eQTL with risk variants from the NHGRI-EBI GWAS 

catalog V1.0.133, identifying 64 putative colocalisation events (r2>0.8 between lead eQTL 

and GWAS variants, Supp. Fig. 22, Methods), including GWAS variants for autoimmune 

diseases, infectious diseases and blood cell traits (Supp. Table 6, Supp. Dataset 1,2). 

Notably, 46 of these interaction eQTL were not reported in the primary analysis28. One 

example is an interaction eQTL for CTSW expression (Fig. 5b-d, P StructLMM-int = 

2.2x10-15, ρ=0.12), which is in linkage disequilibrium (LD) with a risk variant for Crohn's 

disease rs568617 (r2=0.98, Supp. Fig. 23). To investigate the molecular pathways that are 

associated with this interaction, we stratified the population into strata with the smallest and 

largest allelic effects as estimated using StructLMM (Fig. 5b,c), and tested for pathways that 

were enriched among differentially expressed genes between these groups (Methods). This 

identified T cell selection (GO:0045058), positive T cell selection (GO:0046632) and 

positive regulation of interleukin-17 secretion (GO:0032740) as the top three processes for 

this interaction eQTL (Fisher exact test; see Supp. Table 6 for genome-wide enrichment 

results), GO terms that are consistent with known roles of IL-17 producing CD4+ T cells in 

the pathogenesis of inflammatory bowel disease, including Crohn’s disease34.

Taken together, this analysis demonstrates the broad applicability of StructLMM, including 

in settings with very large numbers of environmental factors.

Discussion

We propose a method based on variance component tests to identify GxE interactions using 

multiple environments. Conceptually, our approach is related to set tests for groups of 

variants, but instead of aggregating across multiple genetic variants, StructLMM jointly 

models multiple environmental variables to identify GxE interactions. Compared to 

conventional single and multiple degrees of freedom fixed effect GxE tests, this approach 

enjoys power advantages (Fig. 2, Supp. Fig. 1-4), and yields increased robustness, in 

particular when analysing large numbers of environmental variables (Supp. Fig. 1, 20).

We applied StructLMM to data from UK Biobank to assess GxE at 97 GIANT variants 

associated with BMI, confirming established GxE effects at FTO, and we identified, for the 

first time, three additional GxE signals at stringent thresholds (FWER<5%, Fig. 3a), some of 

which confirm prior evidence11,12,14,15,22,23. More lenient FDR-based significance 

thresholds, as frequently employed for GxE analyses6,12, yielded 11 GIANT variants with 

evidence for GxE (FDR<5%; Benjamini-Hochberg adjusted; Supp. Table 3), and a genome-

wide analysis based on all variants that are associated with BMI identified 23 loci with 
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significant GxE effects (Supp. Fig. 11, Supp. Table 3). We also show that the same 

framework can be used to test for associations, demonstrating that accounting for 

heterogeneity in effect sizes can identify additional loci, similarly to previously reported 

benefits of 2-df fixed effect tests5.

In addition to offering power advantages, StructLMM yields per-individual allelic effect size 

estimates that reflect GxE. We have shown that this allows for different downstream 

analyses, including the identification of individuals with increased or decreased genetic risk. 

This would be of particular interest in the complex disease field as it may provide further 

explanation as to why individuals who share the same set of risk variants may have different 

outcomes in longitudinal follow-up. In particular, identifying sets of environments that may 

decrease disease risk for individuals carrying the same genetic burden may provide useful 

avenues for targeted disease prevention. We also explore which environments are putative 

drivers of the observed GxE effects. However, such downstream analyses, when using the 

same dataset for discovery, should be interpreted with caution. Ultimately, independent 

validation cohorts will be required to confirm such findings.

As a second use case, we applied StructLMM to test for cell-context interactions in a large 

blood eQTL study, where the same modelling principles enabled the identification of 

context-specific eQTL. Several of these interaction eQTL colocalised with GWAS variants 

and the marker genes of the cellular environments that underlie these interaction effects 

could be connected to plausible molecular pathways (Supp. Table 6).

Although we found that StructLMM is a robust and powerful alternative to conventional 

linear interaction tests, our approach is not free of limitations. First, there are general 

challenges when analysing GxE that although not specific to our model need to be taken into 

consideration. One such challenge are environmental variables that are themselves heritable. 

Accounting for heritable covariates in association tests can lead to spurious associations due 

to collider bias35. Our results indicate that interaction tests are more robust to such 

correlations (Supp. Fig. 3). However, gene exposure associations alter the interpretation of 

interactions, reflecting epistatic relationships between genetic factors. A second generic 

challenge is the selection of candidate variants for GxE tests. To reduce the multiple testing 

burden, we selected variants that have persistent effects on the phenotype. However, the fact 

that our association test identifies novel loci with strong GxE (ρ) if applied genome-wide 

indicates that this filter is not optimal.

Among more specific limitations and areas of future work for StructLMM, we note the 

computational requirements of the model are more demanding than conventional LMMs, 

despite scaling linearly with the number of individuals. A second potential limitation is that 

StructLMM does not currently enable accounting for relatedness. Although the model has an 

additive random effect component, it is currently used to model additive environmental 

effects. Generalizations to simultaneously account for a relatedness could be considered, for 

example using suitable low-rank approximations36 or other speed-ups to retain scalability to 

large sample sizes. Finally, while StructLMM can in principle be used in conjunction with 

any environmental covariance, we have limited our attention to linear covariances. The 

model could be extended to account for non-linear interactions, for example using 
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polynomial covariance functions. Future developments in this direction will be increasingly 

valuable as larger cohort sizes enable detecting higher order interaction effects.

Online Methods

The Structured Linear Model

A conventional linear mixed model (LMM) to test for associations can be cast as

y = Xb + xβ + u + ψ ,

where β is the focal variant effect size, X the fixed effect design matrix of k covariates and b 
the corresponding effect sizes. The variable u denotes additive (confounding) factors, and ψ 
denotes iid noise. The random effect component u and the noise vector ψ follow multivariate 

normal distributions, u ∼ N(0, σ
e
2

Σ
u
) and ψ ∼ N(0, σ

n
2

I), where the covariance matrix Σu 

reflects the covariance of population structure, environment or other (confounding) factors. 

Association tests for non-zero effects of the focal variant correspond to alternative 

hypothesis β ≠ 0.

StructLMM generalizes the conventional LMM for association testing by introducing per-

individual effect sizes due to GxE

y = Xb + xβ + x ⊙ βG×E + u + ψ , (1)

where βG×E is a per-individual allelic effects vector, which follows a multivariate normal 

distribution with environment covarianceΣ:

βG×E ∼ N(0, σGxE
2

Σ) . (2)

The covariance Σ captures heterogeneity in allelic effects in the population and is estimated 

using a linear covariance function based on a set of observed environmental variables, where 

we assume Σu = Σ. If collider bias35 is a concern, non-heritable environmental variables 

should be selected. Non-linear environmental effects can be modelled by combining 

observed environmental variables (e.g., effects from environments × age or environments × 

gender); see Supplementary Note.

Statistical Testing

Based on Eq. (1), we define an interaction test (σ
GxE
2

> 0) where persistent genetic and 

additive environment effects are accounted for in the null model; and an association test 

σ
GxE
2

> 0 and β ≠ 0), which jointly tests for associations while accounting for the possibility 

of heterogeneous genetic effects due to GxE. Both tests are implemented as efficient score 

tests, similar to the approach in SKAT and SKAT-O37,38, with linear complexity in the 

number of individuals (Supplementary Note).
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Estimation of ρ

Estimates of the fraction of the genetic variance explained by GxE (ρ) can be obtained from 

maximum likelihood estimates of the model in Eq. (3)

ρ =
VarGxE

VarG + VarGxE
(5)

with VarG denoting the fraction of the variance explained by persistent effects, and VarGxE 

variance due to GxE.

Exploring the most relevant environments for GxE

Bayes factors between the full model and models with individual environments or sets of 

environments removed from the environmental covariance Σ (Supplementary Note) can be 

used to assess the relevance of environments.

Estimation of per-individual allelic effects

Per-individual (i.e. for each environment state) allelic effects can be estimated using 

BLUP39. Additionally, the model yields posterior estimates of the realisation of the 

unobserved environmental state that explains the GxE effect (see Supplementary Note).

Simulations

Simulation procedure overview—Simulations were based on genotypes of European 

individuals from the 1000 Genomes project19 (phase 1, 1,092 individuals, 379 Europeans), 

considering 103,527 variants on chromosome 21 (minor allele frequency >=2%). 

Following40,41, synthetic genotypes of unrelated individuals were generated for different 

sample sizes, while preserving the population structure of the seed population (see9). We 

considered 33 environmental exposures using empirical environmental covariates from 

70,282 UK Biobank individuals (based on the Interim release), augmented using element 

wise interactions with gender and age, resulting in 100 environmental variables. These 

environmental variables were preprocessed as in the UK Biobank analysis (see below) and 

randomly assigned to synthetic genotypes. See Supplementary Note for details.

Assessment of statistical calibration—Statistical calibration of different tests was 

assessed using phenotypes simulated from an empirical null model, considering i) no genetic 

effect (Fig. 2a, Supp. Fig. 1a,b) and ii) simulated persistent genetic effects (100 persistent 

genetic effect variants, no GxE interactions, Supp. Fig. 1a,b). Calibration was assessed using 

QQ plots and genomic control (λ
GC

=
log

10
m

log
10

0.5
; m is the median P value), based on P values 

from chromosome 21 pooled across 100 repeat experiments.

Power simulations—Phenotypes with GxE interactions were simulated, varying the 

fraction of variance explained by GxE, the number of active environments and other 

parameters (Supp. Table 1, Supplementary Note). We also studied the effect of gene-
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exposure correlations (Supp. Fig. 3, Supplementary Note) and considered synthetic 

environments to assess the effect of (rare) binary environmental variables (Supp. Fig. 4, 

Supplementary Note). We considered 1,000 repeat experiments for each setting, randomly 

selecting a segment of approximately 2 Mb from chromosome 21 and simulating GxE 

effects from one causal variant. Power at 1% FWER (Bonferroni adjusted across variants) 

was assessed considering variants in linkage disequilibrium with selected true causal 

variants (r2≥0.8) as true positives, reporting average power across repeat experiments (which 

is either 1 or 0).

Comparison methods—We compared StructLMM to alternative single- and multi-

environment models, as well as standard genetic association tests. For interaction tests, we 

considered alternative single-environment GxE interaction tests i) using random effect 

(SingleEnv-Renv-int) or ii) fixed effect (SingleEnv-Fenv-int) components to account for 

additive environmental effects due to all enviornments, and finally iii) an additive single-

environment fixed effect term based on the specific environment considered in the GxE test 

only (SingleEnv-Senv-int). The same models were considered to test for associations, using 

a 2 df statistical test5 (SingleEnv-Renv, SingleEnv-Fenv, SingleEnv-Senv, respectively). 

Additionally, for association tests, we considered linear association tests, again either using a 

multi-environment random effect for additive environment (LMM-Renv) or a multi-

environment fixed effect (LM-Fenv) component to account for additive environmental 

effects, as well a linear model with no additive environment effect term (LM). All tests were 

implemented using LRT, considering Bonferroni adjusted minimum P value per variant 

across environments for single-environment models. Finally, we assessed the performance of 

fixed-effect multi-environment interaction- and association tests, again considering either 

random or fixed additive environment components based on all observed environments, 

considering either an LRT or score test. Performance was assessed using the average area 

under the curve (AUC) across repeat experiments (using true positive definitions as for 

power), computed in the range FPR<0.10 and normalised to the 0-1 range such that 0 

corresponds to chance performance and 1 is the performance of an ideal model. See Supp. 

Table 2 for an overview and Supplementary Note for details.

Analysis of BMI in UK Biobank

This research has been conducted using the full release of the UK Biobank Resource 

(Application 14069)21. The UK Biobank study has approval from the North West Multi-

Centre Research Ethics Committee and all participants included in the analyses provided 

informed consent to UK Biobank.

Data pre-processing—BMI phenotype data is 'Instance 0' of UK Biobank data field 

21001. Individuals with missing BMI data were discarded from the analysis and BMI log 

transformed13,42. Following13, we considered 21 lifestyle covariates as environments, 

discarding individuals with outlying or missing environmental variables (Supplementary 

Note). We further discarded individuals of non-British ancestry as well as related 

individuals. After filtering and QC on the BMI phenotype, genotype and the environmental 

variables, we obtained a set of 252,188 individuals for analysis. Principal component for 
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population structure adjustment were calculated using flashpca version 2.043 using 147,604 

variants as indicated by the field 'in_PCA' from the released marker QC file.

Genotype data—We used genotypes that were imputed with the HRC panel (build 

GRCh37). We performed QC of the remaining imputed variants on the fly, using a fast bgen 

reader, implemented as part of StructLMM, treating genotype-sample pairs with low 

imputation accuracy (max. probability <0.5) as missing, and discarding variants with 

missingness>5%, MAF<1%, HWE P<1x10-6 and INFO score r2<0.4 (based on the UK 

Biobank imputation MAF and info file). Genotype dosages were calculated using available 

probabilities (including genotype-sample pairs with low imputation accuracy) and mean 

imputation used for any genotype-sample pairs with missing data. 7,515,856 variants passed 

these filters.

Environmental Covariance and Covariates—To generate the environment matrix E, 
we augmented all 21 environmental variables described above (excluding age) by gender 

and age, by multiplying the continuous age vector, the binary male indicator vector and the 

binary female indicator vector with each of the 21 environment variables, which resulted in 

63 covariates. The environmental covariance was estimated based on standardised 

environmental variables (not including zero values due to augmentation when mean 

adjusting) followed by per-individual standardisation (Supp. Fig. 5, 6; see Supplementary 

Note for full details). In all analyses, a mean vector, genotype chip, gender, age2, age3, 

gender x age, gender x age2, gender x age3, 10 genetic principal components were included 

as covariates.

Calibration of interaction and association tests—To validate the tested methods and 

QC procedures, we assessed the empirical calibration using permuted genotype variants 

(173,297 variants) on chromosome 20 (Supp. Fig. 7).

Interaction testing—We considered 97 GIANT variants previously associated with 

BMI20 to test for GxE interactions using StructLMM-int as well as single-environment fixed 

effect interaction tests (SingleEnv-Renv-int and SingleEnv-Senv-int, 1 df, Supplementary 

Note), and a multi-environment fixed-effect based interaction test (64 df, MultiEnv-Renv-

LRT-int, Supplementary Note). Variants with significant GxE were reported at FWER 5% 

(i.e., P < 0.05/97), and alternatively using a more lenient threshold at FDR<5% (Benjamini-

Hochberg adjustment 44; Supp. Table 3).

We also selected the 17,606 variants with LMM-Renv P values <5x10-8 and compared 

results using StructLMM-int to those from single-environment fixed effect interaction tests 

(SingleEnv-Renv-int, Supplementary Note), and a multi-environment fixed-effect based 

interaction test (64 df, MultiEnv-Renv-LRT-int, Supplementary Note). This filter is valid as 

LMM-Renv corresponds to the null model of both StructLMM-int and SingleEnv-Renv-int. 

Variants with significant GxE were reported at FDR<5% (Benjamini-Hochberg44 

adjustment), followed by LD clumping to define independent loci: we iteratively (i) selected 

the most significant variant (using the FDR-adjusted P values) and (ii) removed all variants 

in LD (r2 > 0.1) within +/-500kb, until no variant was left, resulting in 23, 11 and 9 clumps 

(loci), respectively (Supp. Table 3).
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Association testing—We used StructLMM, LMM-Renv and LM for genome-wide 

association analyses, reporting significant associations at P<5x10-8, for which 𝜌 was 

estimated using StructLMM (Fig. 3c, Supp. Table 4). LD clumping was used to define 

independent loci identified by each of the three methods; we iteratively (i) selected the most 

significant variant and (ii) removed all variants in LD (r2 > 0.1) within +/-500kb, until no 

variant was left, resulting in 351, 327 and 379 loci, respectively. We compared the methods 

pairwise, identifying loci found by only one method, by calculating the LD (r2) between 

significant variants within a clump identified by one method and significant variants from 

the other method that lie within +/-500kb, resulting in 32 and 16 loci (StructLMM and 

LMM-Renv), 65 and 98 (StructLMM and LM) and 47 and 97 (LMM-Renv and LM). We 

also compared the genome-wide results of StructLMM to those from a multiple degrees of 

freedom (65 df) fixed effect association test MultiEnv-Renv-LRT, again using genome-wide 

significance thresholds of 5x10-8 and estimating ρ for all significant variants (Supp. Fig. 9).

Per-individual allelic effect estimation—We performed in-sample estimation of the 

allelic effect (see above) for each of 252,188 individuals at each of the four interaction loci 

(FWER 5%; Fig. 4a). Allelic effects were assessed out of sample by randomly splitting the 

cohort into training and test fractions, to assess out-of-sample predictions (Supp. Fig. 17; 

Supplementary Note). To assess whether the same set of individuals are at the extreme ends 

of the effect size spectrum across multiple interaction variants (5% FDR-adjusted), we 

computed the squared Spearman’s correlation coefficient and then used ward hierarchical 

clustering (Supp. Fig. 19).

Explorative analysis of driving environments—We explored which environments 

had putative effects on GxE by comparing the log marginal likelihood of the full model to 

models with individual or sets of environments excluded. We initially assessed the relevance 

of individual environments based on the log(Bayes factor) of removing single environments 

(Supp. Fig. 18). To account for correlations between environments, we also used a 

backwards elimination procedure (Supplementary Note), greedily removing environments 

until there is evidence that we have selected a full set of environments that can drive the 

observed GxE effect (Fig. 4b, Supp. Fig. 18).

Analysis of cell-context eQTL in a large blood cohort

Genotype data pre-processing—We used freeze one from the BIOS consortium (EGA; 

accession/EGAS00001001077), and analysed 2,040 samples for which genotypes and QC-

passing RNA-seq data were available. Processed genotype and expression data were taken 

from the primary analysis28. Imputed genotypes (from the four biobanks CODAM, 

LifeLines, the Leiden Longevity Study and the Rotterdam Study) were merged to perform a 

mega-analysis, as opposed to the meta-analysis in the original paper. After merging, we 

performed joint QC of the genetic variants, retaining variants that met the following 

conditions: MACH-R2>0.5, call-rate>0.95, HWE>10-4 and MAF>5%, resulting in 

5,683,643 variants for analysis.

Ethical approval—The ethical approval for this study lies with the individual participating 

cohorts (CODAM, LLD, LLS and RS)45–48.
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Expression data—The expression data was taken from the original quantifications (after 

TMM normalisation) and we selected features that were identified in at least 10% of the 

samples, resulting in 23,506 expressed genes for analysis. Expression values were quantile 

normalised and we used ENSEMBL 71 as gene annotation.

Environmental Covariance—We used gene expression levels to build the StructLMM 

covariance capturing cell-type composition and other sources of cell-context heterogeneity. 

Specifically, we considered a set of highly variable proxy genes, identified through a two-

step procedure: (i) we selected the top 25% most variable genes based on the interquartile 

range of non-quantile normalised data, (ii) we pruned this set, ranking the genes by 

variability and removing genes with r2 ≥0.2 with a higher ranked feature. This resulted in a 

set of 443 proxy genes, which we used to build a linear covariance for StructLMM based on 

quantile-normalised expression levels.

cis-eQTL map—We identified cis-eQTL using a linear association test, considering 

genetic variants within 250kb from the centre of the gene body. Following the primary 

analysis28, we considered the following 53 factors as covariates: the first 25 principal 

components calculated from the full gene expression profiles, the leading ten MDS 

components on the genotypes (computed using PLINK v1.90b3.32), cell counts of 

neutrophils, eosinophils, basophils, lymphocytes and monocytes, age, gender, dataset batch 

and the first eight principal components derived from SAMtools flagstat and Picard tools 

(Supplementary Note).

Interaction eQTL analysis—For each of the 23,506 genes, we tested for interactions at 

the lead variant from the cis-eQTL map using StructLMM-int. For comparison, we also 

considered a multivariate fixed effect test, MultiEnv-Renv-LRT-int (Supplementary Note) 

either using the same environmental variables as in StructLMM or based on a reduced 

representation using the leading twenty principal components (Supplementary Note). 

Significant interactions were reported at FDR < 5% (Storey’s procedure49). Calibration of 

all methods was assessed by repeating the analysis with permuted genotypes. We considered 

analogous analyses using residual gene expression levels as environments, regressing out the 

cis genetic variant tested from all environments (Supp. Figure 21a-c), to rule out potential 

spurious effects due to strong gene-exposure correlations. As additional control, we 

considered an alternative normalisation of the expression data, using boxcox normalisation 

followed by removal of outliers (2.5 standard deviations, Supp. Figure 21d-f).

Overlap with GWAS hits and pathways analysis—We overlapped our set of 

interaction eQTL with GWAS variants that are part of the NHGRI-EBI GWAS catalogue33 

that pass genome-wide significance threshold (P<5x10-8). We defined a colocalisation event 

based on (i) eQTL and GWAS variants are within 10kb and (ii) high linkage disequilibrium 

between variants (r2≥0.8, estimated from Phase 3 1,000 Genomes reference panel). For the 

pathway enrichment analysis, we used the following procedure for each analysed interaction 

eQTL: (i) we used StructLMM to predict per-individual allelic effects (described above); (ii) 

we defined the groups of samples with the highest/lowest predicted allelic effect, each 

containing 10% of the total number of samples (N=204); (iii) we computed rank-based 
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correlation of genome-wide expression levels and the vector of group binary indicators 

(based on N=408 samples); (iv) we defined the 100 genes with highest positive correlation 

as differentially expressed; (v) we performed enrichment analysis of GO biological 

processes in the differentially expressed test using topGO50 (standard Fisher exact test, 

algorithm=classic, nodeSize=5). In Supp. Table 6, we report both the top-enriched broad 

biological process and the three top-enriched narrow processes (broad/narrow terms are 

defined as those with more/less than 100 annotated genes in the background set). In the 

CTSW example in Fig. 5, the aggregate interacting environment was estimated as described 

above.

Further statistical details and derivates are provided in Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the StructLMM model.
(a) Basic genotype-environment interaction, with a genetic effect that is specific to one of 

two groups (blue and orange lines correspond to the average phenotypes observed within 

two environmental groups for two alleles). (b) Interaction with multiple environmental 

groups or bins of continuous environmental states (average phenotypes for groups exerting 

increasing GxE effects from blue to orange for two alleles). (c) StructLMM accounts for 

possible heterogeneity in effect sizes due to GxE using a multivariate normal prior, where 

alternative choices of the environmental covariance Σ can capture discrete (two groups, 

group hierarchy; see a,b) or continuous substructure of environmental exposures in the 

population (multiple envs). (d,e) Different illustrative example analyses using StructLMM. 

(d) Estimation of per-individual allelic effects in the population at individual loci. The violin 

plot displays the density of estimated allelic effect sizes for individuals in the population. 

Median and the top and bottom 5% quantiles of the effect size distribution are indicated by 

the red and green bars, respectively. (e) Bayes factors between the full model and models 

with environmental variables removed, thereby identifying environments that are most 

relevant for GxE.
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Figure 2. Assessment of statistical calibration and power using simulated data.
(a) QQ plots of negative log P values from the StructLMM interaction test (green, 

StructLMM-int) using phenotypes simulated from the null (no genetic effect) for 103,527 

variants on chromosome 21. (b) Comparison of power for detecting GxE interactions for 

increasing fractions of the genetic variance explained by GxE (ρ). Compared are the 

StructLMM interaction test (StructLMM-int) and a single-environment interaction test 

(SingleEnv-Renv-int). (c) Analogous power analysis, when simulating GxE using increasing 

numbers of active environments with non-zero GxE effects (out of 60 environments total, 

considered in all sts; ρ=0.7). All 60 environments contribute to the simulated additive 

environment effect. Models were assessed in terms of power (at Family Wise Error Rate - 

FWER<1%) for detecting variants with true GxE effects (Methods). Stars denote default 

values of genetic parameters, which were retained when varying other parameters (Supp. 

Table 1). A synthetic CEU population of 5,000 individuals based on the 1000 Genomes 

Project was used for all experiments.
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Figure 3. Applications to model GxE on body mass index (BMI) in UK Biobank.
(a) Scatter plot of negative log P values from GxE interaction tests at 97 GIANT variants20, 

considering a single-environment fixed effect GxE tests (SingleEnv-Renv-int, x-axis, P 

values Bonferroni adjusted for the number of tested environments) versus the StructLMM 

interaction test (StructLMM-int, y-axis). Dashed lines correspond to α<0.05, Bonferroni 

adjusted for the number of tests. (b) Local Manhattan plots of an interaction identified by 

StructLMM-int at MC4R. From top to bottom: LMM association test (LMM-Renv), 

StructLMM interaction test (StructLMM-int), single-environment LMM interaction test 

(SingleEnv-Renv-int) for the environment with the strongest GxE effect at the GIANT SNP, 

age-adjusted vigorous physical activity (vigorous physical activity x age). The red vertical 

line and diamond symbol indicates the GIANT SNP as in a. (c) Scatter plot of genome-wide 

negative log P values from LMM association test (LMM-Renv, x-axis) versus the 

StructLMM association test (y-axis). Dashed lines indicate genome-wide significance at 

P<5x10-8 and colour denotes the estimated extent of heterogeneity (fitted parameter ⍴), 

where yellow/red corresponds to variants with low/high GxE components. The inset displays 

a zoom-in view of variants close to genome-wide significance. n = 252,188 unrelated 

individuals of European ancestry for all experiments.
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Figure 4. Downstream analysis to explore identified GxE loci.
(a) Violin plots showing distributions of the in-sample estimated allelic effect size (effect of 

heterozygous versus homozygous reference carriers for environmental states realised in the 

population; n = 252,188 unrelated individuals of European ancestry for all experiments; 

Methods) on BMI for the four GIANT variants with GxE (α<0.05, Fig. 3a). Estimated 

persistent genetic effects are shown by the red bar and the green bars indicate top and 

bottom 5% quantiles of variation in effect sizes due to GxE. (b) Cumulative evidence of 

environmental variables that explain GxE at MC4R, showing Bayes factors between the full 

model and models with increasing numbers of environmental variables removed using 

backward elimination. For comparison, shown is the evidence for all 64 environmental 

variables. ‘Alcohol frequency female’, is selected as the first environmental factor, followed 

by ‘Alcohol frequency x age’ and so on.
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Figure 5. Gene-context interactions in a blood gene expression cohort.
(a) Cumulative fraction (top) and density (bottom) of eQTL with interactions (3,483 

interaction eQTL; FDR<5%) as a function of the estimated extent of heterogeneity (fitted 

parameter ρ). (b-d) Example of an interaction eQTL for CTSW at the lead variant rs568617, 

which is in LD with rs568617 (r2=0.98, Supp. Fig. 23), a known risk variant for Crohn's 

disease. (b,c) Expression level of CTSW for different alleles at the lead eQTL variant, 

considering 10% strata of individuals (n = 204 independent samples) with the smallest (b) 

and largest (c) per-individual allelic effects as estimated using StructLMM, displaying the 

25th, 50th and 75th percentiles, with whiskers extending to 1.5 times the interquartile range. 

(d) Scatter plot of CTSW expression level versus the aggregate environmental signal for the 

GxE effect at rs568617 (aggregate interacting environment), estimated using StructLMM 

(Supplementary Note). Individuals are stratified by the alleles at the eQTL lead variant. 

Solid lines denote regression lines for each genotype group.

Moore et al. Page 23

Nat Genet. Author manuscript; available in PMC 2019 January 31.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts


	Abstract
	Introduction
	Results
	Model validation using simulated data
	Application to data from UK Biobank
	Identification of eQTL interactions with cellular state

	Discussion
	Online Methods
	The Structured Linear Model
	Statistical Testing
	Estimation of ρ
	Exploring the most relevant environments for GxE
	Estimation of per-individual allelic effects
	Simulations
	Simulation procedure overview
	Assessment of statistical calibration
	Power simulations
	Comparison methods

	Analysis of BMI in UK Biobank
	Data pre-processing
	Genotype data
	Environmental Covariance and Covariates
	Calibration of interaction and association tests
	Interaction testing
	Association testing
	Per-individual allelic effect estimation
	Explorative analysis of driving environments

	Analysis of cell-context eQTL in a large blood cohort
	Genotype data pre-processing
	Ethical approval
	Expression data
	Environmental Covariance
	cis-eQTL map
	Interaction eQTL analysis
	Overlap with GWAS hits and pathways analysis


	BIOS consortium banner
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

